首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
For a cylindrical wave guide, filled with hot collisional and moving plasma, the expression for damping coefficientK i (imaginary part of the wave vector) has been derived and discussed in case of TM modes. It is observed that due to the effects of ion collisions,K i remains less than zero for all values of (=/c) and waves suffer strong reflections for 0.5. The damping is however not affected for moderate changes in collision frequencies, while for low values of electron collision frequency and plasma density, the damping coefficient varies in a parabolic fashion with sharp reflections at 0.3.  相似文献   

2.
Some important evolution nonlinear partial differential equations are derived using the reductive perturbation method for unmagnetized collisionless system of five component plasma. This plasma system is a multi-ion contains negatively and positively charged Oxygen ions (heavy ions), positive Hydrogen ions (lighter ions), hot electrons from solar origin and colder electrons from cometary origin. The positive Hydrogen ion and the two types of electrons obey \(q\)-non-extensive distributions. The derived equations have three types of ion acoustic waves, which are soliton waves, shock waves and kink waves. The effects of the non-extensive parameters for the hot electrons, the colder electrons and the Hydrogen ions on the propagation of the envelope waves are studied. The compressive and rarefactive shapes of the three envelope waves appear in this system for the first order of the power of the nonlinearity strength with different values of non-extensive parameters. For the second order, the strength of nonlinearity will increase and the compressive type of the envelope wave only appears.  相似文献   

3.
The expression for damping coefficients (K i) is derived and discussed numerically, for a cylindrical wave guide, filled with hot collisional and uniaxially magnetised plasma. It is observed that TM modes suffer a very high damping for high values of plasma frequency (w pe/w = 10) and low values of ion collision frequency (v i/v e = 10?3), where as for low values of plasma frequency (w pe/w = 0.1) the damping is low. The damping also increases as the ion temperature increases.  相似文献   

4.
In the solar wind, electrostatic ion cyclotron waves can be excited, by electrons or ions when the flow velocity becomes supersonic. The instability of these waves is investigated for a situation in which ions are streaming in opposite directions along the interplanetary magnetic field in a uniform background of relatively stationary electrons. Many modes become unstable under the existing conditions. It is conjectured that the excitation of this instability may lead to a steady state electrostatic turbulence in the solar wind.  相似文献   

5.
Spectral analysis of recent photometric observations has revealed the existence of narrow frequency band pulsations in the brightness of some auroras. Peaks in the power spectra, between 25 and 32 Hz have been observed. We suggest that these observations are associated with electrostatic ion cyclotron waves, which are excited when the relative drift between ions and electrons due to field aligned (Birkeland) currents, exceeds a certain critical value.  相似文献   

6.
Our calculations indicate that high frequency plasma waves can be efficiently generated by electrostatic turbulence in the magnetosphere.  相似文献   

7.
Ion acoustic solitary waves and periodic waves in an unmagnetized plasma with superthermal (kappa distributed) cool and hot electrons have been investigated using non-perturbative approach. We have transformed basic model equations to an ordinary differential equation involving electrostatic potential. Then we have applied the bifurcation theory of planar dynamical systems to the obtained equation and we have proved the existence of solitary wave solutions and periodic wave solutions. We have derived two exact solutions of solitary and periodic waves depending on the parameters. From the solitary wave solution and periodic wave solution, we have shown the effects of density ratio p of cool electrons and ions, spectral index κ, and temperature ratio σ of cool electrons and hot electrons on characteristics of ion acoustic solitary and periodic waves.  相似文献   

8.
The characteristics of the head-on collision (HOC) between two positron acoustic solitary waves (PASWs) in a four component electron-positron-ion (EPI) space plasma have been investigated theoretically, using the extended Poincaré-Lighthill-Kuo (PLK) method. The analytical phase shifts after the collision of the two solitary waves occurs are derived. Numerically, the influences of the cold/hot positron parameters on the phase shifts are explicitly investigated. The present theory is applied to analyze the formation and the interaction of localized coherent PASWs structures in space plasmas (pulsar environments).  相似文献   

9.
A theoretical study is made on the generation mechanism of electrostatic Bernstein mode wave in the presence of electromagnetic Kinetic Alfven wave turbulence in magnetized inhomogeneous plasma on the basis of plasma-maser interaction. It is shown that a test high-frequency electrostatic Bernstein mode wave is unstable in the presence of low-frequency Kinetic Alfven wave turbulence. Because of the universal existence of the Kinetic Alfven waves in large-scale plasmas, the result has potential importance in space and astrophysical radiation process. The growth rate of the test high-frequency Bernstein mode wave is obtained with the involvement of spatial density gradient parameter. A comparative study on the role of density gradient in the generation of Bernstein mode on the basis of plasma-maser effect is presented.  相似文献   

10.
The behavior of quantum dust ion-acoustic (QDIA) shocks in a plasma including inertialess quantum electrons and positrons, classical cold ions and stationary negative dust grains are studied, using a quantum hydrodynamic model (QHD). The effect of dissipation due to the viscosity of ions is taken into account. The propagation of small but finite amplitude QDIA shocks is governed by the Kortoweg-de Vries-Burgers (KdVB) equation. The existence regions of oscillatory and monotonic shocks will depend on the quantum diffraction parameter (H) and dust density (d) as well as dissipation parameter (η 0). The effect of plasma parameters (d,H,η 0), on these structures is investigated. Results indicate that the thickness and height of monotonic shocks; oscillation amplitude of the oscillatory shock wave and it’s wavelength effectively are affected by these parameters. Additionally, the possibility of propagation of both compressive and rarefactive shocks is investigated. It is found that depending on some critical value of dust density (d c ), which is a function of H, compressive and rarefactive shock waves can’t propagate in model plasma. The present theory is applicable to analyze the formation of nonlinear structures at quantum scales in dense astrophysical objects.  相似文献   

11.
We derive the expression for the ponderomotive force in the real multicomponent magnetospheric plasma containing heavy ions. The ponderomotive force considered includes the induced magnetic moment of all the species and arises due to inhomogeneity of the traveling low-frequency electromagnetic wave amplitude in the nonuniform medium. The nonlinear stationary force balance equation is obtained taking into account the gravitational and centrifugal forces for the plasma consisting of the electrons, protons and heavy ions (He+). The background geomagnetic field is taken for the dayside of the magnetosphere, where the magnetic field have magnetic “holes” (Antonova and Shabansky in Geomagn. Aeron. 8:639, 1968). The balance equation is solved numerically to obtain the nonlinear density distribution of ions (H+) in the presence of heavy ions (He+). It is shown that for frequencies less than the helium gyrofrequency at the equator the nonlinear plasma density perturbations are peaked in the vicinity of the equator due to the action of the ponderomotive force. A comparison of the cases of the dipole and dayside magnetosphere is provided. It is obtained that the presence of heavy ions leads to decrease of the proton density modification.  相似文献   

12.
A theoretical investigation is carried out to analyse the propagation of ion acoustic (IA) waves in a magnetized bi-ion plasma having two populations of fluid ions and kappa-distributed electrons. The propagation properties of all possible modes (in the linear regime) are investigated. The nonlinear evolution of the IA solitary waves is governed by a Korteweg-de Vries (KdV)-like equation. The influence of obliqueness, magnitude of the magnetic field, ion polarity and electron superthermality on the IA waves is then examined. Our findings should aid in understanding the nonlinear electrostatic excitations that may propagate in spatial magnetized plasmas.  相似文献   

13.
The interaction of ans-polarized plane electromagnetic wave incident from a dielectric (or vacuum) region on awarm moving magnetized plasma half-space is considered. The external magnetic field is assumed to be normal to the direction of the wave normal and the velocity of the moving medium. Using the first three moment equations, together with Maxwell's electromagnetic equations, we construct the constitutive relations in the rest frame of the moving medium. The constitutive relations are then transformed to the laboratory frame by invokingMinkowski's equations for the moving plasma medium, and the dispersion relation for the propagating ordinary mode in the moving medium is derived. Expressions are obtained for the phase and group velocities and the index of refraction for the ordinary mode, as also for power reflection and transmission coefficients. It is found that in contrast to the case of a cold magnetized plasma, the ordinary electromagnetic mode excited in the warm magnetoplasma medium getsmodified due to the presence of an external magnetic field. In addition, the various reflection and transmission characteristics for a warm magnetoplasma depend on the velocity of the moving plasma as well as on the strength of the applied magnetic field, as against the case for a cold moving magnetized plasma. Numerical results on the reflection coefficient are presented for several values of the parameters characterizing the electron-plasma temperature, the velocity of the moving medium and the strength of the applied magnetic field.  相似文献   

14.
Dust acoustic (DA) shock waves are investigated in a dusty plasma having a high-energy-tail electron distribution. The effects of ion streaming, charge variation and electron deviation from the Maxwellian distribution on the DA shock wave are then considered. It is shown that as the suprathermal character of the plasma is increased, the potential amplitude enhances. It is also found that the ion temperature may be destructive for the formation of DA shock waves. Their strength decreases with increasing ion streaming speed. Our results may be useful in understanding the basic nonlinear features of the DA wave propagation that may occur in space dusty plasmas, especially those including a relative motion between species (comet tails, solar wind streams, etc.).  相似文献   

15.
Bifurcation behavior of nonlinear dust ion acoustic travelling waves in a magnetized quantum dusty plasma has been studied. Applying the reductive perturbation technique (RPT), we have derived a Kadomtsev-Petviashili (KP) equation for dust ion acoustic waves (DIAWs) in a magnetized quantum dusty plasma. By using the bifurcation theory of planar dynamical systems to the KP equation, we have proved that our model has solitary wave solutions and periodic travelling wave solutions. We have derived two exact explicit solutions of the above travelling waves depending on different parameters.  相似文献   

16.
Resonant wave-wave interaction among one ion sound wave and two electro-magnetic waves in an isotropic plasma is studied. The emphasis is on the possibility of trapping the electromagnetic wave. Equations for the three-wave system are derived. One particularly interesting case is that for which the frequency of ion sound wave is much less than the frequency of electromagnetic waves. For this case it is shown that energy exchange takes place only between the two high frequency waves. The ion sound wave does not participate in the energy exchange process but acts as a kind of catalyst for the interaction. Simple solutions are obtained. It is found that the electromagnetic energy is trapped within a certain spatial region. The trapping width is found to depend, among other parameters, on the magnitude of ion sound wave perturbation. Possible application of the theory to topside ionospheric observations of field-aligned propagation is discussed.  相似文献   

17.
The combined effects of the obliqueness and nonextensive electrons are incorporated in the study of ion acoustic (IA) waves in a magnetized plasma. The propagation properties of two possible modes (in the linear regime) are investigated. It is found that the electron nonextensivity decreases the phase velocities of both two modes. Also obliqueness leads to increase of separation between two modes. The nonlinear evolution of IA solitary waves is governed by an energy-like equation. The influence of electron nonextensivity, obliqueness and electron population on the existence domain of solitary waves and the soliton characteristics are examined. It is shown that the existence domain of the IA soliton and its profile is significantly depended on the deviation of electrons from thermodynamic equilibrium and obliqueness. Interestingly, the present model supports compressive as well as rarefactive IA solitary waves. Our finding should elucidate the nonlinear electrostatic structures that propagate in astrophysical and cosmological plasma scenarios where nonextensive and magnetized plasma can exist; like instellar plasma stellar polytropes, solar neutrino problem, peculiar velocities of galaxy clusters, dark-matter halos, protoneutron stars, hadronic matter, quark-gluon plasma, and magnetosphere, etc.  相似文献   

18.
We study the process of occurrence of “quasi-mode” decay instability of kinetic Alfven waves (KAW) in the chromosphere of a solar active region before a flare, namely, in plasma of magnetic loops near their footpoints. The decay of a primary KAW into a kinetic ion-acoustic wave and a secondary KAW was considered as a specific type of three-wave interaction. Necessary conditions for the KAW decay instability occurrence were found for two semiempirical models of the solar atmosphere with the use of a modified expression for the growth rate of instability in the case of nonlinear interaction of low-frequency waves with an abnormally low excitation threshold. It was shown that the main criteria for the development of this instability significantly depend on the amplitude of external magnetic field in the region under study as well as on a model of the solar atmosphere.  相似文献   

19.
Nonlinear properties of the dust acoustic (DA) solitary waves in a dusty plasma consisting of negatively variable-charged dust particles, vortex-like distributed ions and two-temperature isothermal electrons are reported. A reductive perturbation theory has been used to derive a modified Korteweg-de Vries (mKdV) equation for the first-order perturbed potential and a linear inhomogeneous mKdV-type equation for the second-order perturbed potential. The renormalization method is used to obtain stationary solutions of these coupled equations. The modifications in the amplitude and width of the solitary wave structure due to the inclusion of two different types of isothermal electrons, external oblique magnetic field, higher-order nonlinearity, and vortex-like distributed ions are investigated. Also a method based on energy consideration was used to obtain the stability condition. Moreover, the numerical results are applied to investigate some nonlinear characteristics of the DA solitary waves.  相似文献   

20.
A dispersion equation for the surface waves on the inner boundary of the magnetospheric plasma sheet is obtained. The wave group velocity has both components along and across the magnetic field. For the waves with the period 1 min the transverse component is about 100 km s−1, the parallel component is approximately equal to the Alfvén velocity. Pi2 pulsations, as well as east-westward motions of auroral riometer absorption bays, may be possible displays of surface waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号