首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SOME RELATIONS BETWEEN ASYMMETRIC STRUCTURE AND MOTION OF TYPHOONS   总被引:11,自引:0,他引:11       下载免费PDF全文
The analysis of the SPECTRUM (Special Experiment Concerning Typhoon Recurvature andUnusual Movement) data indicates that the structure of recurving target typhoons 9015 (Abe),9019(Flo) and 9020 (Gene) at different stages of moving processes showed different motion features.Ondifferent time scales,temporal variations of typhoon structure and motion speed displayed differentfeatures.  相似文献   

2.
热带气旋"黄蜂"动热力特征演变的模拟分析   总被引:9,自引:1,他引:8  
以"中国登陆台风试验"项目的目标热带气旋"黄蜂"为对象,用高分辨数值模式成功模拟了其近海加强和登陆减弱的过程,从定量和时间演化角度细致分析了热带气旋(TC)各阶段的动、热力特征,包括对流加热特性、温湿结构、稳定度、涡散度、垂直运动、垂直环流、水平环流等基本动、热力因子的时空结构特征,揭示了该热带气旋的大量结构特点,如对流加热的强盛和非对称性、强热带风暴的无眼结构、低层的东暖西冷结构、涡度的准圆形对称结构、东/西侧环流正/斜压性的差异、低层辐合和上升运动的准周期振荡等等.这些结构特征的揭示对深入细致地研究和认识南海热带气旋的特点和演变机理具有重要学术意义.  相似文献   

3.
选取华南2017年5月15日两段不同系统影响的典型个例降水,基于ERA Interim分析资料和地面、雷达等观测资料,从两类降水的大尺度环境及中尺度特征方面探讨了两类降水系统的差异,并利用模式潜热廓线订正方案对两类降水个例的潜热进行反演。结果表明,季风降水主要受偏南风影响,边界层内强辐合、高温高湿,中高层(600~150 hPa)较强辐散,而锋面降水受低层锋面系统影响,对流层低层强辐合,800~300 hPa较强辐散,水汽输送深厚,斜压性结构明显,且垂直运动剧烈。除两者的辐合辐散中心、正涡度的中心以及水汽通量辐合中心和垂直运动大值中心所在的层次明显不同外,其强度也差别较明显,就垂直运动而言,锋面降水的最大值达-1.2 hPa/s,远远大于季风降水(-0.2 Pa/s)。两者的中尺度特征和加热结构也存在显著差异,季风降水中尺度雨团沿海岸线自西向东移动发展,潜热加热中心为单峰值,位于5~6 km;锋面降水中尺度雨团在一条西南-东北走向的雨带上不断向东南方向合并发展,潜热加热中心有两个,分别位于1~2 km和6~7 km。   相似文献   

4.
Using the T63L16 analysis data with the resolution of 1.875╳1.875 degree of latitude and longitude obtained from National Meteorological Center (NMC) and the real central position information of tropical cyclone (referred to as TC hereafter) numbered by NMC, the basic environmental geostrophic flow at 126 time levels of 25 TCs in 1996 are calculated. The vertical distribution features of the flows are analyzed. Besides, the deviation of real TC tracks from the flows (referred as steering deviation hereafter, namely, the deviation between the real central position of TC and the position calculated according to the steering flow) is also investigated. The result shows that the steering deviation would be different if the domain used to calculate the steering flow is different. The present paper obtains the optimum domain size to calculate the steering flow. It is found that the steering deviation is related to the velocity of steering flow and the initial latitude and intensity of TC itself, and that TC motion has relationship with the vertical shear structure of environmental geostrophic flow. The result also shows that the optimum steering flow is the deep-layer averaged basic flow from 1000 hPa to 200 hPa. Having the knowledge of these principle and features would help make accurate forecast of TC motion.  相似文献   

5.
不稳定层结下的热岛环流   总被引:1,自引:0,他引:1       下载免费PDF全文
采用对数压力坐标系的大气热力、动力方程组,分析了由于城市的加热和摩擦作用,在大气层结不稳定情况下的热岛环流,给出了表征热岛基本特征的垂直运动,水平运动和温度场的空间结构,从理论上证实了热岛环流在不稳定城市边界层中存在的可能性,并得出了如下主要结论:(1) 垂直运动在市区是上升运动,在郊区是下沉运动,在低层z=150m处有一闭合中心;(2) 流场在市区上空呈一层波动,波谷在上风区,波峰在下风区,波长为城市半宽的4倍;(3) 地面的高温区出现在城市的下风区,且无逆温层出现。  相似文献   

6.
Newtonian jerky dynamics is applied to inertial instability analysis to study the nonlinear features of atmospheric motion under the action of variable forces. Theoretical analysis of the Newtonian jerky function is used to clarify the criteria for inertial instability, including the influences of the meridional distributions of absolute vorticity (ζg ) and planetary vorticity (the β effect). The results indicate that the meridional structure of absolute vorticity plays a fundamental role in the dynamic features of inertial motion. Including only the β effect (with the assumption of constant ζg ) does not change the instability criteria or the dynamic features of the flow, but combining the β effect with meridional variations of ζg introduces nonlinearities that significantly influence the instability criteria. Numerical analysis is used to derive time series of position, velocity, and acceleration under different sets of parameters, as well as their trajectories in phase space. The time evolution of kinematic variables indicates that a regular wave-like change in acceleration corresponds to steady wave-like variations in position and velocity, while a rapid growth in acceleration (caused by a rapid intensification in the force acting on the parcel) corresponds to track shifts and abrupt changes in direction. Stable limiting cases under the f-and β-plane approximations yield periodic wave-like solutions, while unstable limiting cases yield exponential growth in all variables. Perturbing the value of absolute vorticity at the initial position (ζ0 ) results in significant changes in the stability and dynamic features of the motion. Enhancement of the nonlinear term may cause chaotic behavior to emerge, suggesting a limit to the predictability of inertial motion.  相似文献   

7.
南京冬季一次雾过程宏微观结构的突变特征及成因分析   总被引:18,自引:3,他引:15  
陆春松  牛生杰  杨军 《大气科学》2010,34(4):681-690
2006年冬, 利用系留气球探测系统、雾滴谱仪、能见度仪等仪器在南京北郊进行了雾的综合观测。本文选取2006年12月14日的一次浓雾过程, 利用边界层廓线、雾滴谱、能见度以及NCEP再分析资料, 深入研究雾顶和地面雾浓度的突变特征 (爆发性增强和迅速减弱过程) 及其成因。结果表明: 雾顶的爆发性发展是湍流促使水汽向上输送、 在上层逆温下累积并伴随大幅降温引起的; 地面雾浓度爆发性增强时, 近地层冷平流降温导致饱和水汽压减小, 同时上层系统性的下沉增温引起逆温增强, 水汽得以累积; 雾顶的迅速下降过程中, 雾顶部湍流发展, 同时下沉运动引起了气层增温、 雾体双层结构和低空急流的出现; 地面雾的迅速减弱是太阳辐射和动量下传共同作用的结果; 下沉运动对雾生消的作用具有双重性; 雾的双层结构出现在雾顶大幅下降过程中, 并加快了雾顶的下降速度, 这与以往研究中双层结构促使雾顶爆发性发展有很大差异。  相似文献   

8.
本文数值模拟研究揭示了台风外区热力不稳定非对称结构对其异常路径的影响问题,提出了台风运动非对称结构的影响,不仅表现在台风涡旋动力结构特征上,而且反映在台风外区三维非对称热力结构特点方面,即包括温、湿不稳定层结分布特征及其强弱程度因素。台风外区不同热力非对称分布特征将导致台风移动轨迹的显著差异,且构成各类“旋转”、“打转”、“转向”等复杂异常路径。  相似文献   

9.
EffectoftheInteractionofDifferentScaleVorticesontheStructureandMotionofTyphoonsChenLianshou(陈联寿)(ChineseAcademyofMet6orologic...  相似文献   

10.
肖庆农,伍荣生AStudyonFrontalMotionoverOrography¥XiaoQingnonsandWuRongsheng(DepartmentofAtmosphericSciences,NanjingUniversity,Naming...  相似文献   

11.
利用国家气象中心T63L16的1.875×1.875经纬网格点资料和中央气象台编号的热带气旋实时中心位置资料,计算了1996年全年25个热带气旋,共126个时次的环境地转基本气流,分析了环境地转基本气流的垂直分布特征,并对热带气旋的实际运动与环境地转引导气流的偏差(后文将称其为引导偏差,即热带气旋的实际中心位置与按引导气流推算出的位置之间的偏差)进行了分析,发现引导气流的计算区域不同,其引导偏差是不一样的。得到了引导气流的最佳计算区域,并且发现热带气旋运动与环境地转基本气流的垂直切变结构的关系以及引导偏差与引导气流的速度、气旋本身的初始纬度位置和强度等有关。结果还表明,200~1000 hPa的深层加权平均的基本气流的引导效果最佳,可作为最佳引导气流使用。了解这些规律和特征,对热带气旋运动预报具有一定的参考意义。  相似文献   

12.
Summary In this study, idealised conditions are used to study the influence of vertical structure of the bogus vortex on its motion in numerical models by comparing the resultant forecast tracks. Two vortices were used: one has a cyclonic circulation throughout the troposphere and the other has an upper tropospheric anticyclone. Both vortices have the same structure in the middle and lower troposphere. The two vortices were inserted into four different environmental flows on a beta-plane: (a) a resting atmosphere; (b) a uniform flow; (c) a horozontal shear flow and (d) a vertical shear flow. The results show that the forecast tracks are very sensitive to the vertical structure of the bogus vortex, especially when the environmental flow is very weak, or is westerly and has a cyclonic horizontal shear. However, this sensitivity is reduced in moderate vertical shear. This motion sensitivity is found to arise from the vertical coupling mechanism by which the upper-and lower-level circulations interact with each other when a horizontal displacement occurs between them.The vertical structure of the bogus vortex can also affect the intensity of the model cyclone, depending on the configuration of the environmental flow. In general, the bogus vortex without an upper-level anticyclone will intensify quicker and will develop more intense than the one with an upper-level anticyclone. The vertical coupling mechanism can result in different asymmetric rainfall pattern in cyclone core region depending on the vertical structure of the bogus vortex. The asymmetric divergent flow associated with these convective asymmetries may in turn further influence the vortex motion. It is suggested that care needs to be taken in determining the vertical structure of the bogus vortex in numerical models.With 14 Figures  相似文献   

13.
Thermals, defined as humidity excesses, seem to exhibit distinct features in the disturbed Indian Monsoon Boundary Layer (BL) depending on whether they occur in the stable wake regions, called S in this study, of tropical squalls, or in the neutral regions of the advancing squalls, called N. The stable S region developed weak but gradually increasing ascending motion in the BL while the N region showed strong upward motion at the top of the surface layer (85 m) decreasing steadily thereafter. Similar differences also appear in the other mean thermal fields such as temperature and humidity.The present study agrees with that of Lenschow and Stephens in that there is an increase of thermal cover (area covered by thermals) with height. Our study points out additionally that this happens only within the stable wake region. In the neutral region, the thermal cover is fairly constant.It appears that thermal parameters such as vertical velocity are good indicators of the atmospheric BL structure.  相似文献   

14.
西藏高原及其附近的流场结构和对流层大气的热量平衡   总被引:58,自引:16,他引:58  
本文利用1954—1956年的高空及地面记录,作出了平均流场,并计算了垂直速度、冷暖平流及辐射等,得出下面几点结论:1)冬季在1.5千米及3千米的西风,在高原西边有明显的分支,东边有明显的会合,且在东西两边各有一“死水区”(风速很小),在高原北面形成了高压脊,而在其南面形成了低槽,到了6千米除了二个“死水区”消失以外,其余基本上没有变化。2)夏季1.5千米及3千米在高原附近的流线,绕高原作气旋性旋转,而到了6千米则相反而呈反气旋性旋转,其中心在高原西南部分,且随高度增加而向西偏。3)夏季在高原上基本上是上升运动,可能达到9千米;冬季在高原上估计可能是下沉运动(除西南角有部分上升运动)。4)夏季可以肯定高原是一个热源,而冬季除了西南角有—部分是热源外,其他地区可能是一冷源。  相似文献   

15.
Strong vertical motion(10 m s~(-1)) has profound implications for tropical cyclone(TC) structure changes and intensity. While extreme updrafts in the TC are occasionally observed in real TCs, the associated small-scale features remain unclear. Based on an analysis of the extreme eyewall updrafts in two numerical experiments conducted with the Advanced Research version of the Weather Research and Forecasting(WRF) model, in which the large-eddy simulation(LES) technique was used with the finest grid spacings of 37 and 111 m, for the first time this study demonstrates that the simulated extreme updrafts that occur mainly in the enhanced eyewall convection on the down-shear left side are comparable to available observations. The simulated extreme updraft exhibits relatively high frequencies in the lower(750 m), middle(6.5 km) and upper(13 km) troposphere, which are associated with different types of small-scale structures.While the lower-level extreme updraft is mainly related to the tornado-scale vortex, the extreme updraft at upper levels is closely associated with a pair of counter-rotating horizontal rolls oriented generally along the TC tangential flow, which are closely associated with the enhanced eyewall convection. The extreme updraft at middle levels is related to relatively complicated small-scale structures. The study suggests that extreme updrafts can be simulated when the grid spacing is about 100 m or less in the WRF-LES framework, although the simulated small-scale features need further verification in both observation and simulation.  相似文献   

16.
The WKB method has been used to develop an approximate solutionof the semi-geostrophic Ekman boundary layer with height-dependenteddy viscosity and a baroclinic pressure field. The approximate solutionretains the same simple form as the classical Ekman solution. Behavioursof the approximate solution are discussed for different eddy viscosityand the pressure systems. These features show that wind structure inthe semi-geostrophic Ekman boundary layer depends on the interactionbetween the inertial acceleration, variable eddy viscosity and baroclinicpressure gradient. Anticyclonic shear has an acceleration effect on theair motion in the boundary layer, while cyclonic shear has a decelerationeffect. Decreasing pressure gradient with height results in a super-geostrophicpeak in the wind speed profile, however the increasing pressure gradient withheight may remove the peak. Anticyclonic shear and decreasing the variableeddy viscosity with height has an enhanced effect on the peak.Variable eddy viscosity and inertial acceleration has an important role in thedivergence and vorticity in the boundary layer and the vertical motion at the top of the boundary layer that is called Ekman pumping. Compared to the constanteddy viscosity case, the variable eddy diffusivity reduces the absolute value ofEkman pumping, especially in the case of eddy viscosity initially increasing with height. The difference in the Ekman pumping produced by different eddy diffusivity assumptions is intensified in anticyclonic flow and reduced in cyclonic flow.  相似文献   

17.
HIRS-Tb12资料和常规资料对比分析表明:南、北半球副热带高压区域具有不同的温度、湿度和垂直运动的结构特征,HIRS-Tb12资料能很好地表征出这些特征。当南海地区、阿拉伯海地区高压迅速减弱,且HIRS-Tb12小于200W/m^2时,分别对应于南海季风、阿拉伯海和孟加拉湾季风爆发。华东地区显著干旱年和显著雨涝年两半球副热带高压下沉区演变趋势具有显著的差异。  相似文献   

18.
This study investigates characteristics of the convective quasi-biweekly oscillation(QBWO) over the South China Sea(SCS) and western North Pacific(WNP) in spring, and the interannual variation of its intensity. Convective QBWO over the WNP and SCS shows both similarities and differences. Convective QBWO over the WNP originates mainly from southeast of the Philippine Sea and propagates northwestward. In contrast, convective QBWO over the SCS can be traced mainly to east of the Philippines and features a westward propagation. Such a westward or northwestward propagation is probably related to n = 1 equatorial Rossby waves. During the evolution of convective QBWO over the WNP and SCS, the vertical motion and specific humidity exhibit a barotropic structure and the vertical relative vorticity shows a baroclinic structure in the troposphere. The dominant mode of interannual variation of convective QBWO intensity over the SCS–WNP region in spring is homogeneous. Its positive phase indicates enhanced convective QBWO intensity accompanied by local enhanced QBWO intensity of vertical motion throughout the troposphere as well as local enhanced(weakened) QBWO intensity of kinetic energy, vertical relative vorticity,and wind in the lower(upper) troposphere. The positive phase usually results from local increases of the background moisture and anomalous vertical shear of easterlies. The latter contributes to the relationship between the dominant mode and QBWO intensities of kinetic energy, vertical relative vorticity, and wind. Finally, a connection between the dominant mode and the sea surface temperature anomalies in the tropical Pacific Ocean is demonstrated.  相似文献   

19.
强沙尘暴天气形成机制个例分析   总被引:5,自引:0,他引:5  
从气候背景、天气形势、地形作用、沙尘形成热力和动力学机制等方面,分别对2005年4月19、20日两天发生在冀南地区的扬沙、沙尘暴天气进行分析。结果表明:对流层低层横切变线和华北地形槽的存在使冀南地区沙尘天气加剧;沙尘发生前冀南弱辐合上升运动和上冷下暖的不稳定垂直结构可以迫使当地沙尘向空中扬起,上游地区较强的上升运动将当地的沙尘垂直输送到空中,在高空强西北气流的引导下将沙尘水平输送到下游地区;沙尘天气发生在上游地区对流层螺旋度最大正值区的下游,对流层螺旋度大小对沙尘暴预报有一定的指示意义。  相似文献   

20.
Acoustic sounder and tower data obtained at the Boulder Atmospheric Observatory (BAO) are used to examine several features of the wave and turbulence structure associated with a disturbed nocturnal inversion. General features, including mean fields and Richardson number, for the case selected for this study are presented. Spectral analysis of the tower data reveals a separation of energy into wavelike and turbulent fluctuations. Analysis of the heat flux, however, shows upward counter-gradient fluxes in the vicinity of a low-level jet and near the top of the inversion. Cospectral analysis shows that the major contribution to the upward heat flux occurs at frequencies that would normally be considered characteristic of waves. In some cases, the upward flux is associated with a phase shift between vertical velocity w and fluctuating temperature θ different from the quadrature relation that would be expected of internal waves. Time series analysis reveals that these unexpected positive fluxes occur in relatively short bursts. Analysis of time series of θ and w in other cases, as well as inspection of acoustic sounder records, shows that sometimes such upward fluxes can result from a combination of wave motion and horizontal temperature advection. In this case the advection is associated with a shallow cold front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号