首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
UV-B增强对冬小麦和菠菜影响的对比试验   总被引:2,自引:0,他引:2  
通过大田试验对比研究了紫外辐射UV—B增强对冬小麦和圆叶菠菜株高、叶面积指数、干物质累积量的影响以及叶绿素和类黄酮含量的变化。结果表明:紫外辐射UV—B增强对冬小麦和圆叶菠菜株高、叶面积指数、干物质累积有着明显的抑制作用,同时还使叶绿素含量下降,类黄酮含量增加。对比试验也表明,UV—B辐射对小麦株高、叶面积、干物质积累以及叶绿素和类黄酮含量的影响小于对菠菜的影响。  相似文献   

2.
紫外UV-B辐射增强对麦田蚜虫的影响   总被引:1,自引:0,他引:1  
观测分析了大田条件下UV—B辐射增强对麦田中麦蚜的影响,结果表明UV—B辐射增强,蚜虫发生总量、小麦植株发生的百分率显著降低,蚜虫在穗部和植株上部叶片的发生概率下降,但蚜虫在叶片背光面发生数量增多,小麦植株的虫害发生概率降低。  相似文献   

3.
北方玉米冠层光合有效辐射垂直分布及影响因子分析   总被引:3,自引:0,他引:3  
玉米冠层内光合有效辐射(PAR)的大小直接影响冠层内叶片的光合作用,进而影响玉米净第一性生产力或作物产量的准确评估。为弄清玉米冠层内光合有效辐射的分布规律及其影响因子,基于锦州玉米农田生态系统于2006年生育期的光合有效辐射观测数据和叶面积指数动态观测数据,对玉米冠层光合有效辐射的垂直分布特征及其影响因子进行了分析。结果表明:玉米冠层内不同垂直层次叶片的PAR分布随生育期变化显著,与叶面积指数呈显著的负相关(R2=0.89);玉米冠层光合有效辐射的消光系数K值在生育期呈动态变化,约为0.76,且表现为苗期较大、生育后期较小。分析表明,在进行光合有效辐射及与此密切相关的光合作用模拟时,应考虑消光系数的动态变化。  相似文献   

4.
气候变化对小麦生产影响的数值模型研究   总被引:12,自引:0,他引:12  
在未来气候变化对作物影响的研究基础上,分析未来不同气候情景对南京地区小麦生长发育、产量形成的影响,并考虑了紫外辐射变化的影响。采用数值模拟方法具体估算了温度升高、降水变化、CO2 浓度上升及紫外辐射增强对南京地区小麦产量的影响。计算结果表明:未来CO2 增加可提高小麦产量,气温升高、降水变化及紫外辐射增强均使得小麦产量有所降低。  相似文献   

5.
本试验是在人为严格控制水分的条件下进行的,应用资料探讨了夏大豆两个生育关键期不同水分条件对群体生产力,叶面积动态变化、叶片光合作用,生育期及产量的影响。  相似文献   

6.
本试验通过可移动遮雨棚对大田夏玉米不同生长阶段土壤湿度进行定量控制,分析了拔节—抽雄和抽雄—成熟期干旱胁迫对玉米生长发育及产量构成等要素的影响。结果表明,玉米受干旱胁迫后,植株生长发育受到抑制,产量明显降低。拔节—抽雄期干旱对玉米营养生长阶段植株性状的影响较大;抽雄—成熟期干旱对玉米营养生长的影响相对较小,但对产量影响较大,其中穗长、穗粒数、穗总重和穗粒重较对照处理均显著减小,穗粗、秃尖比及百粒重变化不显著。  相似文献   

7.
土壤湿度对小麦出苗及幼苗生长的影响   总被引:4,自引:0,他引:4  
土壤水分不适能显著影响小麦出苗及幼苗生长,表现为显著降低出苗率,减少单位面积的苗数;同时显著影响幼苗单株生长,表现为干重、叶面积下降。土壤水分不适对小麦群体的影响表现为单位面积的干重和叶面积指数(LAI)下降。采用通径分析衡量了出苗率和单株幼苗生长两因子对群体影响的大小。结果表明:单位面积干重下降主因是单株干重下降,叶面积指数下降主因是出苗率下降。土壤湿度大于17%且小于44%时,对小麦出苗及幼苗生长各项指标的影响幅度一般在20%以内,而低于17%或高于44%的土壤湿度对小麦的影响幅度急剧增加。小麦对土壤水分不适具有一定的适应性反应。  相似文献   

8.
河南省夏玉米农学模式产量预报   总被引:1,自引:0,他引:1  
从农学方面分析了形成夏玉米产量三要素的穗数、穗粒数、穗粒重及在夏玉米生殖生长过程中,对产量积累起着重要作用的叶面积系数、干物重和产量之间的关系,并建立了相应的农学模式方程,为河南省夏玉米产量预报提供几种农学方法。  相似文献   

9.
北方玉米冠层光合有效辐射垂直分布及影响因子分析   总被引:17,自引:0,他引:17       下载免费PDF全文
玉米冠层内光合有效辐射(PAR)的大小直接影响冠层内叶片的光合作用,进而影响玉米净第一性生产力或作物产量的准确评估。为弄清玉米冠层内光合有效辐射的分布规律及其影响因子,基于锦州玉米农田生态系统于2006年生育期的光合有效辐射观测数据和叶面积指数动态观测数据,对玉米冠层光合有效辐射的垂直分布特征及其影响因子进行了分析。结果表明:玉米冠层内不同垂直层次叶片的PAR分布随生育期变化显著,与叶面积指数呈显著的负相关(R2=0.89);玉米冠层光合有效辐射的消光系数K值在生育期呈动态变化,约为0.76,且表现为苗期较大、生育后期较小。分析表明,在进行光合有效辐射及与此密切相关的光合作用模拟时,应考虑消光系数的动态变化。  相似文献   

10.
土壤水分对小麦开花及结实的影响   总被引:2,自引:0,他引:2  
研究了不同生育期土壤水分与小麦的小花发育、开发、结实率及产量的关系,并进行了土壤水分对穗粒数影响的定量分析研究,提出了保持小花正常发育和提高小麦结实率的适宜土壤水分范围。  相似文献   

11.
2018年在黑龙江省庆安县选用寒地水稻龙粳31品种进行淹水试验,在拔节孕穗期、抽穗开花期,分别设定3个淹水深度(1/3株高、2/3株高、3/3株高)、2个淹水历时(3 d、7 d)共12个淹水处理,测定淹水前后的株高、叶面积、干物质及收获后的每穗粒数、结实率、千粒重及产量等。结果表明:水稻淹水后,株高、叶面积指数、干物质平均增长量基本高于同时期对照组,在一定程度上可以说明适度的淹涝胁迫对水稻植株生长具有促进作用,拔节孕穗期各项与对照组相比的增长程度均低于抽穗开花期;不同淹涝胁迫均导致水稻减产,拔节孕穗期全淹没7 d减产最严重,穗结实粒数仅55粒,千粒重16.9 g,远低于对照,减产率高达70%,抽穗开花期全淹没7 d减产也较严重,穗结实粒数为71粒,千粒重略低,但单位面积有效穗数最少,为2.83×106穗,减产率达57%;淹水深度1/3 h、2/3 h、3/3 h处理的平均减产率依次为16%、18%、48%,淹水持续3 d、7 d的平均减产率分别为21%、33%,可见随着淹水深度加深、淹水历时加长,水稻减产幅度加大;淹涝胁迫条件下,拔节孕穗期水稻产量的下降幅度大于抽穗开花期,导致两个发育期减产的主要产量构成因素分别为穗结实粒数、单位面积有效穗数。  相似文献   

12.
冬小麦产量形成的干物质模式   总被引:5,自引:0,他引:5       下载免费PDF全文
武金岗  高苹  汤志成  陶炳炎 《气象》1997,23(3):46-49
针对徐淮地区冬小麦的生长情况,建立了冬小麦总生物量与气象条件综合因子逐蒸发量的工模式,并在引进三种群生态模型基础上,结合穗茎叶之间关系,研制出穗茎叶干物质相互作用模式,用数学方法研究了冬小麦干物质形成的规律,对生长模拟具有实际参考价值。  相似文献   

13.
针对当前东北地区过量施氮的问题,研究减量施氮对春玉米生长发育、产量及籽粒品质的影响,对优化氮肥的科学管理技术,促进春玉米生产绿色高效发展具有重要意义.本研究以丹玉405为试验材料,通过大田播种的方式,以农民习惯性施氮量为对照,设置11.1%、55.5%和100%三个水平减量施氮试验,分析春玉米生长发育、产量和籽粒品质对...  相似文献   

14.
水分胁迫对华北平原冬小麦地上部分及产量的影响   总被引:1,自引:0,他引:1  
以“济麦-22”为供试品种,利用中国气象局固城生态环境与农业气象试验站大型根系观测系统,研究冬小麦在重度干旱胁迫(≤40.0%)、轻中度干旱胁迫(40.1%-55.0%)和适宜(55.1%-80.0%)3种水分胁迫条件下地上部分对水分胁迫的响应,以探索水分胁迫对华北平原冬小麦产量的影响,分析不同水分胁迫对冬小麦产量的影响程度。结果表明:华北平原冬小麦在轻中度干旱胁迫和重度干旱胁迫下,小麦全生育期的天数缩短,株高、叶面积及灌浆速率均呈不同程度的减少。3种水分胁迫的株高增长量为适宜>轻中度胁迫>重度胁迫,灌浆速率为适宜>轻中度胁迫>重度胁迫。土壤水分胁迫引起冬小麦物质分配更多地向支持生长的茎秆转移,在生长发育过程中受到水分胁迫,小麦产量将降低,重度胁迫条件下小麦产量为适宜水分条件的69%。  相似文献   

15.
With the rapid development of industrialization and urbanization, the enrichment of tropospheric ozone and carbon dioxide concentration at striking rates has caused effects on biosphere, especially on crops. It is generally accepted that the increase of CO2 concentration will have obverse effects on plant productivity while ozone is reported as the air pollutant most damaging to agricultural crops and other plants. The Model of Carbon and Nitrogen Biogeochemistry in Agroecosystems (DNDC) was adapted to evaluate simultaneously impacts of climate change on winter wheat. Growth development and yield formation of winter wheat under different O3 and CO2 concentration conditions are simulated with the improved DNDC model whose structure has been described in another paper. Through adjusting the DNDC model applicability, winter wheat growth and development in Gucheng Station were simulated well in 1993 and 1999, which is in favor of modifying the model further. The model was validated against experiment observation, including development stage data, leaf area index, each organ biomass, and total aboveground biomass. Sensitivity tests demonstrated that the simulated results in development stage and biomass were sensitive to temperature change. The main conclusions of the paper are the following: 1) The growth and yield of winter wheat under CO2 concentration of 500 ppmv, 700 ppmv and the current ozone concentration are simulated respectively by the model. The results are well fitted with the observed data of OTCs experiments. The results show that increase of CO2 concentration may improve the growth of winter wheat and elevate the yield. 2) The growth and yield of winter wheat under O3 concentration of 50 ppbv, 100 ppbv, 200 ppbv and the based concentration CO2 are simulated respectively by the model. The simulated curves of stem, leaf, and spike organs growth as well as leaf area index are well accounted with the observed data. The results reveal that ozone has negative e ects on the growth and yield of winter wheat. Ozone accelerates the process of leaf senescence and causes yield loss. Under very high ozone concentration, crops are damaged dramatically and even dead. 3) At last, by the model possible effects of air temperature change and combined effects of O3 and CO2 are estimated respectively. The results show that doubled CO2 concentration may alleviate negative effect of O3 on biomass and yield of winter wheat when ozone concentration is about 70-80 ppbv. The obverse effects of CO2 are less than the adverse effects of O3 when the concentration of ozone is up to 100 ppbv. Future work should determine whether it can be applied to other species by adjusting the values of related parameters, and whether the model can be adapted to predict ozone e ects on crops in farmland environment.  相似文献   

16.
With the rapid development of industrialization and urbanization, the enrichment of tropospheric ozone and carbon dioxide concentration at striking rates has caused effects on biosphere, especially on crops. It is generally accepted that the increase of CO2 concentration will have obverse effects on plant productivity while ozone is reported as the air pollutant most damaging to agricultural crops and other plants. The Model of Carbon and Nitrogen Biogeochemistry in Agroecosystems (DNDC) was adapted to evaluate simultaneously impacts of climate change on winter wheat. Growth development and yield formation of winter wheat under different O3 and CO2 concentration conditions are simulated with the improved DNDC model whose structure has been described in another paper. Through adjusting the DNDC model applicability, winter wheat growth and development in Gucheng Station were simulated well in 1993 and 1999, which is in favor of modifying the model further. The model was validated against experiment observation, including development stage data, leaf area index, each organ biomass, and total aboveground biomass. Sensitivity tests demonstrated that the simulated results in development stage and biomass were sensitive to temperature change. The main conclusions of the paper are the following: 1) The growth and yield of winter wheat under CO2 concentration of 500 ppmv, 700 ppmv and the current ozone concentration are simulated respectively by the model. The results are well fitted with the observed data of OTCs experiments. The results show that increase of CO2 concentration may improve the growth of winter wheat and elevate the yield. 2) The growth and yield of winter wheat under O3 concentration of 50 ppbv, 100 ppbv, 200 ppbv and the based concentration CO2 are simulated respectively by the model. The simulated curves of stem, leaf, and spike organs growth as well as leaf area index are well accounted with the observed data. The results reveal that ozone has negative effects on the growth and yield of winter wheat. Ozone accelerates the process of leaf senescence and causes yield loss. Under very high ozone concentration, crops are damaged dramatically and even dead. 3) At last, by the model possible effects of air temperature change and combined effects of O3 and CO2 are estimated respectively. The results show that doubled CO2 concentration may alleviate negative effect of O3 on biomass and yield of winter wheat when ozone concentration is about 70-80 ppbv. The obverse effects of CO2 are less than the adverse effects of O3 when the concentration of ozone is up to 100 ppbv. Future work should determine whether it can be applied to other species by adjusting the values of related parameters, and whether the model can be adapted to predict ozone effects on crops in farmland environment.  相似文献   

17.
1997年 9月至 1 999年 6月在中国气象局固城农业气象试验基地人工控制农田水分试验场进行了冬小麦不同底墒处理的试验 ,结果表明 :底墒显著影响冬小麦的生长发育和产量 ,对冬小麦总生物量、地上和地下生物量的影响在小麦生长后期比前期明显 ;底墒与植株高度、叶面积系数有良好的二次曲线关系 ;底墒显著影响产量构成因素 ,其与籽粒重有相当好的二次曲线关系 ,并据此确定了冬小麦播种时不同深度土层的最佳底墒 :0~ 1 m为 88% ,0~ 2 m为82 % .  相似文献   

18.
冬麦北移后生育期及产量构成因素的分析   总被引:1,自引:0,他引:1  
张爱芝  高志强 《山西气象》2003,(3):12-14,46
本文从分析太谷、应县二地在小麦生育期间的气温差异入手,通过对冬麦北移主栽品种“北移一号”在原种植地与北移区二地生育差异的比较分析,表明冬麦北移后生育期表现为“三短两长”的特点,致使“三段生长”的营养生长有效期极大地缩短,营养生长至生殖生长的过渡期也相应缩短,而生殖生长期明显延长,导致了株高降低、节间变短变细变实、强度明显提高,虽然分蘖成穗很少,单株绿色营养面积也很小,但在较高的水肥与合理密植条件下。由于粒重高,经济系数高,仍可获得高产。  相似文献   

19.
In this article the theoretical method to determine the optimum seeding time of wheat and maize isestablished.For wheat,it is based on the close relationship between accumulated temperature and numberof leaves on the main stalk as well as number of stalks per plant of wheat,and for maize,based on theclimatic potential productivity model of maize.Using these models,we found that the optimum seeding time should be,for winter wheat,decided byaccumulated temperature from seeding date to the beginning of dormancy,and for maize,postponed forabout 30 days for medium variety and about 50 days for early variety in contrast with traditional seedingtime.Besides,through analysing climatic data the agroclimatic pattern of optimum seeding time for bothcrops in Beijing area has been found as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号