首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 569 毫秒
1.
Ozone chemistry processes are analyzed during a cumulus cloud process with the model(1CCCM)described in Part Ⅰ.The simulation results show that entire cumulus cloud process can bewell described with the development of vertical velocities and liquid water content which are the twomost outstanding features of cumulus clouds.Ozone chemistry is strongly influenced by cumulusclouds.NO_x can be transported upwards above 4 km in the first 20 minutes of the convection eventand form a relative higher concentration area which enhances the production of ozone.Two areas ap-pear during the convection event:area of net ozone production and area of net ozone depletion.Thearea of ozone depletion coincides with the area of liquid water within cloud.Results show that theaqueous phase(cloud water and rainwater)can alter gas ozone level through two ways:one is scav-enging free radicals(HO_2)from the gas phase and thereby inhibiting the reactions of transformationto NO_2 from NO,which results in reduction of the gas source of ozone;the other is aqueous phasechemical reactions which consume ozone in the aqueous phase.Calculations reveal that the reaction O_3+OH→HO_2 is the main pathway of ozone depletion in gas phase during the process of cumulusclouds.  相似文献   

2.
A one-dimensional cumulus cloud chemistry model(1CCCM)is developed to simulate cloudphysical processes and chemical processes during the evolution of a convective cloud.The cloudphysical submodel includes a detailed microphysical parameterized scheme of 20 processes.Thechemistry submodel is composed of three parts:gas phase chemistry,aqueous phase chemistry andscavenging of soluble gases.The gas phase reaction mechanism contains 85 reactions among 45species including 13 organics.The aqueous phase reaction mechanism contains 54 reactions among40 species and 12 ion equilibria.Mass of 19 gases is transported between the gas phase and theaqueous phase.With this model,studies may be made to analyze the interactions among processesduring lifetime of a cumulus cloud.  相似文献   

3.
Based on the two-dimensional slab-symmetric model of cumulus clouds established by the authors,thedevelopment of the cumulus cloud and its precipitation in environments with and without the stratiform cloudpresent has been simulated numerically in almost the same atmospheric stratification.Results show that thepresence of the stratiform cloud has a significant effect on the development of the cumulus cloud and theincreae of its precipitation.The rainfall may increase by scveral to tens of times.It is believed that theconvective-stratiform mixed cloud system may be important for producing heavy to torrential rain.This isin good agreement with what has been observed in the Meiyu frontal cloud system in recent investigations  相似文献   

4.
The diagnostic model of the cumulus convection proposed by Yanai et al. (1973) was applied to the atmosphere over the Tibetan Plateau, and used to estimate the vertical mass flux, entrainment and detrainment, excess temperature and moisture, liquid water content, and condensation and precipitation rates of highland cloud clusters. The re-sults illustrated that in clouds over the Tibetan Plateau, the water vapor condensation rate, liquid water content, and efficiency of the rain generation process are less than those in the tropics (represented by the Marshall Islands region). Therefore, the condensational latent heat released over the Tibetan Plateau, overall, is much smaller than that in the tropics. The water vapor and liquid water detrainment from shallow nonprecipitating cumulus clouds, and their entrainment into deep cumulus clouds, serve as a growing mechanism for the deep precipitating cumulus towers over the Tibetan Plateau. It should be noted that there is a stronger detrainment of liquid water from cumulus clouds and a stronger re-evaporation rate in environment. The process of the condensation-detrainment-re-evaporation-entrainment is repeatedly in progress. It would play an important role in maintaining of cumulus convection on the condition that the supply of moisture is not plentiful over the Tibetan Plateau.The analyses also showed that the cloud mass flux Mc over the Tibetan Plateau is less, and the large-scale av-erage upward motion is much less than those over the Marshall Islands. Stronger compensating downward motion in the cloud environment over the Tibetan Plateau, responsible for the area’s strong environmental heating rate was re-vealed, and would link to the stability of the South Asian High in summer.  相似文献   

5.
The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud mod-el were compared with the aircraft cloud physical observations collected during the summer monsoon seasons of 1973,1974,1976 and 1981 in the Deccan Plateau region.The model predicted profiles of cloud liquid water content (LWC) are in agreement with the observed profiles. There is reasonable agreement between the model predicted cloud vertical thickness and observed rainfall.The observed cloud-drop spectra were found to be narrow and the concentration of drops with diameter >20μm is either low or absent on many occasions. In such clouds the rain-formation cannot take place under natural atmos-pheric conditions due to the absence of collision-coalescence process. A comparison of the model predicted and ob-served rainfall suggested that the precipitation efficiency in cumulus clouds of small vertical thickness could be as low as 20 per cent.The clouds forming in the Deccan Plateau region during the summer monsoon are, by and large, cumulus and strato-cumulus type. The vertical thickness of the cumulus clouds is in the range of 1.0-2.0 km. The LWC is found to be more in the region between 1.6-1.9 km A. S. L., which corresponds to the level at almost 3 / 4 th of the total verti-cal thickness of the cloud and thereafter the LWC sharply decreased. Nearly 98 per cent of the tops of the low clouds in the region are below freezing level and the most frequent range of occurrence of these cloud-tops is in the range of 2.0-3.0 km A. S. L.. The dominant physical mechanism of rain-formation in these summer monsoon clouds it the col-lision-coalescence process.  相似文献   

6.
Some Characteristics of Cumulus Convection over the Tibetan Plateau   总被引:1,自引:0,他引:1  
The diagnostic model of the cumulus convection proposed by Yanai et al. (1973) was applied to the atmosphere over the Tibetan Plateau, and used to estimate the vertical mass flux, entrainment and detrainment, excess temperature and moisture, liquid water content, and condensation and precipitation rates of highland cloud clusters. The results illustrated that in clouds over the Tibetan Plateau, the water vapor condensation rate, liquid water content, and efficiency of the rain generation process are less than those in the tropics (represented by the Marshall Islands region). Therefore, the condensational latent heat released over the Tibetan Plateau, overall, is much smaller than that in the tropics. The water vapor and liquid water detrainment from shallow nonprecipitating cumulus clouds, and their entrainment into deep cumulus clouds, serve as a growing mechanism for the deep precipitating cumulus towers over the Tibetan Plateau. It should be noted that there is a stronger detrainment of liquid water  相似文献   

7.
In this paper, a 1-D time dependent cold cumulus chemistry model is presented. In the coldcumulus model, 4 categories of hydrometeors: cloud drops, raindrops, cloud ice crystals, graupelparticles, and 18 microphysical interactions are considered, In the chemical model, the source andsink terms for pollutants include: the complicated interactions between pollutants (gases andaerosol particles) and the hydrometeors (especially ice crystals and graupel particles), the ex-changes of chemical compounds between two hydrometeors accompanying microphysical processesand the aqueous oxidations of S (IV) to S (VI). The two models are combined to study the acidifi-cation processes in cold cumulus clouds.  相似文献   

8.
The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud model were compared with the aircraft cloud physical observations collected during the summer monsoon seasons of 1973, 1974, 1976 and 1981 in the Deccan Plateau region.The model predicted profiles of cloud liquid water content (LWC) are in agreement with the observed profiles. There is reasonable agreement between the model predicted cloud vertical thickness and observed rainfall.The observed cloud-drop spectra were found to be narrow and the concentration of drops with diameter > 20um is either low or absent on many occasions. In such clouds the rain-formation cannot take place under natural atmospheric conditions due to the absence of collision-coalescence process. A comparison of the model predicted and observed rainfall suggested that the precipitation efficiency in cumulus clouds of small vertical thickness could be as low as 20 per cent.The clouds forming in the Deccan Plateau region during t  相似文献   

9.
The cloud phase composition of cold clouds in the Antarctic atmosphere is explored using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instruments for the period 2000--2006. We used the averaged fraction of liquid-phase clouds out of the total cloud amount at the cloud tops since the value is comparable in the two measurements. MODIS data for the winter months (June, July, and August) reveal liquid cloud fraction out of the total cloud amount significantly decreases with decreasing cloud-top temperature below 0oC. In addition, the CALIOP vertical profiles show that below the ice clouds, low-lying liquid clouds are distributed over ~20% of the area. With increasing latitude, the liquid cloud fraction decreases as a function of the local temperature. The MODIS-observed relation between the cloud-top liquid fraction and cloud-top temperature is then applied to evaluate the cloud phase parameterization in climate models, in which condensed cloud water is repartitioned between liquid water and ice on the basis of the grid point temperature. It is found that models assuming overly high cut-offs (》-40oC) for the separation of ice clouds from mixed-phase clouds may significantly underestimate the liquid cloud fraction in the winter Antarctic atmosphere. Correction of the bias in the liquid cloud fraction would serve to reduce the large uncertainty in cloud radiative effects.  相似文献   

10.
A NUMERICAL MODEL OF MIXED CONVECTIVESTRATIFORM CLOUD   总被引:1,自引:0,他引:1  
A 2-D slab-symmetric model of mixed convective-stratiform cloud is developed bysuperimposing convective cloud-size field on the convergence field,in order to simulate and studythe mixed clouds consisting of stratiform cloud and convective cloud.A deep convective,anelasticand conservative system of equations with basic variables(V,θ,π')is solved by a new method tocalculate dynamic field.The water substance in the cloud is divided into 6 categories and themicrophysical processes are described in spectrum with two variable parameters and morereasonable particle number/size distributions.To compare with measured radar echo intensity andstructure,the model may calculate echo intensity of the model cloud observed by radar.  相似文献   

11.
Typhoon-induced heavy rains are mostly studied from the viewpoint of upper-level westerly troughs. It is worthwhile to probe into a case where the rain is caused by tropical cyclone system, which is much heavier. During August 3 ~ 5, 1996, an unusually heavy rainstorm happened in the southwest of Hebei province. It was caused by 3 mesoscale convective cloud clusters on the periphery of a tropical cyclone other than the direct effects of a westerly trough. Generating in a weak baroclinic environment that is unstable with high energy, the cloud clusters were triggered off for development by unstable ageostrophic gravity waves in the low-level southeast jet stream on the periphery of the typhoon. There was a vertical circulation cell with horizontal scale close to 1000 km between the rainstorm area and westerly trough in northeast China. As shown in a computation of the Q vector of frontogenesis function, the circulation cell forms a mechanism of transforming energy between the area of interest and the westerly trough system farther away in northeast China. Study of water vapor chart indicates that high-latitude troughs in the northeast portion of the rain migrate to the southeast to enhance anti-cyclonic divergence in upper-level convection over the area of heavy rain and cause rain clusters, short-lived otherwise, to develop vigorously. It is acting as an amplifier in this case of unusually strong process of rain.  相似文献   

12.
In order to improve our understanding of microphysical properties of clouds and precipitation over the Tibetan Plateau (TP), six cloud and precipitation processes with different intensities during the Third Tibetan Plateau Atmospheric Science Experiment (TIPEX-Ⅲ) from 3 July to 25 July 2014 in Naqu region of the TP are investigated by using the high-resolution mesoscale Weather Research and Forecasting (WRF) model. The results show unique properties of summertime clouds and precipitation processes over the TP. The initiation process of clouds is closely associated with strong solar radiative heating in the daytime, and summertime clouds and precipitation show an obvious diurnal variation. Generally, convective clouds would transform into stratiform clouds with an obvious bright band and often produce strong rainfall in midnight. The maximum cloud top can reach more than 15 km above sea level and the velocity of updraft ranges from 10 to 40 m s-1. The simulations show high amount of supercooled water content primarily located between 0 and -20℃ layer in all the six cases. Ice crystals mainly form above the level of -20℃ and even appear above the level of -40℃ within strong convective clouds. Rainwater mostly appears below the melting layer, indicating that its formation mainly depends on the melting process of precipitable ice particles. Snow and graupel particles have the characteristics of high content and deep vertical distribution, showing that the ice phase process is very active in the development of clouds and precipitation. The conversion and formation of hydrometeors and precipitation over the plateau exhibit obvious characteristics. Surface precipitation is mainly formed by the melting of graupel particles. Although the warm cloud microphysical process has less direct contribution to the formation of surface precipitation, it is important for the formation of supercooled raindrops, which are essential for the formation of graupel embryos through heterogeneous freezing process. The growth of graupel particles mainly relies on the riming process with supercooled cloud water and aggregation of snow particles.  相似文献   

13.
By comparison of simulated cumulus convection processes in RegCM2,using the Kuo scheme,the Grell scheme and the mass flux scheme (MFS),it is found that the MFS can simulate thecumulus heating and moistening very well.A series of sensitivity tests show that the parametersfor specifying the conversion coefficient from cloud droplets to raindrops,the turbulententrainment and detrainment rates in updrafts anddowndrafts,and the intensity of thedowndraftshave different degrees of influence upon the cumulus convection.Therefore.it is quite importantfor cumulus parameterization scheme to define these parameters as accurately as possible.  相似文献   

14.
15.
The vertical motions and secondary circulation of an explosively deepening oceanic cyclone,which oc-curred over the Northwest Pacific Ocean and was in conjunction with 200 hPa-level jet stream and hascentral pressure falls of 33.9 hPa/24h,have been computed from seven-level nonlinear balance model and Saw-yer-Eliassen-Shapiro equation for the transverse ageostrophic circulation.The vertical motions are partitionedinto contributions from large-scale latent heat release,effect of cumulus heating,thermal advection,differen-tial vorticity advection,etc.,while the secondary circulation stream function is partitioned into contributionsfrom geostrophic deformation,transfer of momentum and heat in the area of cumulus and diabatic heating.The principal results are the following.Large-scale latent heat release is very crucial to the explosive de-velopment of cyclones.If there is enough transfer of moisture,the positive feedback process between ascentof air and large-scale heating would work.The cumulus heating and the transfer of momentum and heatin the area of cumulus play an important role during the explosively deepening stage.Thermal advection isthe initial triggering condition for large-scale heating and the conditional instability for the convection ofcumulus.  相似文献   

16.
There are ten channels in the FY-1C polar-orbiting meteorological satellite of China.Thesechannels cover visible,near-infrared and infrared spectral bands.Based on simulating analysis ofsingle layer and multilayer clouds that cirrus clouds possibly overlap low water clouds,the casestudy using FY-1C data is performed.Results show that FY-1C data can be used to analyzemultilayer clouds,especially for the ease of low water cloud overlaid by cirrus.  相似文献   

17.
By utilizing the denser upper-air observations from the Okinawa region and Japanese islands during August 17-23, 1975, the vertical transports of heat and moisture by cumulus convection in the typhoon No. 7507 have been calculated. It is found that there exist a large apparent heat source (Q1) and a moisture sink (Q2) in the southern part of the typhoon at the disturbance, growing and mature stages. The magnitudes of the apparent heat source and moisture sink are rather small, or turn into the apparent heat sink in the northern sector of the typhoon. In the southern part of the typhoon, the total cloud mass flux (Mc) is positive, whereas in the northern part of the typhoon Mc is negative. The above-mentioned distributions of Q1, Q2 and Mc agree well with the major cloud patterns.In the southern part of the typhoon, Q2 is positive because the drying effect is always larger than the evaporative cooling, whereas in the northern part of the typhoon, the opposite case is true because both the drying and evap  相似文献   

18.
Aircraft observations of electrical conductivity and cloud microphsical, dynamical and other electrical parameters were made in warm stratocumulus and cumulus clouds forming during the summer monsoon seasons (June-September) of 1983 and 1985 in the Deccan Plateau region, India. A Gerdien type cylindrical condenser was used for the measurement of electrical conductivity. The variations in the electrical conductivity are observed to be closely associated with the updrafts and downdrafts in the cloud, liquid water content, cloud droplet charge and corona discharge current. The value of electrical conductivity in warm clouds is found to be in the order of 10-12 ohm-1 m-1 which is two orders higher than that observed in clear-air at cloud-base levels in some regions by other investigators.Classical static electricity concepts predict reduced conductivity values inside clouds. Cloud electrical conductivity measurements, particularly in warm clouds are few and the results are contradictory. The recently identi  相似文献   

19.
The cloud processes of a simulated moderate snowfall event in North China   总被引:1,自引:0,他引:1  
The understanding of the cloud processes of snowfall is essential to the artificial enhancement of snow and the numerical simulation of snowfall. The mesoscale model MM5 is used to simulate a moderate snowfall event in North China that occurred during 20–21 December 2002. Thirteen experiments are performed to test the sensitivity of the simulation to the cloud physics with different cumulus parameterization schemes and different options for the Goddard cloud microphysics parameterization schemes. It is shown that the cumulus parameterization scheme has little to do with the simulation result. The results also show that there are only four classes of water substances, namely the cloud water, cloud ice, snow, and vapor, in the simulation of the moderate snowfall event. The analysis of the cloud microphysics budgets in the explicit experiment shows that the condensation of supersaturated vapor, the depositional growth of cloud ice, the initiation of cloud ice, the accretion of cloud ice by snow, the accretion of cloud water by snow, the deposition growth of snow, and the Bergeron process of cloud ice are the dominant cloud microphysical processes in the simulation. The accretion of cloud water by snow and the deposition growth of the snow are equally important in the development of the snow.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号