首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We explore the role of complex multipolar magnetic fields in determining physical processes near the surface of rotation powered pulsars. We model the actual magnetic field as the sum of global dipolar and star-centred multipolar fields. In configurations involving axisymmetric and uniform multipolar fields, 'neutral points' and 'neutral lines' exist close to the stellar surface. Also, the curvature radii of magnetic field lines near the stellar surface can never be smaller than the stellar radius, even for very high-order multipoles. Consequently, such configurations are unable to provide an efficient pair-creation process above pulsar polar caps, necessary for plasma mechanisms of generation of pulsar radiation. In configurations involving axisymmetric and non-uniform multipoles, the periphery of the pulsar polar cap becomes fragmented into symmetrically distributed narrow subregions where curvature radii of complex magnetic field lines are less than the radius of the star. The pair-production process is only possible just above these 'favourable' subregions. As a result, the pair plasma flow is confined within narrow filaments regularly distributed around the margin of the open magnetic flux tube. Such a magnetic topology allows us to model the system of 20 isolated subbeams observed in PSR B0943+10 by Deshpande & Rankin. We suggest a physical mechanism for the generation of pulsar radio emission in the ensemble of finite subbeams, based on specific instabilities. We propose an explanation for the subpulse drift phenomenon observed in some long-period pulsars.  相似文献   

2.
3.
4.
5.
Propagation of radio waves in the ultrarelativistic magnetized electron–positron plasma of a pulsar magnetosphere is considered. The polarization state of the original natural waves is found to vary markedly on account of the wave mode coupling and cyclotron absorption. The change is most pronounced when the regions of mode coupling and cyclotron resonance approximately coincide. In cases when the wave mode coupling occurs above and below the resonance region, the resultant polarization appears essentially distinct. The main result of the paper is that in the former case the polarization modes become non-orthogonal. The analytical treatment of the equations of polarization transfer is accompanied by numerical calculations. The observational consequences of polarization evolution in pulsar plasma are discussed as well.  相似文献   

6.
We present a model for microstructure in pulsar radio emission. We propose that micropulses result from alteration of the radio wave generation region by nearly transverse drift waves propagating across the pulsar magnetic field and encircling the bundle of the open magnetic field lines. It is demonstrated that such waves can modify the curvature of the field lines significantly. This, in turn, affects strongly fulfilment of the resonance conditions necessary for the excitation of radio waves. The time-scale of micropulses is therefore determined by the wavelength of the drift waves. The main features of the microstructure are naturally explained within the framework of this model.  相似文献   

7.
The refraction of ordinary superluminous waves in a pulsar plasma is considered. The effect is found essentially to influence the apparent spatial structure of a pulsar emission region. This is of particular importance for the interpretation of the observations of pulsar interstellar scintillations, which provide an opportunity of resolving the magnetospheres of nearby pulsars. When calculated with account for magnetospheric refraction, the dependence of transverse ray separation on pulse longitude appears to be similar to that inferred by means of interstellar interferometry. It is shown that the differences in the character of the dependences observed at various frequencies may be attributed to the frequency-dependent efficiency of refraction. Taking into account magnetospheric refraction makes it necessary to reconsider the estimate of the emission altitude derived from the apparent size of the emission region. The renewed estimate appears to be almost an order of magnitude less, so that it is consistent with the emission altitudes obtained by other methods.  相似文献   

8.
Resonant cyclotron scattering(RCS)in pulsar magnetospheres is considered.The photon diffusion equation(Kompaneets equation)for RCS is derived.The photon system is modeled three dimensionally.Numerical calculations show that there exist not only up scattering but also down scattering of RCS,depending on the parameter space.RCS's possible applications to spectral energy distributions of magnetar candidates and radio quiet isolated neutron stars(INSs)are pointed out.The optical/UV excess of INSs may be caused by the down scattering of RCS.The calculations for RX J1856.5-3754 and RX J0720.4-3125 are presented and compared with their observational data.In our model,the INSs are proposed to be normal neutron stars,although the quark star hypothesis is still possible.The low pulsation amplitude of INSs is a natural consequence in the RCS model.  相似文献   

9.
Pulsar radio emission is modelled as a sum of two completely polarized non-orthogonal modes with the randomly varying Stokes parameters and intensity ratio. The modes are the result of polarization evolution of the original natural waves in the hot, magnetized, weakly inhomogeneous plasma of the pulsar magnetosphere. In the course of the wavemode coupling, the linearly polarized natural waves acquire purely orthogonal elliptical polarizations. Further on, as the waves pass through the cyclotron resonance, they become non-orthogonal. The pulse-to-pulse fluctuations of the final polarization characteristics and the intensity ratio of the modes are attributed to the temporal fluctuations in the plasma flow.
The model suggested allows one to reproduce the basic features of the one-dimensional distributions of the individual-pulse polarization characteristics. Besides that, the propagation origin of the pulsar polarization implies a certain correlation between the mode ellipticity and position angle. On a qualitative level, for different sets of parameters, the expected correlations appear compatible with the observed ones. Further theoretical studies are necessary to establish the quantitative correspondence of the model to the observational results and to develop a technique of diagnostics of the pulsar plasma on this basis.  相似文献   

10.
11.
The simplest model illustrating the effect of the magnetospheric charge-current field on the structure of a pulsar magnetic field has the region within the light-cylinder filled with the GoldreichJulian charge density which corotates with the neutron star, but has no electric currents along the magnetic field lines. This model has previously been studied for the axisymmetric case, with the rotation and magnetic dipolar axes aligned. The analogous problem is now solved with the two axes mutually perpendicular, so that not only the material current arising from the rotating charges but also the displacement current contributes. Again, the constructed magnetic field B 0 crosses the light-cylinder normally, and there is no energy flux to infinity. However, in a more realistic model there is a flow of current along B 0, generating a field B 1 which has a non-vanishing toroidal component at the light-cylinder, so yielding a finite integrated Poynting flux.  相似文献   

12.
13.
We present detailed numerical simulations of the magnetosphere of an isolated neutron star in which the spin and magnetic dipole axes of the star are aligned. We demonstrate that stable charge distributions are always found, rather than particle outflows. A stable magnetosphere consists of a dome above the polar cap containing plasma of one charge and an equatorial belt containing plasma of the other sign: E · B =0 inside both of these. These are separated by a vacuum gap in which E · B ≠0 ( ρ =0 instead). We show that the charge distribution used in the 'standard' Goldreich–Julian pulsar model is inherently unstable: it collapses to a stable configuration that is very similar to the others illustrated here. An instructive video of this collapse is available at http://spacsun.rice.edu/~ian/. For typical pulsars, the stable solution has no particles near to the light cylinder, and if there were any there then their loss from the system would not lead to a replacement from the star (in contradiction to the explicit assumption used in the Goldreich–Julian model). We discuss the generic effects of pair creation, in particular as an additional source of ionization in the vacuum gap. The overall effect is simply to reduce the value of E · B in the vacuum gap so that the pair-production rate drops towards zero. A dome, disc and gap geometry is still the resulting solution. In conclusion, we confirm previous studies that the aligned rotator cannot make an active pulsar.  相似文献   

14.
Absorption of radio emission through normal cyclotron resonance within pulsar magnetospheres is considered. The optical depth for cyclotron damping is calculated using a plasma distribution with an intrinsically relativistic spread. We argue that such a broad distribution is plausible for pulsar plasmas and that it implies that a class of pulsars that should have cyclotron damping extends to include young pulsars with shorter periods and stronger magnetic fields. There is no obvious observational evidence for disruption of radio pulses, which implies that the optical depth cannot be too large. We propose that cyclotron resonance may cause marginal absorption of radio emission. It is shown that such marginal absorption produces potentially observable asymmetric features for double-peak pulse profiles with wide separation, with one peak tending to be suppressed.  相似文献   

15.
16.
17.
Protons produced in electromagnetic showers formed by the reverse electron flux are usually the largest component of the time-averaged polar cap open magnetic flux line current in neutron stars with positive corotational charge density. Although the electric field boundary conditions in the corotating frame are time independent, instabilities on both medium and short time-scales cause the current to alternate between states in which either protons or positrons and ions form the major component. These properties are briefly discussed in relation to nulling and microstructure in radio pulsars, pair production in an outer gap and neutron stars with high surface temperatures.  相似文献   

18.
19.
We test a new emission mechanism in pulsar magnetospheres, eventually responsible in part for the high level of observed radio radiation. This is carried out by comparing the efficiency of the two-stream instability of Langmuir waves in a pulsar emission region, where the stationary and non-stationary characters of pair plasma outflows produced in the gap region are characterized by two different time-scales. On the shorter time-scale, the Ruderman &38; Sutherland 'sparking' phenomenon leads to the creation of pair plasma clouds, in motion along magnetic field lines, that contain particles with a large spectrum of momenta. The overlapping of particles with different energies produced in successive clouds results in an efficient 'two stream'-like instability. This effect is a consequence of the non-stationary character of the pair plasma produced in the gap region, just above the magnetic poles of the neutron star. On a long time-scale, resulting pair plasma outflows in pulsar magnetospheres can be treated as stationary. In this case, the instability which results from interaction between existing primary beam particles and the pair plasma is negligible, whereas the instability owing to interaction between electrons and positrons of the pair plasma itself, and more precisely to their relative drift motion along curved magnetic field lines, is effective. We derive characteristic features of the triggered instability, using specific distribution functions to describe either particles in the assembly of clouds or relative drifting of electrons and positrons in these same plasma clouds. Although linear and local, our treatment suggests that non-stationary effects may compete with, or even dominate over, drifting effects in parts of pulsar emission regions.  相似文献   

20.
Pulsar nulling is not always a random process; most pulsars, in fact, null non-randomly. The Wald–Wolfowitz statistical runs test is a simple diagnostic that pulsar astronomers can use to identify pulsars that have non-random nulls. It is not clear at this point how the dichotomy in pulsar nulling randomness is related to the underlying nulling phenomenon, but its nature suggests that there are at least two distinct reasons that pulsars null.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号