首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
《Journal of Geodynamics》2009,47(3-5):118-130
Since microphysics cannot say definitively whether the rheology of the mantle is linear or non-linear, the aim of this paper is to constrain mantle rheology from observations related to the glacial isostatic adjustment (GIA) process—namely relative sea-levels (RSLs), land uplift rate from GPS and gravity-rate-of-change from GRACE. We consider three earth model types that can have power-law rheology (n = 3 or 4) in the upper mantle, the lower mantle or throughout the mantle. For each model type, a range of A parameter in the creep law will be explored and the predicted GIA responses will be compared to the observations to see which value of A has the potential to explain all the data simultaneously. The coupled Laplace finite-element (CLFE) method is used to calculate the response of a 3D spherical self-gravitating viscoelastic Earth to forcing by the ICE-4G ice history model with ocean loads in self-gravitating oceans. Results show that ice thickness in Laurentide needs to increase significantly or delayed by 2 ka, otherwise the predicted uplift rate, gravity rate-of-change and the amplitude of the RSL for sites inside the ice margin of Laurentide are too low to be able to explain the observations. However, the ice thickness elsewhere outside Laurentide needs to be slightly modified in order to explain the global RSL data outside Laurentide. If the ice model is modified in this way, then the results of this paper indicate that models with power-law rheology in the lower mantle (with A  10−35 Pa−3 s−1 for n = 3) have the highest potential to simultaneously explain all the observed RSL, uplift rate and gravity rate-of-change data than the other model types.  相似文献   

2.
The Earth’s gravity field observed by the Gravity Recovery and Climate Experiment (GRACE) satellite mission shows variations due to the integral effect of mass variations in the atmosphere, hydrosphere and geosphere. Several institutions, such as the GeoForschungsZentrum (GFZ) Potsdam, the University of Texas at Austin, Center for Space Research (CSR) and the Jet Propulsion Laboratory (JPL), Pasadena, provide GRACE monthly solutions, which differ slightly due to the application of different reduction models and centre-specific processing schemes. The GRACE data are used to investigate the mass variations in Fennoscandia, an area which is strongly influenced by glacial isostatic adjustment (GIA). Hence the focus is set on the computation of secular trends. Different filters (e.g. isotropic and non-isotropic filters) are discussed for the removal of high frequency noise to permit the extraction of the GIA signal. The resulting GRACE based mass variations are compared to global hydrology models (WGHM, LaDWorld) in order to (a) separate possible hydrological signals and (b) validate the hydrology models with regard to long period and secular components. In addition, a pattern matching algorithm is applied to localise the uplift centre, and finally the GRACE signal is compared with the results from a geodynamical modelling. The GRACE data clearly show temporal gravity variations in Fennoscandia. The secular variations are in good agreement with former studies and other independent data. The uplift centre is located over the Bothnian Bay, and the whole uplift area comprises the Scandinavian Peninsula and Finland. The secular variations derived from the GFZ, CSR and JPL monthly solutions differ up to 20%, which is not statistically significant, and the largest signal of about 1.2 Gal/year is obtained from the GFZ solution. Besides the GIA signal, two peaks with positive trend values of about 0.8 Gal/year exist in central eastern Europe, which are not GIA-induced, and also not explainable by the hydrology models. This may indicate that the recent global hydrology models have to be revised with respect to long period and secular components. Finally, the GRACE uplift signal is also in quite good agreement with the results from a simple geodynamical modelling.  相似文献   

3.
利用大地测量和历史相对海平面变化数据,结合地震剪切波层析模型,联合确定了新的末次冰期冰川均衡调整(GIA)模型,其中地幔黏滞度不仅沿径向而且沿横向变化.研究思路是,先尝试性地选择比例系数β,利用与地震剪切波速异常的线性关系,计算地幔黏滞度横向扰动,并与横向均匀的黏滞度参考模型叠加给出3D地幔黏滞度模型;再利用耦合拉普拉斯方程的有限元法算法进行GIA预测;然后,重复该过程,直到预测与观测之间的吻合满意为止.主要结论有:(1)给出了横向非均匀的地幔黏滞度模型(RF3L20(β=0.4)),发现了黏滞度显著的横向非均匀性和其对GIA预测的显著影响,指出横向非均匀不完全是由热效应引起的,可能还与化学组分等其他因素有关,该模型可用于地幔动力学研究.(2)给出了全球现今多种GIA预测速率,可为板块运动、陆地水储量、海水质量变化和冰川冰雪质量非平衡监测提供重要的改正.  相似文献   

4.
冰川均衡调整对东亚重力和海平面变化的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
新的全球冰川均衡调整(GIA)模型RF3L20(β=0.4)+ICE-4G考虑了地幔黏滞度沿横向的变化,其黏滞度参数得到大地测量、历史相对海平面变化观测和地震剪切波层析模型的较好约束.本文利用该模型预测了东亚现今重力变化和海平面变化,根据当前末次冰川时空变化和黏滞度参考模型中下地幔下部黏滞度认识的差异,评估了预测的不确定性.结果表明,GIA对东亚地区重力场和海平面长期变化有显著的影响:例如,在哈尔滨、长春、泰安、蓟县、郑州、武汉等测站,GIA重力影响达几十纳伽,可用超导重力仪和未来原子重力仪观测出来;在东亚大陆GIA对GRACE监测的等效水柱长期变化的影响为3%~10%,其中青藏高原西部、华北和三峡地区的影响较大.在东海—太平洋区,GIA的相对影响高达20%~40%;GIA使东亚海域绝对海平面以0.27~0.37 mm/a的速率在长期下降,在黄海、东海卫星测高监测的绝对海平面长期变化中,GIA的相对影响分别达6.9%和7.5%;在58个验潮站,平均相对海平面长期上升速率为2.22 mm/a,GIA影响为-0.17 mm/a,其中14个测站GIA的影响达-0.3~-0.4 mm/a.本文GIA预测的结果,对在东亚地区发现弱的地球动力学过程信号、监测水质量长期变化、监测海平面长期变化和分析其机制,提供精密的改正模型.  相似文献   

5.
The Earth’s asthenosphere and lower continental crust can regionally have viscosities that are one to several orders of magnitude smaller than typical mantle viscosities. As a consequence, such shallow low-viscosity layers could induce high-harmonic (spherical harmonics 50–200) gravity and geoid anomalies due to remaining isostasy deviations following Late-Pleistocene glacial isostatic adjustment (GIA). Such high-harmonic geoid and gravity signatures would depend also on the detailed ice and meltwater loading distribution and history.ESA’s Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission, planned for launch in Summer 2008, is designed to map the quasi-static geoid with centimeter accuracy and gravity anomalies with milligal accuracy at a resolution of 100 km or better. This might offer the possibility of detecting gravity and geoid effects of low-viscosity shallow earth layers and differences of the effects of various Pleistocene ice decay scenarios. For example, our predictions show that for a typical low-viscosity crustal zone GOCE should be able to discern differences between ice-load histories down to length scales of about 150 km.One of the major challenges in interpreting such high-harmonic, regional-scale, geoid signatures in GOCE solutions will be to discriminate GIA-signatures from various other solid-earth contributions. It might be of help here that the high-harmonic geoid and gravity signatures form quite characteristic 2D patterns, depending on both ice load and low-viscosity zone model parameters.  相似文献   

6.
本文研究了新的全球冰川均衡调整(GIA)模型对南极冰盖质量平衡监测的影响,考虑现有冰川负荷模型和地幔黏滞度模型的差异,完整评估了结果的不确定性,最后结合GRACE和卫星测高的结果进行了对比分析.结果表明,GIA对GRACE监测的等效水柱变化有重大影响,较大的GIA影响出现在西南极,沿罗斯冰架-卡姆布冰流-罗尼冰架-南极半岛分布,最大值在卡姆布冰流,达到29.8 mm/a;GIA对南极整体冰质量平衡的影响达到134±28 Gt/a.在不确定性的方差中,西南极和东南极分别以冰负荷模型差异和地幔黏滞度差异影响为主,对整个南极,冰模型差异影响占88.4%;在一些典型地区,GRACE监测的等效水柱在扣除GIA前后分别是,卡姆布冰流~32.8 mm/a和~6.3 mm/a,阿蒙森海湾~-95.3 mm/a和~-102.5 mm/a,Enderby Land~13.6 mm/a和~8.1 mm/a.整个南极冰盖总质量变化在扣除GIA贡献后为-82±29 Gt/a,该估计与卫星测高结果较吻合.此外,GIA对卫星测高监测的冰面高程变化的影响一般不超过8%.本研究为空间大地测量监测南极冰质量平衡提供了新的改正模型.  相似文献   

7.
Glacial Isostatic Adjustment (GIA) modelling in North America relies on relative sea level information which is primarily obtained from areas far away from the uplift region. The lack of accurate geodetic observations in the Great Lakes region, which is located in the transition zone between uplift and subsidence due to the deglaciation of the Laurentide ice sheet, has prevented more detailed studies of this former margin of the ice sheet. Recently, observations of vertical crustal motion from improved GPS network solutions and combined tide gauge and satellite altimetry solutions have become available. This study compares these vertical motion observations with predictions obtained from 70 different GIA models. The ice sheet margin is distinct from the centre and far field of the uplift because the sensitivity of the GIA process towards Earth parameters such as mantle viscosity is very different. Specifically, the margin area is most sensitive to the uppermost mantle viscosity and allows for better constraints of this parameter. The 70 GIA models compared herein have different ice loading histories (ICE-3/4/5G) and Earth parameters including lateral heterogeneities. The root-mean-square differences between the 6 best models and the two sets of observations (tide gauge/altimetry and GPS) are 0.66 and 1.57 mm/yr, respectively. Both sets of independent observations are highly correlated and show a very similar fit to the models, which indicates their consistent quality. Therefore, both data sets can be considered as a means for constraining and assessing the quality of GIA models in the Great Lakes region and the former margin of the Laurentide ice sheet.  相似文献   

8.
Tide gauge records of recent sea-level change along the U.S. east coast have received significant attention within the literature of glacial isostatic adjustment (GIA). Geographic trends in these tide gauge rates are not reduced by a GIA correction based on a commonly adopted radial viscosity profile (characterized, in particular, by a lower mantle viscosity 1−2×1021 Pa s), and this has led to speculation that the residual trends reflect contributions from neotectonics or oceanographic processes. While the trends can be significantly reduced by adopting an Earth model with a stiffer lower mantle, such a model appears to be incompatible with independent constraints from post-glacial decay times in Hudson Bay. We use a finite-element model of the GIA process to investigate whether 3-D viscosity variations superimposed onto the “common” radial viscosity profile may provide a route to reconciling the east coast sea-level trends. We find that the specific 3-D structure we impose has little impact on the geographic trends in the GIA-corrected rates. However, we do find that the imposed lateral variations in lower mantle viscosity introduce a nearly uniform upward shift of 0.5 mm/yr in GIA-induced sea-level rates along the U.S. east coast. Thus, inferences of regional (U.S. east coast) sea-level rise due to modern melting of ice reservoirs, based on tide gauge rates corrected using 1-D GIA models, may be significantly biased by this simplifying assumption.  相似文献   

9.
10.
We consider the second-order differential equations ofP-SV motion in an isotropic elastic medium with spherical coordinates. We assume that in the medium Lamé's parameters , r p and compressional and shear-wave velocities , r, wherer is radial distance. With this regular heterogeneity both the radial functions appearing in displacement components satisfy a fourth-order differential equation which provides solutions in terms of exponential functions. We then consider a layered spherical earth in which each layer has heterogeneity as specified above. The dispersion equation of the Rayleigh wave is obtained using the Thomson-Haskel method. Due to exponential function solutions in each layer, the dispersion equation has similar simplicity, as in a flat-layered earth. The dispersion equation is further simplified, whenp=–2. We obtain numerical results which agree with results obtained by other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号