首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Topology of Magnetic Field and Coronal Heating in Solar Active Regions   总被引:2,自引:0,他引:2  
Force-free magnetic fields can be computed by making use of a new numerical technique, in which the fields are represented by a boundary integral equation based on a specific Green's function. Vector magnetic fields observed on the photospheric surface can be taken as the boundary conditions of this equation. In this numerical computation, the following two points are emphasized: (1) A new method for data reduction is proposed, for removing uncertainties in boundary data and determining the parameter in this Green's function, which is important for solving the boundary integral equation. In this method, the transverse components of the observed boundary field are calibrated with a linear force-free field model without changing their azimuth. (2) The computed 3-D fields satisfy the divergence-free and force-free conditions with high precision. The alignment of these field lines is mostly in agreement with structures in Hα and Yohkoh soft X-ray images. Since the boundary data are calibrated with a linear force-free field model, the computed 3-D magnetic field can be regarded as a quasi-linear force-free field approximation. The reconstruction of 3-D magnetic field in active region NOAA 7321 was taken as an example to quantitatively exhibit the capability of our new numerical technique.  相似文献   

2.
The magnetodynamic (in)stability of a conducting fluid cylinder subject to the capillarity and electromagnetic forces has been developed. The cylinder is pervaded by a uniform magnetic field but embedded in the Lundquist force-free varying field that allows for flowing a current surrounding the fluid. A general eigenvalue relation is derived based on a study of the equilibrium and perturbed states. The stability criterion is discussed analytically in general terms. The surface tension is destabilizing for small axisymmetric mode and stable for all others. The principle of the exchange of stability is allowed for the present problem due to the non-uniform behaviour of the force-free field. Each of the axial and transverse force-free fields separately exerts a stabilizing influence in the most dangerous mode but the combined contribution of them is strongly destabilizing. Whether the model is acted upon the electromagnetic force (with the Lundquist field) the stability restrictions or/and the capillarity force are identified.Several reported works can be recovered as limiting cases with appropriate simplifications.  相似文献   

3.
Recent numerical magnetohydrodynamic calculations by Braithwaite and collaborators support the 'fossil field' hypothesis regarding the origin of magnetic fields in compact stars and suggest that the resistive evolution of the fossil field can explain the reorganization and decay of magnetar magnetic fields. Here, these findings are modelled analytically by allowing the stellar magnetic field to relax through a quasi-static sequence of non-axisymmetric, force-free states, by analogy with spheromak relaxation experiments, starting from a random field. Under the hypothesis that the force-free modes approach energy equipartition in the absence of resistivity, the output of the numerical calculations is semiquantitatively recovered: the field settles down to a linked poloidal–toroidal configuration, which inflates and becomes more toroidal as time passes. A qualitatively similar (but not identical) end state is reached if the magnetic field evolves by exchanging helicity between small and large scales according to an α-dynamo-like, mean-field mechanism, arising from the fluctuating electromotive force produced by the initial random field. The impossibility of matching a force-free internal field to a potential exterior field is discussed in the magnetar context.  相似文献   

4.
Improvements to an existing method for calculating nonlinear force-free magnetic fields (Wheatland, Solar Phys. 238, 29, 2006) are described. In particular a solution of the 3-D Poisson equation using 2-D Fourier transforms is presented. The improved nonlinear force-free method is demonstrated in application to linear force-free test cases with localized nonzero values of the normal component of the field in the boundary. These fields provide suitable test cases for nonlinear force-free calculations because the boundary conditions involve localized nonzero values of the normal components of the field and of the current density, and because (being linear force-free fields) they have more direct numerical solutions. Despite their simplicity, fields of this kind have not been recognized as test cases for nonlinear methods before. The examples illustrate the treatment of the boundary conditions on current in the nonlinear force-free method, and in particular the limitations imposed by field lines that connect outside of the boundary region.  相似文献   

5.
Hudson  T.S.  Wheatland  M.S. 《Solar physics》1999,186(1-2):301-310
The potential and linear force-free field models for the magnetic field in the solar corona are often used in the analysis of flares. The field is calculated using boundary values measured in the low solar atmosphere. The topology of the field calculated using these models is then compared to the position of flare emissions. We demonstrate that the topology of the field according to each of these models, with the same boundary conditions in place, is not in general even qualitatively equivalent. An argument is given for a similar discrepancy between a linear force-free field solution and a nonlinear force-free field solution.  相似文献   

6.
本文从能量原理出发,导出了半圆拱无力场的能量积分的普遍形式,并证明所有半圆拱无力场都是稳定的。  相似文献   

7.
In this paper, a potential field extrapolation and three nonlinear force-free (NLFF) field extrapolations (optimization, direct boundary integral (DBIE), and approximate vertical integration (AVI) methods) are used to study the spatial configuration of magnetic field in the quiet Sun. It is found that differences in the computed field strengths among the three NLFF and potential fields exist in the low layers. However, they tend to disappear as the height increases, and the differences are of the order of 0.1 gauss when the height exceeds ≈ 2000 km above the photosphere. The difference in azimuth angles between each NLFF field model and the potential field is as follows: for the optimization field, it decreases evidently as the height increases; for the DBIE field, it almost stays constant and shows no significant change as the height increases; for the AVI field, it increases slowly as the height increases. Our analysis shows that the reconstructed NLFF fields deviate significantly from the potential field in the quiet Sun.  相似文献   

8.
M. Kleman  J. M. Robbins 《Solar physics》2014,289(4):1173-1192
The singularities of an irrotational magnetic field are lines of electric current. This property derives from the relationship between vector fields and the topology of the underlying three-space and allows for a definition of cosmic field flux tubes and flux ropes as cores (in the sense of the physics of defects) of helical singularities. When applied to force-free flux ropes, and assuming current conservation, an interesting feature is the quantization of the radii, pitches, and helicities. One expects similar quantization effects in the general case. In the special case when the total electric current vanishes, a force-free rope embedded in a medium devoid of magnetic field is nonetheless topologically stable, because it is the core of a singularity of the vector potential. Magnetic merging is also briefly discussed in the same framework.  相似文献   

9.
Simple analytic models for the passive evolution of arcade-like magnetic fields through a series of force-free equilibria are presented. At the photospheric boundary, the normal magnetic field component is prescribed together with either the longitudinal field component or the photospheric shear. Analytic progress is made by considering either cylindrically symmetric solutions or using the separation of variables technique. Two distinct cylindrically symmetric force-free fields are obtained that possess the same normal field component and photospheric shear. The scond field contains a magnetic bubble. As the shear increases beyond a critical value, so the magnetic energy of the first configuration exceeds that of the second. The possibility is therefore suggested of an eruption of the first field outwards towards the second. Such an eruptive instability is proposed as the origin of a two-ribbon solar flare.A new analytic solution to the force-free field equations, of separable form, is discovered and it is pointed out that the existence of shear in a magnetic field does not preclude it from being potential.Now at AWRE, Aldermaston, Reading, Berkshire.  相似文献   

10.
S. Régnier 《Solar physics》2012,277(1):131-151
In the last decades, force-free-field modelling has been used extensively to describe the coronal magnetic field and to better understand the physics of solar eruptions at different scales. Especially the evolution of active regions has been studied by successive equilibria in which each computed magnetic configuration is subject to an evolving photospheric distribution of magnetic field and/or electric-current density. This technique of successive equilibria has been successful in describing the rate of change of the energetics for observed active regions. Nevertheless the change in magnetic configuration due to the increase/decrease of electric current for different force-free models (potential, linear and nonlinear force-free fields) has never been studied in detail before. Here we focus especially on the evolution of the free magnetic energy, the location of the excess of energy, and the distribution of electric currents in the corona. For this purpose, we use an idealised active region characterised by four main polarities and a satellite polarity, allowing us to specify a complex topology and sheared arcades to the coronal magnetic field but no twisted flux bundles. We investigate the changes in the geometry and connectivity of field lines, the magnetic energy and current-density content as well as the evolution of null points. Increasing the photospheric current density in the magnetic configuration does not dramatically change the energy-storage processes within the active region even if the magnetic topology is slightly modified. We conclude that for reasonable values of the photospheric current density (the force-free parameter α<0.25 Mm−1), the magnetic configurations studied do change but not dramatically: i) the original null point stays nearly at the same location, ii) the field-line geometry and connectivity are slightly modified, iii) even if the free magnetic energy is significantly increased, the energy storage happens at the same location. This extensive study of different force-free models for a simple magnetic configuration shows that some topological elements of an observed active region, such as null points, can be reproduced with confidence only by considering the potential-field approximation. This study is a preliminary work aiming at understanding the effects of electric currents generated by characteristic photospheric motions on the structure and evolution of the coronal magnetic field.  相似文献   

11.
The main theoretical studies of the process involved in solar flares have been made in the two-dimensional approximation. However, the preliminary studies made with three field components suggest that reconnection could take place in the separatrices, the separator (intersection of separatrices) being a privileged location for this process. As a consequence the sites of flare kernels must be located on the intersections of the separatrices with the photosphere. Therefore, in order to understand the role of interacting large-scale structures in solar flares, we have analysed the topology of three-dimensional potential and linear force-free fields. The magnetic field has been modelled by a distribution of charges or dipoles located below the photosphere. This modelling permits us to define the field connectivity by the charges or the dipoles at both ends of every field line.We found that the appearance of a separator above the photosphere is more likely when a parasitic bipole emerges outside the axis that joins the main polarities and when the field lines are characteristic of a field created by dipoles. The separatrices derived in the potential and force-free hypothesis have different shapes. However, in the strong field regions where flares usually occur, the separatrices of the potential and force-free field models become closer. This property makes possible the use of the potential field, as a first estimate, for computing the location in the photosphere of the separatrices and for comparing this location with the position of observed H kernels. Displacements of the separatrices of a force-free field result from modifications of the free energy of the field. Then force-free fields have the further capability of predicting the kernel displacement. In all cases a configuration suitable for prominence support is found above the separator.  相似文献   

12.
Y. R. Chou  B. C. Low 《Solar physics》1994,153(1-2):255-285
Three-dimensional, quasi-static evolutions of coronal magnetic fields driven by photospheric flux emergence are modeled by a class of analytic force-free magnetic fields. Our models relate commonly observed photospheric magnetic phenomena, such as the formation and growth of sunspots, the emergence of an X-type separator, and the collision and merging of sunspots, to the three-dimensional magnetic fields in the corona above. By tracking the evolution in terms of a continuous sequence of force-free states, we show that flux emergence and submergence along magnetic neutral lines in the photosphere are essential processes in all these photospheric phenomena. The analytic solutions we present have a parametric regime within which the magnetic energy attained by an evolving force-free field may be of the order of 1030 ergs to several 1031 ergs, depending on the magnetic environment into which an emerging flux intrudes. The commonly used indicators of magnetic shear in magnetogram interpretation are discussed in terms of field connectivity in our models. It is demonstrated that the crossing angle of the photospheric transverse magnetic field with the neutral line may not be a reliable indicator of the magnetic shear in the coronal field above, due to the complexity of three-dimensionality. The poorly understood constraint of magnetic-helicity conservation on the availability of magnetic free energy for a flare is briefly discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

13.
A method is developed which for a certain day permits the approximate calculation of closed small and large scale magnetic field lines. From the photospheric longitudinal components of the magnetic field measured at this day normal components are derived taking into account the curvature of the solar surface. The magnetic fields are assumed to be potential or force-free fields.The method is applied to observations of September 5 and September 7, 1973. The projected magnetic field lines are compared with the loop structures which are visible in XUV pictures taken on these days. In the cases where no good agreement could be obtained for potential fields, force-free fields are calculated and fitted to the observed structures.  相似文献   

14.
Moon  Y.-J.  Yun  H.S.  Lee  S.W.  Kim  J.-H.  Choe  G.S.  Park  Y.D.  Ai  G.  Zhang  H.Q.  Fang  C. 《Solar physics》1999,184(2):323-338
In this paper we introduce a measure of magnetic field discontinuity, MAD, defined as Maximum Angular Difference between two adjacent magnetic field vectors. To examine the characteristics of the MAD, we have considered several active region models having a quadrupolar field configuration and computed MADs over these active regions by approximating the 3-D magnetic fields as an ensemble of charge potential fields or linear force-free fields. The computed MAD fields are studied in comparison with other flare activity indicators such as separators. It is found that (1) the region of high level MAD corresponds well with the separator, or practically the intersection of the separator with the plane of measurement, (2) it singles out local discontinuities of magnetic fields, and (3) the MAD can also be a measure of the evolutionary status of an active region.An observational test has been made for 2-D MADs, using the Yohkoh SXT observation of a flare in AR 6919 and the vector magnetogram taken at the Mees Solar Observatory during this flare activity. The high level contours of 2-D MAD are found to trace well the observed soft X-ray bright points, which indicates that the MAD could serve as a good flare activity indicator.  相似文献   

15.
The presently prevailing theories of solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes to solar flare energy. In this paper, we discuss solar flares from an entirely different point of view, namely in terms of power supply by a dynamo process in the photosphere. By this process, electric currents flowing along the magnetic field lines are generated and the familiar ‘force-free’ fields or the ‘sheared’ magnetic fields are produced. Upward field-aligned currents thus generated are carried by downward streaming electrons; these electrons can excite hydrogen atoms in the chromosphere, causing the optical Hα flares or ‘low temperature flares’. It is thus argued that as the ‘force-free’ fields are being built up for the magnetic energy storage, a flare must already be in progress.  相似文献   

16.
The problem of the accumulation and storage of the energy released in solar flares is discussed; it is proposed that convective energy of the photosphere is transformed into magnetic energy of the chromosphere and corona. The consequences of a large ratio of magnetic pressure to gas pressure are investigated. In this case the field must be approximately force-free. The only suitable force-free fields which allow an analytical treatment are those of cylindrical symmetry. The stability of these fields is studied with the energy principle. It is shown that they are always unstable due to kink type instabilities. The shape of the unstable perturbations is described in detail and an upper limit for their amplitude is estimated. The consequences for the proposed mechanism of energy storage are briefly discussed.  相似文献   

17.
无力场被广泛用来模拟太阳活动区的强磁场,本文从Bernstein能量原理出发,导出了无力场能量原理的普遍形式,并给出了若干稳定性的充分条件,它们可方便而有效地对无力场进行稳定性判断。  相似文献   

18.
本文从能量原理出发,对无力场稳定性进行了研究,给出了一般情形下无力场稳定性的充要判据。它可以把线性无力场稳定性判据作为特例包括在内。还对Kruger给出的一个充分判据作了进一步的探讨,对无力场稳定性的物理图象也作了讨论。  相似文献   

19.
Photospheric motion shears or twists solar magnetic fields to increase magnetic energy in the corona, because this process may change a current-free state of a coronal field to force-free states which carry electric current. This paper analyzes both linear and nonlinear two-dimensional force-free magnetic field models and derives relations of magnetic energy buildup with photospheric velocity field. When realistic data of solar magnetic field (B 0 103 G) and photospheric velocity field (v max 1 km s–1) are used, it is found that 3–4 hours are needed to create an amount of free magnetic energy which is of the order of the current-free field energy. Furthermore, the paper studies situations in which finite magnetic diffusivities in photospheric plasma are introduced. The shearing motion increases coronal magnetic energy, while the photospheric diffusion reduces the energy. The variation of magnetic energy in the coronal region, then, depends on which process dominates.  相似文献   

20.
We investigate the solar wind structure for 11 cases that were selected for the campaign study promoted by the International Study of Earth-affecting Solar Transients (ISEST) MiniMax24 Working Group 4. We can identify clear flux rope signatures in nine cases. The geometries of the nine interplanetary magnetic flux ropes (IFRs) are examined with a model-fitting analysis with cylindrical and toroidal force-free flux rope models. For seven cases in which magnetic fields in the solar source regions were observed, we compare the IFR geometries with magnetic structures in their solar source regions. As a result, we can confirm the coincidence between the IFR orientation and the orientation of the magnetic polarity inversion line (PIL) for six cases, as well as the so-called helicity rule as regards the handedness of the magnetic chirality of the IFR, depending on which hemisphere of the Sun the IFR originated from, the northern or southern hemisphere; namely, the IFR has right-handed (left-handed) magnetic chirality when it is formed in the southern (northern) hemisphere of the Sun. The relationship between the orientation of IFRs and PILs can be taken as evidence that the flux rope structure created in the corona is in most cases carried through interplanetary space with its orientation maintained. In order to predict magnetic field variations on Earth from observations of solar eruptions, further studies are needed about the propagation of IFRs because magnetic fields observed at Earth significantly change depending on which part of the IFR hits the Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号