首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The outflow from the Sea of Okhotsk to the North Pacific is important in characterising the surface-to-intermediate-depth water masses in the Pacific Ocean. The two basins are separated by the Kuril Islands with numerous straits, among which the Bussol and the Kruzenshterna Straits are deeper than 1000 m. The physics governing the transport between the two basins is complicated, but when the semidiurnal and diurnal tides are subtracted, the observed density and velocity structures across the Bussol Strait suggest a significant contribution from geostrophic balance. Using a two-layer model with the interface at 27.5σ θ , part of the upper layer transport that is not driven by tides is estimated using two previously unexplored data sets: outputs from the Ocean General Circulation Model for Earth Simulator (OFES), and historical hydrographic data. The Pacific water flows into the Sea of Okhotsk through the northeastern straits. The greatest inflow is through the Kruzenshtern Strait, but the OFES results show that the contributions from other shallower straits are almost half of the Kruzenshtern inflow. Similarly, the outflow from the Sea of Okhotsk is through the southwestern straits of the Kuril Islands with the largest Bussol Strait contributing 60% of the total outflow. The OFES and hydrographic estimates agree that the exchange is strongest in February to March, with an inflow of about −6 to −12 Sv (negative indicates the flow from the North Pacific, 1 Sv = 106 m3s−1), and an outflow from the Sea of Okhotsk of about +8 to +9 Sv (positive indicates the flow from the Sea of Okhotsk), which is weakest in summer (−3 to +1 Sv through the northeastern straits and +0 to +3 Sv through the southwestern straits). The estimated seasonal variation is consistent with a simple analytic model driven by the difference in sea surface height between the two basins.  相似文献   

2.
Izvestiya, Atmospheric and Oceanic Physics - Water exchange between the Pacific Ocean and the Okhotsk Sea through the Kuril Straits and transport of Pacific waters into and from the Okhotsk Sea are...  相似文献   

3.
A numerical study using a 3-D nonhydrostatic model has been applied to baroclinic processes generated by the K 1 tidal flow in and around the Kuril Straits. The result shows that large-amplitude unsteady lee waves are generated and cause intense diapycnal mixing all along the Kuril Island Chain to levels of a maximum diapycnal diffusivity exceeding 103 cm2s−1. Significant water transformation by the vigorous mixing in shallow regions produces the distinct density and potential vorticity (PV) fronts along the Island Chain. The pinched-off eddies that arise and move away from the fronts have the ability to transport a large amount of mixed water (∼14 Sv) to the offshore regions, roughly half being directed to the North Pacific. These features are consistent with recent satellite imagery and in-situ observations, suggesting that diapycnal mixing within the vicinity of the Kuril Islands has a greater impact than was previously supposed on the Okhotsk Sea and the North Pacific. To examine this influence of tidal processes at the Kurils on circulations in the neighboring two basins, another numerical experiment was conducted using an ocean general circulation model with inclusion of tidal mixing along the islands, which gives a better representation of the Okhotsk Sea Mode Water than in the case without the tidal mixing. This is mainly attributed to the added effect of a significant upward salt flux into the surface layer due to tidal mixing in the Kuril Straits, which is subsequently transported to the interior region of the Okhotsk Sea. With a saline flux into the surface layer, cooling in winter in the northern part of the Okhotsk Sea can produce heavier water and thus enhance subduction, which is capable of reproducing a realistic Okhotsk Sea Mode Water. The associated low PV flux from the Kuril Straits to the open North Pacific excites the 2nd baroclinic-mode Kelvin and Rossby waves in addition to the 1st mode. Interestingly, the meridional overturning in the North Pacific is strengthened as a result of the dynamical adjustment caused by these waves, leading to a more realistic reproduction of the North Pacific Intermediate Water (NPIW) than in the case without tidal mixing. Accordingly, the joint effect of tidally-induced transport and transformation dominating in the Kuril Straits and subsequent eddy-transport is considered to play an important role in the ventilation of both the Okhotsk Sea and the North Pacific Ocean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
日本海、鄂霍次克海和白令海的古海洋学研究进展   总被引:2,自引:0,他引:2  
边缘海的存在使大陆和大洋之间的物质和能量交换变得相当复杂。在构造运动和海平面升降的控制下,边缘海和大洋之间时而连通时而隔绝,各种古气候变化信号都在一定程度上被放大。基于近期有关西北太平洋边缘海的古海洋学研究成果,简要概述了日本海、鄂霍次克海、白令海以及北太平洋地区自中新世以来的古气候和古海洋环境演化特征,并认为它们与全球其它地区一样也受控于因地球轨道参数变化引起的太阳辐射率的变化,大尺度的气候变化具有与地球轨道偏心率周期相对应的100ka周期,而41ka的小尺度周期则受地球自转轴斜率变化的控制。一些突发性的气候变化则是由气候不稳定性、海峡的关闭与开启和其它一些地球气候系统的非线性活动所驱动。但同时作为中高纬度边缘海,它们的古海平面、古海水温度、古洋流等古海洋环境因子的变化特征还受到冰盖扩张和退缩、构造运动、冰川性地壳均衡补偿、东亚季风等因素的影响,具有一定的区域特点。  相似文献   

5.
The article summarizes and analyzes published data on the distribution of sea-ice and open-ocean diatoms in 42 cores of bottom sediments from the northwestern part of the Subarctic Pacific that accumulated during the last glacial maximum (LGM). Based on micropaleontological records, the extent of winter sea ice during the LGM could be limited to the Okhotsk and Bering seas. During the warm season, the surface water masses from the open Subarctic Pacific spread widely in the marginal seas.  相似文献   

6.
楚科奇海海冰周年变化特征及其主要关联因素   总被引:20,自引:2,他引:20  
利用1999年美国国家冰雪资料中心的各种卫星遥感综合分析数据对楚科奇海海冰周年变化进行详细分析,将全年的海冰变化过程分成密集冰封期、东岸融化期、单湾结构期、双湾结构期、三湾结构期、全线北撤期、南进封闭期、全面冻结期8个阶段。海冰冻结期仅2个月,海冰融化期持续4~5个月,说明融冰过程的吸热是个漫长的过程。太平洋与北冰洋海面高度差形成的正压压强梯度力是白令海水进入北冰洋的主要动力,白令海水进入冰下形成的暖水海冰边缘区是海冰融化的重要机制。白令海水在楚科奇海扩散过程受到海底地形产生的Taylor柱效应的显著影响,使其产生绕过浅滩,沿海谷流动,在海谷的方向上输送更多的水体和热量的现象,形成海冰融化的湾状结构。楚科奇海的局地风场也是海冰形态变化的重要因素之一。局地风场在冬季阻碍白令海水的入流,而在夏季促进白令海水的入流。  相似文献   

7.
Results of the long-term study of the spatial and vertical distribution of the parasitic anadromous Arctic lamprey Lethenteron camtschaticum (Tilesius, 1811) (Petromyzontidae) in the North Pacific and data on its size composition are given. This species is most frequent in the northwestern Sea of Japan and the western Bering Sea. The maximum concentrations are noted in waters of southern Primorye, southwestern Sakhalin, the northwestern part of the Sea of Okhotsk, and the northern part of the Bering Sea, which is probably explained by the increased number of its victims, Pacific salmon. Near the bottom, Pacific lampreys are extremely few and are primarily encountered at depths less that 400 m, and in the Pelagic zone, in the 100-m layer. The catches have contained Arctic lampreys having a total length of 15–79 cm. The lampreys of several size groups in the catches may indicate that L. camtschaticum spends not less than four years in the sea. No relationship has been found between the body length and the capture depth. Analyzed are the relationships between the body length and weight and the body length and the condition factor. The seasonal dynamics of these indices are considered.  相似文献   

8.
The Japanese archipelago is surrounded by the Pacific to the east, the Okhotsk Sea to the north, the Sea of Japan to the west and the Okinawa Trough to the south. The last three seas form semi-isolated deep basins, all with potentially tectonic origin but a different primary energy source as well as hydrographic and faunistic history. The Okhotsk Sea is connected to the Pacific through the deep straits between the Kurile Islands. As a result much of the fauna has links with that fauna found at similar depths in the Pacific. By contrast, the Sea of Japan was isolated from the main Pacific during the last ice age and became anoxic. Even today the link is only through narrow shallow straits. As a result the fauna is impoverished and is believed to be composed of cold-adapted eurybathic species rather than true deep-sea species. The deep-water fauna of both these seas derive their energy from sinking surface primary production. The Okinawa Trough has a much younger tectonic history than the Okhotsk Sea or the Sea of Japan. In the Okinawa Trough the most noticeable fauna is associated with hydrothermal activity and chemosynthesis forms the base of the food chain for the bathyal community. The variable nature of these three basins offers excellent opportunities for comparative studies of species diversity, biomass and production in relation to their ambient environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
通过中国第1至第3次北极科学考察在北冰洋西部所采集的99个表层沉积物中生源与陆源粗组分的分析,研究了该海域表层生产力的变化,有机质来源以及陆源粗颗粒物质的输入方式和影响因素.研究区域生源组分所反映的表层生产力变化与通过白令海峡进入楚科奇海的3股太平洋洋流密切相关.楚科奇海西侧高盐高营养盐的阿纳德尔流流经区域,表层生产力...  相似文献   

10.
According to the summarized data on the distribution of the Cenozoic siliceous sediments inl the Japanese and Okhotsk seas, the silica accumulation in them initiated in the early Miocene and Oligocene, respectively. This process was preceded by relatively sharp cooling in the Eocene, which stimulated the development of the diatom flora. The global circulation system in the World Ocean favored the upwelling of deep waters in the North Pacific. These nutrient-enriched oceanic waters invaded the marginal seas to determine their high bioproducticvity and intense silica accumulation. In the terminal Pliocene, the share of biogenic silica in the sediments became sharply reduced. This phenomenon corresponds to the onset of the continental glaciations in the Northern Hemisphere 2.6 Ma ago. The water column became stratified to form a distinct halocline, which reduced the bioproductivity. In the present-day Sea of Japan, the water exchange with the Pacific is limited by the shallow and narrow straits between these basins. The Sea of Okhotsk is connected with the ocean by deep straits so that deep nutrient-rich oceanic waters intrude into this basin providing its high bioproductivity. Dissimilar to the Neogene sediments, the Quaternary sequences demonstrate periodicity in the silica accumulation: it was strongly suppressed due to the ice cover during the glaciations and recommenced during the warm interglacial periods.  相似文献   

11.
The sea-surface bioproductivity changes over the last 25 kyr were inferred from published data on 30 sediment cores from the open Northwest Pacific (NWP), Sea of Okhotsk, Bering Sea and Sea of Japan accounting for the glacioeustatic sea-level changes. A novel method was developed to compare the variations of several independent productivity proxies relative to the present-day values. During the Last Glacial Maximum, the bioproductivity in the Sea of Okhotsk and the western Bering Sea (BS) was lower than at present, whereas the southern and southeastern Bering Sea and the open NWP are characterized by enhanced bioproductivity. During the early deglacial stage, an increase in bioproductivity was estimated only for the southeastern Bering Sea. High and fairly high bioproductivity was estimated for Heinrich 1 in the open NWP, above the Umnak Plateau and on the Shirshov and Bowers Ridges in the Bering Sea. The high productivity in the Bering Sea, Sea of Okhotsk and NWP during the Bølling/Allerød was caused by the global warming and enhanced nutrient supply by meltwater from the continent. During the Early Holocene, high productivity was estimated for almost the entire NWP. The Late Holocene sea-surface bioproductivity was generally lower than that of the Early Holocene. Proposed factors that have controlled the sea-surface bioproductivity during the last 25 kyr include: the location of the sea ice margin, the river runoff, gradual flooding of the Bering Sea and the Sea of Okhotsk shelf areas, the water mass exchange between the marginal seas and the open NWP, the eolian supply and the deep vertical mixing of the water column.  相似文献   

12.
鄂霍次克海南部晚第四纪的古海洋学记录   总被引:2,自引:0,他引:2  
鄂霍次克海是太平洋第二大边缘海,在西北太平洋水文环境中扮演重要角色。综合分析了鄂霍次克海南部T00孔沉积物的多种替代性指标,揭示了鄂霍次克海晚第四纪以来的环境变化受季节性海冰变化、大气循环模式、陆源物质通量和表层生产力的共同影响。对比放射虫Cycladophora davisiana的含量曲线与LR04氧同位素记录,该孔沉积物可划分为氧同位素1-7期,底部年龄约为250ka。C.davisiana在间冰期的高含量表明鄂霍次克海中层水是北太平洋中层水的主要源区。蛋白石和有机碳的分析显示鄂霍次克海表层生产力在冰消期突然增大,随后在间冰期逐渐下降,冰期普遍较低。C/N比值曲线的分析说明鄂霍次克海的有机质沉积物主要来源于海洋。沉积物粒度的分析揭示鄂霍次克海冰期时陆源粗颗粒含量较低,至冰消期粗颗粒含量突然增加,而在间冰期陆源粗颗粒含量较高。  相似文献   

13.
A near-surface satellite-tracked drifter launched off the east coast of the Kuril Islands on September 4,1993 began a 2.5-year Odyssey across the North Pacific Ocean. During its travels, the drifter encountered numerous energetic oceanographic regimes as it moved from the region of the Kuril-Kamchatka Trench to the continental margin of the Kuril Islands, through Friza Strait into the Sea of Okhotsk, seaward again through Bussol’ Strait, and then eastward across the North Pacific. Oceanic features detected along the basin-wide trajectory include a quasi-permanent anticyclonic eddy over the Kuril-Kamchatka Trench, open-ocean wind-driven inertial oscillations, coastal-trapped diurnal shelf waves, semidiurnal tidal currents, transient cyclonic and anticyclonic eddies, through-strait flows, and wave-like mesoscale meanders. The single drifter track delineates the dynamically-rich variability of upper ocean currents, emphasizes the marked difference in flow dynamics between boundary and open ocean regions, and provides a time-scale for the movement of surface waters across the entire North Pacific.  相似文献   

14.
白令海峡夏季流量的年际变化及其成因   总被引:1,自引:1,他引:0  
张洋  苏洁 《海洋学报》2012,34(5):1-10
白令海峡是连接太平洋和北冰洋的唯一通道,穿过海峡的海水体积通量在年际尺度上的变化主要取决于海峡南北两侧的海面高度差,白令海峡的入流对北冰洋海洋过程有重要的意义。利用SODA资料计算夏季白令海峡海水体积通量,对其年际变化及成因进行分析。结果表明夏季白令海峡的体积通量主要是正压地转的;当体积通量为正距平时,楚科奇海、东西伯利亚海、拉普捷夫海以及波弗特海南部海面高度为负距平,同时,白令海陆架海面高度为正距平;对这些海域的Ekman运动、上层海洋温度、盐度和垂直流速进行分析,发现海面高度异常与海峡体积通量的这种关系主要是与海面气压异常分布所产生的Ekman运动有关。当白令海峡的体积通量为正距平时,北冰洋中央海面气压为正距平,白令海海盆海面气压为负距平。这种气压的异常分布在一定程度上解释了上层海洋运动、海水温盐结构与白令海峡入流的关系,从而把夏季大尺度大气环流和白令海峡体积通量的年际变化联系了起来。  相似文献   

15.
A comparative analysis was conducted on climate variability in four sub-arctic seas: the Sea of Okhotsk, the Bering Sea shelf, the Labrador Sea, and the Barents Sea. Based on data from the NCEP/NCAR reanalysis, the focus was on air–sea interactions, which influence ice cover, ocean currents, mixing, and stratification on sub-seasonal to decadal time scales. The seasonal cycles of the area-weighted averages of sea-level pressure (SLP), surface air temperature (SAT) and heat fluxes show remarkable similarity among the four sub-arctic seas. With respect to variation in climate, all four seas experience changes of comparable magnitude on interannual to interdecadal time scales, but with different timing. Since 2000 warm SAT anomalies were found during most of the year in three of the four sub-arctic seas, with the exception of the Sea of Okhotsk. A seesaw (out of phase) pattern in winter SAT anomalies between the Labrador and the Barents Sea in the Atlantic sector is observed during the past 50 years before 2000; a similar type of co-variability between the Sea of Okhotsk and the Bering Sea shelf in the Pacific is only evident since 1970s. Recent positive anomalies of net heat flux are more prominent in winter and spring in the Pacific sectors, and in summer in the Atlantic sectors. There is a reduced magnitude in wind mixing in the Sea of Okhotsk since 1980, in the Barents Sea since 2000, and in early spring/late winter in the Bering Sea shelf since 1995. Reduced sea-ice areas are seen over three out of four (except the Sea of Okhotsk) sub-arctic seas in recent decades, particularly after 2000 based on combined in situ and satellite observations (HadISST). This analysis provides context for the pan-regional synthesis of the linkages between climate and marine ecosystems.  相似文献   

16.
西北冰洋中太平洋入流水营养盐的变化特征   总被引:11,自引:5,他引:6       下载免费PDF全文
利用1999,2003和2008年夏季(7-9月)三次中国北极科学考察数据资料,分析和讨论太平洋入流水营养盐的分布和楚科奇海关键生物地球化学过程对太平洋水化学性质的改造.结果表明,2003和2008年在白令海峡南部64.3°N纬向断面(BS断面)由于水团性质差异显著,营养盐呈西高、东低的分布趋势.2003年BS断面水柱...  相似文献   

17.
In 1999, synoptic and hydrological conditions in the western Bering Sea were characterized by negative SST and air temperature anomalies, extensive ice coverage and late melting. Biological processes were also delayed. In 1999, the average zooplankton biomass was 1.76 g/m3, approximately half the average 3.07 g/m3 in 1998. Pacific salmon migrated to the northeastern Kamchatka streams two weeks later. This contrasts with 1997 (spring and summer) and 1998 (summer) when positive SST anomalies were widely distributed throughout the northwestern Bering Sea shelf. Since the second half of the 1990s, seasonal atmospheric processes developed over the western Bering Sea that were similar to those of the cold decades of the 1960–1970s. A meridional atmospheric circulation pattern began to replace zonal transport. Colder Arctic air masses have shifted over the Bering Sea region and shelf water temperatures have cooled considerably with the weakening of zonal atmospheric circulation. Temperature decreased in the cold intermediate layer during its renewal in winter. Besides, oceanic water inflow intensified into the Bering Sea in intermediate layers. Water temperature warmed to 4°C and a double temperature maximum existed in the warm intermediate layer in late summer in both 1997 and 1998. Opposing trends of cold water temperature and a warm intermediate layer led to an increase of vertical gradients in the main thermocline and progressing frontogenesis. It accelerates frontal transport and can be regarded as a chief cause of increased water exchange with the Pacific Ocean.  相似文献   

18.
This study deals with the correlation between ice extent in the Sea of Okhotsk and the interannual variability of winter (December–February) air temperature over the subtropical Western Pacific from 1979 to 2008. The analysis indicates that the increase in sea ice extent coincides not only with cooling over the Sea of Okhotsk and the adjacent area, but also with significant warming over the subtropical Western Pacific that extends from the surface to the middle troposphere. This meridional dipole pattern of tropospheric temperature anomalies (cooling in the high latitudes and warming in the low latitudes) primarily results from dynamical processes driven by the large-scale atmospheric circulation change. A heat budget diagnosis reveals that when ice extent in the Sea of Okhotsk increases by one standard deviation, the tropospheric air temperature over the subtropical Western Pacific rises by about 0.25°C. It also suggests that the adiabatic heating and stationary eddy heat flux convergence may be the most important factors, which account for 30 and 15% of the warming, respectively. In addition, these two factors also coordinate to result in significant cooling over the Sea of Okhotsk and the adjacent regions.  相似文献   

19.
Ciliates are important components in planktonic food webs,but our understanding of their community structures in different oceanic water masses is limited.We report pelagic ciliate community characteristics in three seas:the tropical West Pacific,the Bering Sea and the Arctic Ocean.Planktonic ciliate abundance had"bimodal-peak","surface-peak"and"DCM(deep chlorophyll a maximum layer)-peak"vertical distribution patterns in the tropical West Pacific,the Bering Sea and the Arctic Ocean,respectively.The abundance proportion of tintinnid to total ciliate in the Bering Sea(42.6%)was higher than both the tropical West Pacific(7.8%)and the Arctic Ocean(2.0%).The abundance proportion of small aloricate ciliates(10–20μm size-fraction)in the tropical West Pacific was highest in these three seas.The Arctic Ocean had higher abundance proportion of tintinnids in larger LOD(lorica oral diameter)size-class.Proportion of redundant species increased from the Arctic Ocean to the tropical West Pacific.Our result provided useful data to further understand ecology roles of planktonic ciliates in different marine habitats.  相似文献   

20.
Characteristics of the Sôya Warm Current from Abashiri Bay to the area off the coast of the southern Kuril Islands are clarified by water mass analysis. The water flowing into the Okhotsk Sea as the Sôya Warm Current is divided into two: the Forerunner of the Sôya Warm Water (March to May) and the Sôya Warm Water (June to November). It is shown that in May the Sôya Warm Current flows in the subsurface layer (about 200–400m deep) in Abashiri Bay, and flows northeastward just off the coast of the Kuril Islands as a subsurface current reaching a region northwest of Etorofu Island by the end of May. The dissolved oxygen content is fairly effective in identifying the Forerunner of the Sôya Warm Water in the subsurface layer. The Sôya Warm Current shifts upwards to the surface layer in Abashiri Bay by early July, because the Sôya Warm Water with large thermosteric anomaly t begins to flow into the Okhotsk Sea in June. It is shown that, in general, the major portion of the Sôya Warm Current flows northeastward just off the coast of the Kuril Islands during the summer season, although a minor branch of the current flows northward in the area off the Shiretoko Peninsula, and another minor branch flows out to the Pacific Ocean through the Nemuro Straits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号