首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Based on the existing land-surface schemes and models,an improved Land-surface ProcessModel(LPM-ZD)has been developed.It has the following major characteristics:(1)Thecombination of physical equations and empirical analytical formulae are used to construct thegoverning equations of soil temperature and moisture.Higher resolution of model level andphysical equations are adopted for the upper soil layers,and for the lower soil layers,lowerresolution of model level is adopted and empirical analytical formulae are used.(2)In land surfacehydrological process,the sub-grid distribution of rainfall and its effects are taken into account.(3)A simple snow cover submodel has been used,which includes effects of snow cover on soilthermodynamics and hydrology,as well as albedo.By use of this model and three groups of point observation data,a series of“off-line”testshave been carried out.The simulation results indicate that land-surface process model has goodperformance and can well simulate diurnal and seasonal variation of land surface processes for manykinds of land surface covers(forest,grass,crops and desert)in different climate zone.The resultssimulated by the model are consistent with the observations.Later,by use of one group ofobservation data and the model,a series of sensitivity experiments have been done.It is shownthat the model is much sensitive to some parameters,such as initial soil moisture,vegetationphysical parameters as well as the proportion of the grid covered with rain.Therefore it is muchimportant for land-surface process model to define these parameters as accurately as possible.  相似文献   

2.
A new three-dimensional dynamics and electrification coupled model has been developed forinvestigating the characteristics of microphysics,dynamics and electrification insidethunderstorms.This model is basically modified from a three-dimensional,time-dependent,anddual-parameter cloud model originally established in IAP(Institute of Atmospheric Physics)and atwo-dimensional axisymmetric cloud dynamics and electrification coupled model.Primarymodifications to the model include not only the coupling of electrification with dynamical andmicrophysical processes,but also the lightning discharge process and screening layer effect at thecloud top as well.Apart from including a full treatment of small ions with attachment to sixclasses of hydrometeors,the inductive and non-inductive charging mechanisms are more specificallyconsidered.A case simulation of July 19.1981 CCOPE is performed aiming to validate thepotential capability of the model.Comparison between model results and observations reveals thatthe model has the capacity to reproduce many of the observed characteristics of thunderstorms indynamical,microphysical,and electrical aspects.  相似文献   

3.
In order to study mechanisms of hailstone formation and hail suppression with seeding and toobtain optimum seeding technique for hail cloud,a 3-D compressive numerical seeding model forhail cloud is developed.The water substance in hail cloud is divided into 8 categories,i.e.,watervapor,cloud droplet,raindrop,ice crystal,snow.graupel,frozen drop and hail,and the detailedmicrophysical processes are described in a spectrum with two variable parameters and morereasonable particle number/size distributions.Then,the model is able to predict concentration andwater content of various particles.Especially.it can calculate the number of hailstones whosecores are graupel or frozen drop and apply to study mechanism of hailstone formation.Additionally,a conservative equation of AgI as seeding or glacigenous agent is found andnucleation by condensation of artificial nucleus,and nucleation by freezing of cloud droplet or raindrop which contact with AgI particle are considered.The dynamic energy flux of hail shooting onground is used to verify seeding effect.Therefore the model is also used to study mechanism of hailsuppression with seeding and the seeding technique,  相似文献   

4.
Based on turbulence theory,a 1.5-order closure turbulence model is established.The model incorporating with theground surface energy budget equation is constructed by means of a vertical one-dimensional(1-D)40-levelgrid-mesh.The numerical results reveal the 24-h evolution of the clear planetary boundary layer comparing with theWangara boundary layer data of days 33—34.The model also takes into account some physical processes of radiativetransfer and baroclinicity,revealing some important characteristics observed in the boundary layer,especially for theevolution of the mixed layer and low-level jet.The calculated results are in good agreement with the observational data.On the other hand,we also run the high-resolution model of the planetary boundary layer in the Mesoscale Model Ver-sion 4(MM4)with the same physical processes and initial conditions.The results show that the high-resolution modelcan not reveal those important characteristics as the 1.5-order closure model did.In general,it is shown that the 1.5-or-der closure turbulence model based on turbulence theory is better in rationality and reality.  相似文献   

5.
Some typical samples are used to explore the quantitative correlation with their features between a convective cloud and its rainfall field,with which to develop two morphological functions for the correlation and by singling out their most suitable groups of parameters we propose a model for quantitatively estimating precipitation in the context of the in-advance recognition of meso-α convective system properties and its precipitating center.From the model fitting precision and forecasting accuracy we find that it is feasible to utilize geostationary meteorological satellite (GMS) digitalized imagery for estimating short-term rainfall in a quantitative manner.Also,evidence suggests that the model is supposed to be restricted in its applicability due to the fact that the employed samples are from rather typical rainfall events that are large-scale,slow-moving and have well-defined genesis and dissipative stages.  相似文献   

6.
A simple quasi-geostrophic barotropic vorticity equation model is used as the dynamic frame of themodel in this paper.Considering that there are many random errors in model's initial values of meteorolo-gical data,and that it is not perfectly complete about model's physical processes (for example,take no ac-count of the interaction between atmosphere and underlying surface,radiation,etc.),we add the random for-ced term to the model and use the Monte-Carlo method with random initial values.A statistical-dynamicintegrated model is thus built up,and a numerical forecasting experiment of 500hPa monthly mean height fieldof January 1983 has been carried out.The experiment result proves that the forecasting result of the model,considering random forcing and random initial values at the same time,is better than that by the pure dynamicmodel,the random initial value model and the random forced model.  相似文献   

7.
A comprehensive parameterized model of microphysical processes in cumulonimbus clouds is presented.The transformation rates of the water contents and number concentrations of the cloud droplets,rain drops,ice crystals,graupels and hails are deduced on theoretical and experimental results for 26 kinds of micro-physical processes,which include condensation,deposition,evaporation,collection,ice nucleation,ice mul-tiplication,melting,freezing,and autoconversions of cloud to rain,ice to graupel and graupel to hail.  相似文献   

8.
A filtering / extracting scheme for various timescale processes in short range climate model out-put is established by using the scale scattering method. And the climatological meanings as well as the importance of the filtered series are discussed. In the latter part of work, the effectiveness of the filtering method and the performance of the prediction model are analyzed through a real case.  相似文献   

9.
青藏高原上中尺度对流系统(MCS)的数值模拟   总被引:4,自引:0,他引:4  
A mesoscale convective system (MCS) developing over the Qinghai-Xizang Plateau on 26 July 1995 issimulated using the fifth version of the Penn State-NCAR nonhydrostatic mesoscale model (MM5). Theresults obtained are inspiring and are as follows. (1) The model simulates well the largescale conditionsin which the MCS concerned is embedded, which are the well-known anticyclonic Qinghai-Xizang PlateauHigh in the upper layers and the strong thermal forcing in the lower layers. In particular, the modelcaptures the meso-α scale cyclonic vortex associated with the MCS, which can be analyzed in the 500 hPaobservational winds; and to some degree, the model reproduces even its meso-β scale substructure similarto satellite images, reflected in the model-simulated 400 hPa rainwater. On the other hand, there aresome distinct deficiencies in the simulation; for example, the simulated MCS occurs with a lag of 3 hoursand a westward deviation of 3-5° longitude. (2) The structure and evolution of the meso-α scale vortexassociated with the MCS are undescribable for upper-air sounding data. The vortex is confined to thelower troposphere under 450 hPa over the plateau and shrinks its extent with height, with a diameter of4° longitude at 500 hPa. It is within the updraft area, but with an upper-level anticyclone and downdraftover it. The vortex originates over the plateau, and does not form until the mature stage of the MCS. Itlasts for 3-6 hours. In its processes of both formation and decay, the change in geopotential height fieldis prior to that in the wind field. It follows that the vortex is closely associated with the thermal effectsover the plateau. (3) A series of sensitivity experiments are conducted to investigate the impact of varioussurface thermal forcings and other physical processes on the MCS over the plateau. The results indicatethat under the background conditions of the upper-level Qinghai-Xizang High, the MCS involved is mainlydominated by the low-level thermal forcing. The simulation described here is a good indication that itmay be possible to reproduce the MCS over the plateau under certain large-scale conditions and with theincorporation of proper thermal physics in the lower layers.  相似文献   

10.
A NUMERICAL MODEL OF MIXED CONVECTIVESTRATIFORM CLOUD   总被引:1,自引:0,他引:1  
A 2-D slab-symmetric model of mixed convective-stratiform cloud is developed bysuperimposing convective cloud-size field on the convergence field,in order to simulate and studythe mixed clouds consisting of stratiform cloud and convective cloud.A deep convective,anelasticand conservative system of equations with basic variables(V,θ,π')is solved by a new method tocalculate dynamic field.The water substance in the cloud is divided into 6 categories and themicrophysical processes are described in spectrum with two variable parameters and morereasonable particle number/size distributions.To compare with measured radar echo intensity andstructure,the model may calculate echo intensity of the model cloud observed by radar.  相似文献   

11.
A three-dimensional ocean carbon cycle model which is a general circulation model coupledwith simple biogeochemical processes is used to simulate CO_2 uptake by the ocean.The OGCMused is a modified version of the Geophysical Fluid Dynamics Laboratory modular ocean model(MOM2).The ocean chemistry and a simple ocean biota model are included.Principal variablesare total CO_2,alkalinity and phosphate.The vertical profile of POC flux observed by sedimenttraps is adopted,the rain ratio,a ratio of production rate of calcite against that of POC,and thebio-production efficiency should be 0.06 and 2 per year,separately.The uptake of anthropogenicCO_2 by the ocean is studied.Calculated oceanic uptake of anthropogenic CO_2 during the 1980s is2.05×10~(15)g(Pg)per year.The regional distributions of global oceanic CO_2 are discussed.  相似文献   

12.
A one-dimensional cumulus cloud chemistry model(1CCCM)is developed to simulate cloudphysical processes and chemical processes during the evolution of a convective cloud.The cloudphysical submodel includes a detailed microphysical parameterized scheme of 20 processes.Thechemistry submodel is composed of three parts:gas phase chemistry,aqueous phase chemistry andscavenging of soluble gases.The gas phase reaction mechanism contains 85 reactions among 45species including 13 organics.The aqueous phase reaction mechanism contains 54 reactions among40 species and 12 ion equilibria.Mass of 19 gases is transported between the gas phase and theaqueous phase.With this model,studies may be made to analyze the interactions among processesduring lifetime of a cumulus cloud.  相似文献   

13.
A new tropical limited-area numerical model system developed in recent years is described in detail,which includes model formulation, physical processes and data initialization. Results of the application in numerical forecast from 1993 to 1995 are presented. In the forecast of typhoon, the new system shows a distinct improvement over a previous one.  相似文献   

14.
A three-dimensional elastic nonhydrostatic mesoscale(β-γ)model with nested-grid is presented.It uses a set of fullequations in terrain-following coordinates as its basic dynamic frame,which is solved with a time-splitting algorithmfor acoustic and gravity waves.The model physical parameterization includes a K-theory subgrid eddy mixing for cloudand free atmosphere,a bulk planetary boundary layer parameterization,and three types of sofisticated cloudmicrophysics schemes with double-parameters for hail-bearing clouds,warm clouds and snowing clouds respectively.The model is designed to be used flexibly for simulations of a variety of meso-and small-scale atmospheric processes,and can be improved as a regional and local operational NWP system in future.  相似文献   

15.
A three-dimensional elastic nonhydrostatic mesoscale(β-γ) model with nested-grid is presented.It uses a set of full equations in terrain-following coordinates as its basic dynamic frame,which is solved with a time-splitting algorithm for acoustic and gravity waves.The model physical parameterization includes a K-theory subgrid eddy mixing for cloud and free atmosphere,a bulk planetary boundary layer parameterization,and three types of sofisticated cloud microphysics schemes with double-parameters for hail-bearing clouds,warm clouds and snowing clouds respectively.The model is designed to be used flexibly for simulations of a variety of meso-and small-scale atmospheric processes,and can be improved as a regional and local operational NWP system in future.  相似文献   

16.
A puff model is developed in this study, which simultaneously considers the Monte-Carlo technique, the time and space changes of atmospheric parameters, multiple continuity pollutant sources, linear chemical transformation and removal of pollutants, and the effect of complex terrain. The continuously observed turbulent statistical quantities, Lagrangian time scales, mesoscale flow field, and mixing layer depth in the PBL in the Dian-chi area in China are directly put into the model, and the diurnal variations of air pollution are forecasted, which arc dominated by such mesoscale local circulations as mountain and valley breeze, land and lake breeze, and city heat island (Kunming City) . The results show that in the case of inputting the same data, they are in good agreement with the experimental data, as well as with the results of the three-dimensional advection-diffusion model (TD-ADM); the diurnal variation of mesoscale local circulation results in the obvious diurnal variation of mesoscale concentra  相似文献   

17.
An improved scheme of spectral model has been investigated in this paper. Through the introduction of a reference atmosphere, prognostic variables become smoother on the tilted sigma-surface over mountains or a frontal zone, and thus truncation errors are reduced. As a result, the problems about Gibbs waves and negative value of model topography on the sea, which are encountered in the current spectral model in the world, can be solved by the improved scheme. For comparison we have performed the numerical integrations of barotropic and baroclinic Rossby-Haurwitz waves, as well as the prediction of real cases with the improved scheme and the current scheme of spectral model. These results show that the scheme presented in the paper is better than the current scheme of spectral model.  相似文献   

18.
In nested nonhydrostatic mesoscale model MM5,the characteristic quantities of atmosphericturbulence,i.e.,the standard deviations of the turbulent fluctuated speeds for three directions inPBL are computed by Mellor-Yamada's level 2.5 closure scheme.The magnitudes and the verticalprofiles of these quantities computed from the model are closely connected with temperature andwind speed profiles as well as the type of the ground with a significant diurnal variation,and are inagreement with known magnitudes and regularities in different stratification conditions.Hence themethod in this paper is reasonable and convincible.Their horizontal distribution depends on thehorizontal distribution of the stratification.The method of predicted characteristic quantities ofturbulence from mesoscale model in this paper can be used in the problem of atmospheric diffusionand atmospheric environment.  相似文献   

19.
In this atmosphere-ocean-land coupled model, two basic ideas are developed, One is that the observational climate field is utilized and only the anomalous components are predicted. The other is that the transient Rossby wave is treated as the meteorological "noise" on the long-term variation that must be predicted in a climate forecasting. According to the latter, the transient Rossby wave can be filtered by omitting the partial derivative with respect to time in the atmospheric vorticity equation. But the time derivative term is still kept in the thermal equation for underlying ocean and land. With this assumption, the vorticity equation becomes time-independent, i.e. it is only a balance relationship between the anomaly geopotential height field and earth's surface heating field. This model is different from the usual GCM, so it may be called as the filtered anomaly model (FAM).A dozen examples of one month prediction are summarized in this report.  相似文献   

20.
Super Typhoon Haiyan was the most notable typhoon in 2013. In this study, results from the operational prediction of Haiyan by a tropical regional typhoon model for the South China Sea are analyzed. It is shown that the model has successfully reproduced Haiyan’s rapid passage through the Philippines and its northward deflection after its second landfall in Vietnam. However, the predicted intensity of Haiyan is weaker than the observed. An analysis of higher-resolution model simulations indicates that the storm is characterized by an upper-level warm core during its mature stage and a deep layer of easterly flow. Sensitivity experiments are conducted to study the impact of certain physical processes such as the interaction between stratus and cumulus clouds on the improvement of the typhoon intensity forecast. It is found that appropriate boundary layer and cumulus convective parameterizations, and orographic gravity-wave parameterization, as well as improved initial conditions and increased horizontal grid resolution, all help to improve the intensity forecast of Haiyan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号