首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
Broadband soft solar X-rays monitored by the GOES satellites have been used to detect high-temperature flares (> 25 MK). The data suggest that there are two general categories of high-temperature flares: those that are intrinsically hot and recur repeatedly in particular active regions and those that show enhanced temperatures because of their proximity to the solar limb. Intrinsically hot flares associate with gamma-ray flares and impulsive hard X-ray flares. Hot flares show a small incidence with gradual hard X-ray flares, but those cases are either extremely intense flares or limb flares. The apparently hot flares occur near the visible limb, which suggests the strong thermal stratification of flare plasmas as demonstrated by over-the-limb events; even on the visible disk near the limb, the lower, cooler plasmas are somehow partially occulted.  相似文献   

2.
对于足点被日面边缘遮挡住的耀斑的观测研究是诊断日冕硬X射线辐射的一个重要方法.通过统计分析RHESSI (Reuven Ramaty High-Energy Solar Spectroscopic Imager)卫星观测到的71个此类耀斑硬X射线源发现,前人提出的两类源,即日冕X射线辐射中热辐射与非热辐射源区空间分离较小的源和分离较大的源,在能谱、成像、光变曲线以及GOES持续时间等方面都没有显著的区别,其中辐射区的面积、耀斑总热能以及GOES持续时间与分离距离之间有很好的相关性.这些结果支持近年来提出的一些耀斑统一模型.同时也表明Masuda耀斑只是一类非常特殊的事件,不具有日冕硬X射线辐射的一般特征.  相似文献   

3.
We generated an event catalog with an automated detection algorithm based on the entire EUVI image database observed with the two Solar Terrestrial Relations Observatory (STEREO)-A and -B spacecraft over the first six years of the mission (2006?–?2012). The event catalog includes the heliographic positions of some 20?000 EUV events, transformed from spacecraft coordinates to Earth-based coordinates, and information on associated GOES flare events (down to the level of GOES A5-class flares). The 304 Å wavelength turns out to be the most efficient channel for flare detection (79?% of all EUVI event detections), while the 171 Å (4?%), 195 Å (10?%), and the 284 Å channel (7?%) retrieve substantially fewer flare events, partially due to the suppressing effect of EUV dimming, and partially due to the lower cadence in the later years of the mission. Due to the Sun-circling orbits of STEREO-A and -B, a large number of flares have been detected on the farside of the Sun, invisible from Earth, or seen as partially occulted events. The statistical size distributions of EUV peak fluxes (with a power-law slope of α P =2.5±0.2) and event durations (with a power-law slope of α T =2.4±0.3) are found to be consistent with the fractal-diffusive self-organized criticality model. The EUVI event catalog is available on-line at secchi.lmsal.com/EUVI/euvi_autodetection/euvi_events.txt and may serve as a comprehensive tool to identify stereoscopically observed flare events for 3D reconstruction and to study occulted flare events.  相似文献   

4.
Radio emission of 10 cm from the whole disk was monitored during the eclipse of 7 March, 1970 by the Aerospace San Fernando Observatory and AFCRL Sagamore Hill Solar Radio Observatory. For both, the active region associated with sunspot 17 774, McMath region 10 618, was occulted. At Sagamore Hill the entire region was occulted. At SFO only the southern half of the sunspot group and the hydrogen plage southeast of the group was occulted. This region produced an importance class 1N flare and 10 cm burst beginning at 1601 UT and was enhanced about 15 flux units above the mean value of 190 units at onset.The Sagamore Hill data indicate the region was about 3.8 and contributed about 0.21 of the total radiation from the disk. The SFO data gave about 5.4 for the size of the southern half of the region and showed that about 0.20 of the total radiation came from there. Radiation came primarily from the hydrogen plage southeast of the major spot of the group. The hydrogen plage northwest of the group did not contribute significantly. Although the small flare occurred in this region, it did not contribute more than 0.04 of the total (0.20 of the active region) at occultation of region 10 618.  相似文献   

5.
With increasing solar activity since 2010, many flares from the backside of the Sun have been observed by the Extreme Ultraviolet Imager (EUVI) on either of the twin STEREO spacecraft. Our objective is to estimate their X-ray peak fluxes from EUVI data by finding a relation of the EUVI with GOES X-ray fluxes. Because of the presence of the Fe xxiv line at 192 Å, the response of the EUVI 195 Å channel has a secondary broad peak around 15 MK, and its fluxes closely trace X-ray fluxes during the rise phase of flares. If the flare plasma is isothermal, the EUVI flux should be directly proportional to the GOES flux. In reality, the multithermal nature of the flare and other factors complicate the estimation of the X-ray fluxes from EUVI observations. We discuss the uncertainties, by comparing GOES fluxes with the high cadence EUV data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We conclude that the EUVI 195 Å data can provide estimates of the X-ray peak fluxes of intense flares (e.g., above M4 in the GOES scale) to small uncertainties. Lastly we show examples of intense flares from regions far behind the limb, some of which show eruptive signatures in AIA images.  相似文献   

6.
We have re-evaluated the association of type II solar radio bursts with flares and/or coronal mass ejections (CMEs) using the year 2000 solar maximum data. For this, we consider 52 type II events whose associations with flares or CMEs were absent or not clearly identified and reported. These events are classified as follows; group I: 11 type IIs for which there are no reports of GOES X-ray flares and CMEs; group II: 12 type IIs for which there are no reports of GOES X-ray flares; and group III: 29 type IIs for which the flare locations are not reported. By carefully re-examining their association from GOES X-ray and H, Yohkoh SXT and EIT-EUV data, we attempt to answer the following questions: (i) if there really were no X-ray flares associated with the above 23 type IIs of groups I and II; (ii) whether they can be regarded as backside events whose X-ray emission might have been occulted. From this analysis, we have found that two factors, flare background intensity and flare location, play important roles in the complete reports about flare–type II–CME associations. In the above 23 cases, for more than 50% of the cases in total, the X-ray flares were not noticed and reported, because the background intensity of X-ray flux was high. In the remaining cases, the X-ray intensity might be greatly reduced due to occultation. From the H flare data, Yohkoh SXT data and EIT-EUV data, we found that ten cases out of 23 might be frontside events, and the remaining are backside events. While the flare–type II association is found to be nearly 90%, the type II–CME association is roughly around 75%. This analysis might be useful to reduce some ambiguities regarding the association among type IIs, flares and CMEs.  相似文献   

7.
From the UCSD OSO-7 X-ray experiment data, we have identified 54 X-ray bursts with 5.1–6.6 keV flux greater than 103 photon cm?2 keV?1 which were not accompanied by visible Hα flare on the solar disk. By studying OSO-5 X-ray spectroheliograms, Hα activity at the limb and the emergence and disappearance of sunspot groups at the limb, we found 17 active centers as likely seats of the X-ray bursts beyond the limb. We present the analysis of 37 X-ray bursts and their physical parameters. We compare our results with those published by Datlowe et al. (1974a, b) for disk events. The distributions of maximum temperature, maximum emission measure, and characteristic cooling time of the over-the-limb events do not significantly differ from those of disk events. We show that of conduction and radiation, the former is the dominant cooling mechanism for the hot flare plasma. Since the disk and over-the-limb bursts are similar, we conclude that the scale height for X-ray emission in the 5–10 keV range is large and is consistent with that of Catalano and Van Allen (1973), 11000 km, for primarily 1–3 keV emission. Twenty-five or about 2/3 of the over-the-limb events had a non-thermal component. The distribution of peak 20 keV flux is not significantly different from that of disk events. However, the spectral index at the time of maximum flux is significantly different for events over the limb and for events near the center of the disk; the spectral index for over-the-limb events is larger by about δγ = 3/4. If hard X-ray emission came only from localized sources low in the chromosphere we would expect that hard X-ray emission, would be occulted over the limb; on the contrary, the observation show that the fraction of soft X-ray bursts which have a nonthermal component is the same on and off of the disk. Thus hard X-ray emission over extended regions is indicated.  相似文献   

8.
We report on observations of a large eruptive event associated with a flare that occurred on 27 September 1998 made with the Richard B. Dunn Solar Telescope at Sacramento Peak Observatory (several wave bands including off-line-center H), in soft and hard X-rays (GOES and BATSE), and in several TRACE wave bands (including Feix/x 171 Å, Fexii 195 Å, and Civ 1550 Å). The flare initiation is signaled by two H foot-point brightenings which are closely followed by a hard X-ray burst and a subsequent gradual increase in other wavelengths. The flare light curves show a complicated, three-component structure which includes two minor maxima before the main GOES class C5.2 peak after which there is a characteristic exponential decline. During the initial stages, a large spray event is observed within seconds of the hard X-ray burst which can be directly associated with a two-ribbon flare in H. The emission returns to pre-flare levels after about 35 min, by which time a set of bright post-flare loops have begun to form at temperatures of about 1.0–1.5 MK. Part of the flare plasma also intrudes into the penumbra of a large sunspot, generally a characteristic of very powerful flares, but the flare importance in GOES soft X-rays is in fact relatively modest. Much of the energy appears to be in the form of a second ejection which is observed in optical and ultraviolet bands, traveling out via several magnetic flux tubes from the main flare site (about 60° from Sun center) to beyond the limb.  相似文献   

9.
We analyze hard and soft X-ray, microwave and meter wave radio, interplanetary particle, and optical data for the complex energetic solar event of 22 July 1972. The flare responsible for the observed phenomena most likely occurred 20° beyond the NW limb of the Sun, corresponding to an occultation height of 45 000 km. A group of type III radio bursts at meter wavelengths appeared to mark the impulsive phase of the flare, but no impulsive hard X-ray or microwave burst was observed. These impulsive-phase phenomena were apparently occulted by the solar disk as was the soft X-ray source that invariably accompanies an H flare. Nevertheless essentially all of the characteristic phenomena associated with second-stage acceleration in flares - type II radio burst, gradual second stage hard X-ray burst, meter wave flare continuum (FC II), extended microwave continuum, energetic electrons and ions in the interplanetary medium - were observed. The spectrum of the escaping electrons observed near Earth was approximately the same as that of the solar population and extended to well above 1 MeV.Our analysis of the data leads to the following results: (1) All characteristics are consistent with a hard X-ray source density n i 108 cm–3 and magnetic field strength 10 G. (2) The second-stage acceleration was a physically distinct phenomenon which occurred for tens of minutes following the impulsive phase. (3) The acceleration occurred continuously throughout the event and was spatially widespread. (4) The accelerating agent was very likely the shock wave associated with the type II burst. (5) The emission mechanism for the meter-wave flare continuum source may have been plasma-wave conversion, rather than gyrosynchrotron emission.  相似文献   

10.
A recurrent H surge was observed on 7 October, 1991 on the western solar limb with the Meudon MSDP spectrograph. The GOES satellite recorded X-ray subflares coincident with all three events. During two of the surges high-resolutionYohkoh Soft X-ray Telescope (SXT) images have been taken. Low X-ray loops overlying the active region where the surges occurred were continuously restructuring. A flare loop appeared at the onset of each surge event and somewhat separated from the footpoint of the surge. The loops are interpreted as causally related to the surges. It is suggested that surges are due to magnetic reconnection between a twisted cool loop and open field lines. Cold plasma bubbles or jets squeezed among untwisting magnetic field lines could correspond to the surge material. No detection was made of either X-ray emission along the path of the surges or X-ray jets, possibly because of the finite detection threshold of theYohkoh SXT.  相似文献   

11.
Behind-the-limb flares provide a unique opportunity for the study of vertical source structures of microwave bursts and dynamic flare processes. Based on complex observational data related to the outstanding solar proton event on 16 February, 1984, the development of burst emission at a height z 200000 km above the photosphere has been investigated. A comparison with the associated X-ray emission measured aboard various spacecraft yields a time lag of about 1 min between the onset of the unocculted impulsive HXR-emission and the onsets of the X-ray and microwave emissions occulted by the solar limb. The lag corresponds to a range of speeds of the propagation of the flare volume of about 3000–5000 km s–1. Considering competing transport agents that could account for such expansion of the source volume, a qualitative model of shock-wave activation of loops successively reaching into larger coronal heights is proposed.From a discussion of the possible emission processes involved, conclusions about the magnetic field, electron density, and particle energies have been obtained.  相似文献   

12.
Yohkoh observations of an impulsive solar flare which occurred on 16 December, 1991 are presented. This flare was a GOES M2.7 class event with a simple morphology indicative of a single flaring loop. X-ray images were taken with the Hard X-ray Telescope (HXT) and soft X-ray spectra were obtained with the Bragg Crystal Spectrometer (BCS) on board the satellite. The spectrometer observations were made at high sensivity from the earliest stages of the flare, are continued throughout the rise and decay phases, and indicate extremely strong blueshifts, which account for the majority of emission in Caxix during the initial phase of the flare. The data are compared with observations from other space and ground-based instruments. A balance calculation is performed which indicates that the energy contained in non-thermal electrons is sufficient to explain the high temperature plasma which fills the loop. The cooling of this plasma by thermal conduction is independently verified in a manner which indicates that the loop filling factor is close to 100%. The production of superhot plasma in impulsive events is shown to differ in detail from the morphology and mechanisms appropriate for more gradual events.  相似文献   

13.
Observational studies on solar ?ares with footpoints partially occulted by the solar limb provide an important method for diagnostics of coronal hard X-ray emissions. The statistics of hard X-ray sources in 71 such ?ares observed by RHESSI (Reuven Ramaty High-Energy Solar Spectroscopic Imager) show that the two kinds of hard X-ray sources proposed in previous studies (i.e., the sources with respectively a smaller and larger spatial separations between the thermal and non-thermal sources of coronal hard X-ray emissions) have no evident difference in the aspects of their photon spectra, images, light curves, GOES durations, etc. The area of the radiation region, the ?are's total thermal energy and GOES duration are well correlated with the distance of separation. These results support some uni?ed models of solar ?ares proposed in recent years, and indicate that the Masuda ?are is only a kind of special event, which does not possess the general features of coronal hard X-ray emissions  相似文献   

14.
Innes  D.E.  Inhester  B.  Srivastava  N.  Brekke  P.  Harrison  R.A.  Matthews  S.A.  Noëns  J.C.  Schmieder  B.  Thompson  B.J. 《Solar physics》1999,186(1-2):337-361
The structure and dynamics of the initial phases of a coronal mass ejection (CME) seen in soft X-ray, extreme ultraviolet and optical emission are described. The event occurred on the SW limb of the Sun in active region AR 8026 on 9 April 1997. Just prior to the CME there was a class C1.5 flare. Images taken with the Extreme Ultraviolet Imaging Telescope (EIT) reveal the emergence of a candle-flame shaped extreme ultraviolet (EUV) cavity at the time of the flare. Yohkoh images, taken about 15 min later, show that this cavity is filled with hot X-ray emitting gas. It is most likely that this is the site of the flare. Almost simultaneous to the flare, an H surge or small filament eruption occurs about 50 arc sec northwards along the limb from the EUV cavity. At both the site of the core of the hot, EUV cavity and the filament ejection are X-ray jets. These jets seem to be connected by hot loops near their bases. Both jets disappear within a few minutes of one another.Clear evidence of the CME first appeared in the Large Angle Spectrometric Coronagraph (LASCO) and EIT images 40 min after the flare and onset of the filament ejection. It seems to come from a region between the two X-ray jets. This leads to the speculation that magnetic field reconnection near one footpoint of a loop system triggers reconnection near its other footpoint. The loop system is destabilized and ultimately gives rise to the CME. This possibility is supported by magnetic field and H images taken when the active region was at disk center which show that the active region had a double bipole structure with dark H filaments between the bipoles.  相似文献   

15.
Rieger  E. 《Solar physics》1998,180(1-2):473-478
In March 1989 a large and complex spot group, active region 5395, rotated across the visible disk of the Sun, thereby creating a number of big solar flares and bright coronal mass ejections (CMEs). Feynman and Hundhausen (1994) investigated the association of both proxies of solar activity. For a classification of the flares they used the H importance and the GOES soft X-ray data. To get a more consistent picture of the importance of the flares selected, we contribute the 2.2 MeV neutron-capture line fluence, recorded by the gamma-ray spectrometer on SMM, as a measure of nucleonic interactions. By considering these data, we confirm the Feyman and Hundhausen conclusion that neither the flare directly causes the CME, nor is directly caused by it.  相似文献   

16.
An occultation of X-ray emission from a solar flare occurred during the eclipse of 7 March, 1970 and was observed by an NRL instrument aboard the OSO-5 satellite. Ionization chamber photometers covering the wavelength ranges 0.5–3 Å, 1–8 Å, and 8–16 Å provided flux measurements once every 15 s providing a spatial resolution of 20 arc sec at the solar surface. Within this limitation the X-ray flare was observed to be confined within a region 136 000 km in one dimension.However, the measurements indicate the existence of a denser core 54 000 km wide in the direction of advance of the Moon's limb. Comparison of these results with X-ray photographs of flare regions are made and a model for the development of the soft X-ray flare is proposed.  相似文献   

17.
Hudson  H.S.  Hurford  G.J.  Brown  J.C. 《Solar physics》2003,214(1):171-175
We consider the scattering of flare-associated X-rays above 1 keV at coronal heights, particularly from regions of enhanced density. This includes a discussion of the polarization of the scattered X-rays. Although the scattered radiation would not be bright by comparison with the total hard X-ray flux from a flare, its detectability would be enhanced for events located a few degrees behind the limb for which the dominant `footpoint' hard X-ray sources are occulted. Thus we predict that major flares occurring beyond the solar limb may be detectable via scattering in density enhancements that happen to be visible above the limb, and that such sources may be strongly polarized. Since thin-target bremsstrahlung will generally greatly exceed the scattered thick-target flux in flare loops themselves, these considerations apply only to coronal structures that do not contain significant populations of non-thermal electrons.  相似文献   

18.
Concurrent observations of solar soft X-ray photometers aboard the US weather and space environment monitoring satellite GOES 6 and the USSR geophysical research satellite PROGNOZ 9 made it possible to compare physical parameters of flare plasmas obtained from both instruments as they observed the same solar events. Because of significant instrumental differences, a new method for comparing results had to be developed; this method is described.This paper addresses two related topics: (1) the intercomparison of two dissimilar X-ray photometers that cover approximately the same region of the X-ray spectrum, and (2) the analysis of flare plasma during the rise and decay phases, utilizing the dissimilar response characteristics of the X-ray sensors to discriminate the non-isothermal from isothermal epochs and to identify some of the main properties of those epochs.The intercomparison work considered the different spectral responses of the two photometers, but it was found that the residual differences in the respective X-ray fluxes were apparently due to a combination of environmental factors and uncertainties in the sensor calibrations. These sources of error affected the overall output of the photometers and the relative output of the two channels within each instrument. The effect of the error sources was largest at low flux levels and low temperatures; consequently the computed temperatures and emission measures were in relatively good agreement near X-ray maximum, particularly for those flares registering the highest temperatures.The analysis of flare plasma composition indicated that at the initial stage the plasma is strongly non-isothermal; it then thermalizes gradually, becoming mainly isothermal during the decay phase. A method for quantifying the distribution of the non-isothermal plasma is presented.  相似文献   

19.
The Naval Research Laboratory flew solar X-ray ionization chamber detectors on a series of Solar Radiation (SOLRAD) satellites from 1960 through 1979. The flare responses of the SOLRAD 11 detectors are compared with those of the similar NOAA SMS/GOES detectors during two periods of common observations. The nominal GOES fluxes exceed those of SOLRAD 11 by a factor of 1.5–2 in the 0.5–4 Å band, but fall below those of SOLRAD by a factor of 2–4 in the 1–8 Å band. Significant passband differences account for these relationships between the detector responses. Since the X-ray detectors are standardized among the various SOLRAD satellites, and all detectors are closely matched among the various SMS/GOES satellites, these conversion factors allow the SOLRAD flare observations to serve as proxies for GOES X-ray observations prior to the GOES era. We summarize the detector characteristics and data sources of the 0.5–3 Å and 1–8 Å detectors for the SOLRAD series.  相似文献   

20.
Wheatland  M.S. 《Solar physics》2001,203(1):87-106
Rates of flaring in individual active regions on the Sun during the period 1981–1999 are examined using United States Air Force/Mount Wilson (USAF/MWL) active-region observations together with the Geostationary Operational Environmental Satellite (GOES) soft X-ray flare catalog. Of the flares in the catalog above C1 class, 61.5% are identified with an active region. Evidence is presented for obscuration, i.e. that the increase in soft X-ray flux during a large flare decreases the likelihood of detection of soft X-ray events immediately following the large flare. This effect means that many events are missing from the GOES catalog. It is estimated that in the absence of obscuration the number of flares above C1 class would be higher by (75±23)%. A second observational selection effect – an increased tendency for larger flares to be identified with an active region – is also identified. The distributions of numbers of flares produced by individual active regions and of mean flaring rate among active regions are shown to be approximately exponential, although there are excess numbers of active regions with low flare numbers and low flaring rates. A Bayesian procedure is used to analyze the time history of the flaring rate in the individual active regions. A substantial number of active regions appear to exhibit variation in flaring rate during their transit of the solar disk. Examples are shown of regions with and without rate variation, illustrating the different distributions of times between events (waiting-time distributions) that are observed. A piecewise constant Poisson process is found to provide a good model for the observed waiting-time distributions. Finally, applications of analysis of the rate of flaring to understanding the flare mechanism and to flare prediction are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号