首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enlarged averaged Hamiltonian is introduced to compute several families of periodic orbits of the planar elliptic 3-body problem, in the Sun–Jupiter–Asteroid system, near the 4:1 resonance. Four resonant critical point families are found and their stability is studied. The families of symmetric periodic orbits of the elliptic problem appear near the corresponding fixed points computed in this model. There is a good agreement for moderate eccentricity of the asteroid for three of these families, whereas the remaining family cannot be considered as a family of periodic orbits of the real model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The importance of the stability characteristics of the planar elliptic restricted three-body problem is that they offer insight about the general dynamical mechanisms causing instability in celestial mechanics. To analyze these concerns, elliptic–elliptic and hyperbolic–elliptic resonance orbits (periodic solutions with lower period) are numerically discovered by use of Newton's differential correction method. We find indications of stability for the elliptic–elliptic resonance orbits because slightly perturbed orbits define a corresponding two-dimensional invariant manifold on the Poincaré surface-section. For the resonance orbit of the hyperbolic–elliptic type, we show numerically that its stable and unstable manifolds intersect transversally in phase-space to induce instability. Then, we find indications that there are orbits which jump from one resonance zone to the next before escaping to infinity. This phenomenon is related to the so-called Arnold diffusion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
An enlarged averaged Hamiltonian is introduced to compute some families of periodic orbits of the planar elliptic 3-body problem, in the Sun-Jupiter-Asteroid system, near the 3:1 resonance. Five resonant families are found and their stability is studied, The families of symmetric periodic orbits of the elliptic problem appear near the corresponding fixed points which have been computed in this model and the coincidence is good for moderate values of the eccentricity of the asteroid for two of these families; the other three families do not fulfil the Sundman condition and they cannot be considered as families of periodic orbits of the real model.  相似文献   

4.
A review is presented of periodic orbits of the planetary type in the general three-body problem and fourbody problem and the restricted circular and elliptic tnreebody problem. These correspond to planetary systems with one Sun and two or three planets (or a planet and its satellites), the motion of asteoids and also planetary systems with two Suns. The factors which affect the stability of the above configurations are studied in connection with resonance or additional perturbations. Finally, the correspondence of the periodic orbits in the restricted three-body problem with the fixed points obtained by the method of averaging or the method of surface of section is indicated.  相似文献   

5.
We develop an analytical Hamiltonian formalism adapted to the study of the motion of two planets in co-orbital resonance. The Hamiltonian, averaged over one of the planetary mean longitudes, is expanded in power series of eccentricities and inclinations. The model, which is valid in the entire co-orbital region, possesses an integrable approximation modeling the planar and quasi-circular motions. First, focusing on the fixed points of this approximation, we highlight relations linking the eigenvectors of the associated linearized differential system and the existence of certain remarkable orbits like the elliptic Eulerian Lagrangian configurations, the anti-Lagrange (Giuppone et al. in MNRAS 407:390–398, 2010) orbits and some second sort orbits discovered by Poincaré. Then, the variational equation is studied in the vicinity of any quasi-circular periodic solution. The fundamental frequencies of the trajectory are deduced and possible occurrence of low order resonances are discussed. Finally, with the help of the construction of a Birkhoff normal form, we prove that the elliptic Lagrangian equilateral configurations and the anti-Lagrange orbits bifurcate from the same fixed point $L_4$ L 4 .  相似文献   

6.
The resonant structure of the restricted three body problem for the Sun- Jupiter asteroid system in the plane is studied, both for a circular and an elliptic orbit of Jupiter. Three typical resonances are studied, the 2 : 1, 3 : 1 and 4 : 1 mean motion resonance of the asteroid with Jupiter. The structure of the phase space is topologically different in these cases. These are typical for all other resonances in the asteroid problem. In each case we start with the unperturbed two-body system Sun-asteroid and we study the continuation of the periodic orbits when the perturbation due to a circular orbit of Jupiter is introduced. Families of periodic orbits of the first and of the second kind are presented. The structure of the phase space on a surface of section is also given. Next, we study the families of periodic orbits of the asteroid in the elliptic restricted problem with the eccentricity of Jupiter as a parameter. These orbits bifurcate from the families of the circular problem. Finally, we compare the above families of periodic orbits with the corresponding families of fixed points of the averaged problem. Different averaged Hamiltonians are considered in each resonance and the range of validity of each model is discussed.  相似文献   

7.
A near equality between the nodal rates of suitably defined Trojan orbits and Jupiter represents an important type of a secular resonance. This case is realized by the model Sun-Jupiter-Saturn-Trojan, referred to the invariable plane. A second theoretical example is based on the elliptic three-body problem Sun-Jupiter-Trojan, where the vanishing nodal rate of a special Trojan orbit and the vanishing rate of Jupiter's longitude of perihelion define a secular resonance.We investigate the perturbations in the asteroidal inclinations and the nodes and consider the possibility of a libration.  相似文献   

8.
Four 3 : 1 resonant families of periodic orbits of the planar elliptic restricted three-body problem, in the Sun-Jupiter-asteroid system, have been computed. These families bifurcate from known families of the circular problem, which are also presented. Two of them, I c , II c bifurcate from the unstable region of the family of periodic orbits of the first kind (circular orbits of the asteroid) and are unstable and the other two, I e , II e , from the stable resonant 3 : 1 family of periodic orbits of the second kind (elliptic orbits of the asteroid). One of them is stable and the other is unstable. All the families of periodic orbits of the circular and the elliptic problem are compared with the corresponding fixed points of the averaged model used by several authors. The coincidence is good for the fixed points of the circular averaged model and the two families of the fixed points of the elliptic model corresponding to the families I c , II c , but is poor for the families I e , II e . A simple correction term to the averaged Hamiltonian of the elliptic model is proposed in this latter case, which makes the coincidence good. This, in fact, is equivalent to the construction of a new dynamical system, very close to the original one, which is simple and whose phase space has all the basic features of the elliptic restricted three-body problem.  相似文献   

9.
We prove that non resonant isochronous symplectic maps in a neighborhood of an elliptic fixed point are stable for exponentially long times with the inverse of the distance from the fixed point. In the proof we make use of the majorant series method together with an idea for optimizing remainder estimates first applied to Hamiltonian problems by Nekhoroshev.  相似文献   

10.
In order to accelerate the numerical evaluation of torque-free rotation of triaxial rigid bodies, we present a fast method to compute various kinds of elliptic functions for a series of the elliptic argument when the elliptic parameter and the elliptic characteristic are fixed. The functions we evaluate are the Jacobian elliptic functions and the incomplete elliptic integral of the second and third kinds regarded as a function of that of the first kind. The key technique is the utilization of the Maclaurin series expansion and the addition theorems with respect to the elliptic argument. The new method is around 25 times faster than the method using the incomplete elliptic integral of general kind and around 70 times faster than the method using mathematical libraries given in the latest version of Numerical Recipes.  相似文献   

11.
12.
A mapping model is constructed to describe asteroid motion near the 3 : 1 mean motion resonance with Jupiter, in the plane. The topology of the phase space of this mapping coincides with that of the real system, which is considered to be the elliptic restricted three body problem with the Sun and Jupiter as primaries. This model is valid for all values of the eccentricity. This is achieved by the introduction of a correcting term to the averaged Hamiltonian which is valid for small values of the ecentricity.We start with a two dimensional mapping which represents the circular restricted three body problem. This provides the basic framework for the complete model, but cannot explain the generation of a gap in the distribution of the asteroids at this resonance. The next approximation is a four dimensional mapping, corresponding to the elliptic restricted problem. It is found that chaotic regions exist near the 3 : 1 resonance, due to the interaction between the two degrees of freedom, for initial conditions close to a critical curve of the circular model. As a consequence of the chaotic motion, the eccentricity of the asteroid jumps to high values and close encounters with Mars and even Earth may occur, thus generating a gap. It is found that the generation of chaos depends also on the phase (i.e. the angles andv) and as a consequence, there exist islands of ordered motion inside the sea of chaotic motion near the 3 : 1 resonance. Thus, the model of the elliptic restricted three body problem cannot explain completely the generation of a gap, although the density in the distribution of the asteroids will be much less than far from the resonance. Finally, we take into account the effect of the gravitational attraction of Saturn on Jupiter's orbit, and in particular the variation of the eccentricity and the argument of perihelion. This generates a mixing of the phases and as a consequence the whole phase space near the 3 : 1 resonance becomes chaotic. This chaotic zone is in good agreement with the observations.  相似文献   

13.
This paper studies the existence and stability of non-collinear equilibrium points in the elliptic restricted four body problem with bigger primary as a source of radiation and other two primaries having equal masses as oblate spheroid. In the elliptic restricted four body problem, three of the bodies are moving in elliptical orbit around their common centre of mass fixed at the origin of the coordinate system, while the fourth one is infinitesimal. Three pairs of non-collinear points are obtained symmetric with respect to x-axis. We found the equilibrium points are stable in linear sense. We also investigate the pulsating zero velocity surfaces and basin of attraction for varying value of oblateness coefficient and radiation pressure parameter.  相似文献   

14.
A new canonical transformation is proposed to handle elliptic oscillators, that is, Hamiltonian systems made of two harmonic oscillators in a 1-1 resonance. Lissajous elements pertain to the ellipse drawn with a light pen whose coordinates oscillate at the same frequency, hence their name. They consist of two pairs of angle-action variables of which the actions and one angle refer to basic integrals admitted by an elliptic oscillator, namely, its energy, its angular momentum and its Runge-Lenz vector. The Lissajous transformation is defined in two ways: explicitly in terms of Cartesian variables, and implicitly by resolution of a partial differential equation separable in polar variables. Relations between the Lissajous variables, the common harmonic variables, and other sets of variables are discussed in detail.  相似文献   

15.
We develop a semi-numerical perturbation method for problems with two critical arguments. We apply it to a truncated model of the restricted, elliptic three body problem in case of a resonance 2/1 We identify regions of the phase space where chaotic motion is expected because of the presence of homoclinic orbits. One of these regions, the largest one, sits at the entrance to the resonance zone and is associated with a 2/1 resonance between the two critical arguments. The results are compared with numerical results due to Murray (1986)  相似文献   

16.
Birkhoff's normalizing canonical transformation at an equilibrium of elliptic type with no internal resonance can be built explicitly and recursively, without partial inversions or substitutions, by means of Lie transforms.Invariant sections and ordinary families of periodic orbits for truncated normalized systems are analyzed in detail.  相似文献   

17.
Applying the resonance overlap theory to the elliptic three-body model, it is shown that the effect of the eccentricity is to increase the size of the chaotic region.  相似文献   

18.
The formation of spiral structure in a galaxy, as a result of the gravitational perturbation caused by a permanent companion, is studied. It is found that spiral structure appears only when a resonance exists between the rotational frequency of the stars in the galaxy and the rotational frequency of the companion galaxy. The number of spiral arms depends strongly on the particular resonance. In the case where the companion moves in an elliptic orbit, spiral arms are formed when a resonance, inside the galactic body, exists in almost all the parts of the orbit or, at least, in the largest part of it.  相似文献   

19.
An analytical theory is presented for determining the motion described by a Hamiltonian of two degrees of freedom. Hamiltonians of this type are representative of the problem of an artificial Earth satellite in a near-circular orbit or a near-equatorial orbit and in resonance with a longitudinal dependent part of the geopotential. Using the classical Bohlin-von Zeipel procedure the variation of the elements is developed through a generating function expressed as a trigonometrical series. The coefficients of this series, determined in ascending powers of an auxiliary parameter, are the solutions of paired sets of ordinary differential equations and involve elliptic functions and quadrature. The first order solution accounts for the full variation of the resonance terms with the second coordinate.  相似文献   

20.
We present a symplectic mapping model to study the evolution of a small body at the 3/4 exterior resonance with Neptune, for planar and for three dimensional motion. The mapping is based on the averaged Hamiltonian close to this resonance and is constructed in such a way that the topology of its phase space is similar to that of the Poincaré map of the elliptic restricted three-body problem. Using this model we study the evolution of a small object near the 3/4 resonance. Both chaotic and regular motions are found, and it is shown that the initial phase of the object plays an important role on the appearance of chaos. In the planar case, objects that are phase-protected from close encounters with Neptune have regular orbits even at eccentricities up to 0.44. On the other hand objects that are not phase protected show chaotic behaviour even at low eccentricities. The introduction of the inclination to our model affects the stable areas around the 3/4 mean motion resonance, which now become thinner and thinner and finally at is=10° the whole resonant region becomes chaotic. This may justify the absence of a large population of objects at this resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号