首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed sedimentological investigations were performed on sediments from DSDP-Site 594 (Chatham Rise, east of New Zealand) in order to reconstruct the evolution of paleoclimate and paleoceanographic conditions in the Southwest Pacific during the last 6 million years. The results can be summarized as follows:
  1. High accumulation rates of biogenic opal and carbonate and the dominance of smectites in the clay fraction suggest increased oceanic productivity and an equable dominantly humid climate during the late Miocene.
  2. During Pliocene times, decreasing contents of smectites and increasing feldspar/quartz ratios point to an aridification in the source area of the terrigenous sediments, culmunating near 2.5 Ma. At that time, accumulation rates of terrigenous components distinctly increased probably caused by increased sediment supply due to intensified atmospheric and oceanic circulation, lowered sea level, and decreased vegetation cover.
  3. A hiatus (1.45 to 0.73 Ma) suggests intensified intermediate-water circulation.
  4. Major glacial/interglacial cycles characterize the upper 0.73 Ma. During glacial times, oceanic productivity and terrigenous sediment supply was distinctly increased because of intensified atmospheric and oceanic circulations and lowered sea level, whereas during interglacials productivity and terrigenous sediment supply were reduced.
  5. An increased content of amphibols in the sediments of Site 594 indicates increased volcanic activities during the last 4.25 Ma.
  相似文献   

2.
Variations in deposition of terrigenous fine sediments and their grain-size distributions from a high-resolution marine sediment record offshore northwest Africa (30°51.0′N; 10°16.1′W) document climate changes on the African continent during the Holocene. End-member grain-size distributions of the terrigenous silt fraction, which are related to fluvial and aeolian dust transport, indicate millennial-scale variability in the dominant transport processes at the investigation site off northwest Africa as well as recurring periods of dry conditions in northwest Africa during the Holocene. The terrigenous record from the subtropical North Atlantic reflects generally humid conditions before the Younger Dryas, during the early to mid-Holocene, as well as after 1.3 kyr BP. By contrast, continental runoff was reduced and arid conditions were prevalent at the beginning of the Younger Dryas and during the mid- and late Holocene. A comparison with high- and low-latitude Holocene climate records reveals a strong link between northwest African climate and Northern Hemisphere atmospheric circulation throughout the Holocene. Due to its proximal position, close to an ephemeral river system draining the Atlas Mountains as well as the adjacent Saharan desert, this detailed marine sediment record, which has a temporal resolution between 15 and 120 years, is ideally suited to enhance our understanding of ocean-continent-atmosphere interactions in African climates and the hydrological cycle of northern Africa after the last deglaciation.  相似文献   

3.
Accumulation rates and chemical compositions have been obtained for pelagic sediments for 73 locations in the Pacific and for 11 in the Indian Ocean. The data for the Pacific show that many elements accumulate rapidly close to the continents and slowly in the central part of the ocean. This pattern is interrupted by two major zones of relatively high accumulation rates, one along the Equator and one along the East Pacific Rise. Deposition of opaline silica is almost completely restricted to areas of known high biological productivities at the Equator and at very high latitudes. Cu and Ni show stronger tendencies than Fe and Mn to precipitate with opaline silica. The highest accumulation rates of Fe and Mn in the open Pacific occur along the East Pacific Rise, to some extent also Cu and Ni are enriched there due to volcanic processes. Al and Ti show high accumulation rates only close to the continents; these elements appear to be almost completely terrigenous.Provenance studies of minerogen fractions, using the relations between Fe, Ti, Al and Mn, show that significant quantities of basaltic matter (oceanic crust) are incorporated into the sediments only in areas of very low total sedimentation rates in the vicinity of oceanic island groups such as Polynesia and Hawaii, whereas hydrothermal processes act as a major sediment source only on the East Pacific Rise. Sediments in the north as well as in the southernmost part of the Pacific are nearly entirely terrigenous. A balance estimate of the minerogen fraction of the deep-sea sediments from the open Pacific suggests that between 75 and 95% of all sediments in the Pacific are terrigenous and that submarine weathering (and release of basaltic debris in general) and submarine exhalations each account for only a small fraction of the sediments.  相似文献   

4.
Stable isotopes, geochemical, lithological, and micropaleontological results from cores from the far northwest (FNW) Pacific and the Okhotsk and Bering seas are used to reconstruct the regional environment for the last glaciation, the deglacial transition, and the Holocene. δ18O records of planktonic foraminifera of the region show two “light” shifts during deglacial time, provoked by the freshening of the surface water and climate warming. These north Pacific terminal events (T1ANP and T1BNP) with ages of 12,500 and 9300 yr B.P., respectively, occur almost simultaneously with two episodes of accelerated glacier melting around the North Atlantic. Along with the isotopic shifts, the CaCO3content in regional sediments increased abruptly (1A and 1B carbonate peaks), probably due to changes of productivity and pore water chemistry of surface sediments. Organic matter and opal concentration increased during the transition (between T1ANP and T1BNP events) in the sediments of the FNW Pacific and the southern part of the Bering Sea and opal content increased in the Holocene in the Bering and Okhotsk Seas. δ13C records of cores from the Okhotsk and Bering seas and the FNW Pacific do not contradict the hypothesis of increased intermediate water formation in the region during glaciation. During deglaciation, accumulation of the coarse terrigenous component decreased in sediments of the Bering Sea and the FNW Pacific before the T1ANP event, probably as a result of rising sea level and opening of the Bering Strait.  相似文献   

5.
Cyclic diterpenoid compounds have been found by various investigators in the geosphere (e.g. fossil resins, coals, soil, shale and deep-sea sediments). These compounds occur in significant amounts only in higher plants and are therefore potential markers of terrigenous plant lipids.Diterpenoids with the abietane skeleton (mainly dehydroabietic acid) have been identified in the lipids of sediment samples from the northeast Pacific Ocean, Black Sea and North Atlantic Ocean. The presence of these resin-derived compounds correlated with the terrigenous clay components and with the presence of pollen. The presence of polycyclic diterpenoids was also correlated with the distribution patterns and inferred sources of other sediment lipid constituents (e.g. n-alkanes, n-fatty acids, etc.).Potamic transport, followed by turbidite redistribution are the probable input mechanisms of these resin-derived compounds to the deep-sea sediments. These diterpenoids appear to be excellent biological markers of resinous higher plants.  相似文献   

6.
A comparative analysis of Pleistocene pelagic sedimentation in the Pacific, Indian, and Atlantic oceans revealed the predominance of terrigenous sediments, while carbonate and siliceous sediments are second and third in abundance. During Pleistocene, the mass of terrigenous and siliceous sediments increased, while that of carbonates slightly decreased. The latter is related to the fact that the bottom waters aggressive to carbonates became increasingly generated at high latitudes, thus exceeding an increase in the productivity of plankton carbonate organisms. The peculiarities of accumulation of the main types of bottom sediments in the Pleistocene are considered. It is concluded that the Pleistocene geological history of continents, especially neotectonic uplift and continental glaciations, played an important role in pelagic sedimentation.  相似文献   

7.
Remobilization of authigenic uranium in marine sediments by bioturbation   总被引:1,自引:0,他引:1  
Uranium behaves as a nearly conservative element in oxygenated seawater, but it is precipitated under chemically reducing conditions that occur in sediments underlying low-oxygen bottom water or in sediments receiving high fluxes of particulate organic carbon. Sites characterized by a range of bottom-water oxygen (BWO) and organic carbon flux (OCF) were studied to better understand the conditions that determine formation and preservation of authigenic U in marine sediments. Our study areas are located in the mid latitudes of the northeast Pacific and the northwest Atlantic Oceans, and all sites receive moderate (0.5 g/cm2 kyr) to high (2.8 g/cm2 kyr) OCF to the sediments. BWO concentrations vary substantially among the sites, ranging from <3 to ∼270 μM. A mass balance approach was used to evaluate authigenic U remobilization at each site. Within each region studied, the supply of particulate nonlithogenic U associated with sinking particles was evaluated by means of sediment traps. The diffusive flux of U into sediments was calculated from pore-water U concentration profiles. These combined sources were compared with the burial rate of authigenic U to assess the efficiency of its preservation. A large fraction (one-third to two-thirds) of the authigenic U precipitated in these sediments via diffusion supply is later regenerated, even under very low BWO concentrations (∼15 μM). Bioturbating organisms periodically mix authigenic U-containing sediment upward toward the sediment-water interface, where more oxidizing conditions lead to the remobilization of authigenic U and its loss to bottom waters.  相似文献   

8.
Using the methodology of A.B. Ronov, we compiled lithofacies maps for the Early and Middle-Late Pleistocene pelagic sedimentation of the Pacific Ocean, accounting for sediment thicknesses. We calculated areas, volumes, masses, and accumulation rates of main sediment types for both Pleistocene subdivisions. A comparison of the results confirmed a strong increase in the rates of terrigenous and biogenic sedimentation. Special emphasis was laid on intensification of sea-ice and eolian sedimentation for the terrigenous types of sediments and on the evolution of siliceous and carbonate sedimentation for the biogenic types of sediments.  相似文献   

9.
Models of atmospheric circulation in the North Atlantic sector during glacial inception can be expanded to a hemispheric scale with the aid of diagnostic studies of the present climate. The present “Greenland Above” (GA) atmospheric circulation type may be a candidate for the atmospheric circulation type required during glacial inception. The pattern is an amplification, with only minor phase shifts, of the present average winter circulation pattern in the extratropical Northern Hemisphere. Southerly flow in the northwest Atlantic is associated with warm ocean temperatures, low sea ice in the Davis Strait, and increased precipitation over northeast Canada. Evidence from modeling of the present climate indicates that the GA pattern could be maintained by increased snow cover over eastern North America. Enhanced snow cover, due to decreased Northern Hemisphere summer insolation, could cause a similar response on an ice-age time scale.  相似文献   

10.
Ferromanganese crusts from the Atlantic, Indian and Pacific Oceans record the Nd and Pb isotope compositions of the water masses from which they form as hydrogenous precipitates. The10Be/9Be-calibrated time series for crusts are compared to estimates based on Co-contents, from which the equatorial Pacific crusts studied are inferred to have recorded ca. 60 Ma of Pacific deep water history. Time series of ɛNd show that the oceans have maintained a strong provinciality in Nd isotopic composition, determined by terrigenous inputs, over periods of up to 60 Ma. Superimposed on the distinct basin-specific signatures are variations in Nd and Pb isotope time series which have been particularly marked over the last 5 Ma. It is shown that changes in erosional inputs, particularly associated with Himalayan uplift and the northern hemisphere glaciation have influenced Indian and Atlantic Ocean deep water isotopic compositions respectively. There is no evidence so far for an imprint of the final closure of the Panama Isthmus on the Pb and Nd isotopic composition in either Atlantic or Pacific deep water masses.  相似文献   

11.
The behavior of rare earth elements (REE) and Th is studied along the west–east transect at 22°N across the Atlantic Ocean. It is shown that both REE and Th contents, relative to Al (the most lithogenic element), increase toward the pelagic region. The increasing trend becomes more complicated due to variations in the content of biogenic carbonate that serves as a diluting component in sediments. The REE composition varies symmetrically relative to the Mid-Atlantic Ridge (MAR) emphasizing a weak hydrothermal influence on sediments of the ridge axis, although the well-known criteria for hydrothermal contribution, such as Al/(Al + Mn + Fe) and (Fe + Mn)/Ti, do not reach critical values. Variations in the REE content and composition allowed us to distinguish the following five sediment zones in the transect: (I) terrigenous sediments of the Nares abyssal plain; (II) pelagic sediments of the North American Basin; (III) carbonate ooze of the MAR axis; (IV) pelagic sediments of the Canary Basin; and (V) terrigenous clay and calcareous mud of the African continental slope and slope base. Ferromanganese nodules of the hydrogenetic type with extremely high Ce (up to 1801 ppm) and Th (up to 138 ppm) contents occur in pelagic sediments. It is ascertained that P, REE, and Th concentrations depend on Fe content in Atlantic sediments. Therefore, one can suggest that only a minor amount of phosphorus is bound in bone debris. The low concentration of bone debris phosphorus is a result of relatively high sedimentation rates in the Atlantic, as compared with those in pelagic regions of the Pacific.  相似文献   

12.
The western continental margin of India is one of the highly productive regions in the global ocean.Primary productivity is induced by upwelling and convective mixing during the southwest and northeast monsoons respectively.Realizing the importance of high primary productivity,a sediment core was collected below the current oxygen minimum zone(OMZ) from the southwestern continental margin of India.This was dated by AMS radiocarbon and as many as 60 paleoclimate/paceoceanographic proxies,such as particle size,biogenic components,major,trace and rare earth elements(REEs) which were measured for the first time to determine sources of sediment,biogeochemical processes operating in the water column and their variations since the last glacial cycle.R-mode factor analysis of comprehensive data indicates that the dominant regulator of paleoproductivity is the southwest monsoon wind induced upwelling.Other paleoproductivity related factors identified are the marine biogenic component and biogenic detritus(as an exported component from the water column added to the bottom sediment).All paleoproductivity components increased significantly during the marine isotope stage-1(MIS-1)compared to those accumulated from MIS-4 to MIS-2.The second group of factors identified are the terrigenous sediments with heavy minerals like zircon and ilmenite.The terrigenous sediment,in particular,increased during MIS-2 when the sea-level was lower;however,the heavy mineral component fluctuated over time implying pulsed inputs of sediment.The diagenetic fraction and reducing component are the third group of factors identified which varied with time with increased accumulation during the MIS transitions.The primary productivity along the southwestern continental margin of India seems to have been controlled principally by the upwelling during the southwest monsoon season that was weaker from MIS-4 to MIS-2,as relative to that during the MIS-1.In contrast,increased glacial productivity noticed in sediments deposited below the current oxygen minimum zone(OMZ) along the north of the study area that can be linked to entrainment of nutrients through the intensified convective mixing of surface water during the northeast monsoon.The sequestration of greenhouse gases by the western continental margin of India was higher during glacial than interglacial cycles.  相似文献   

13.
末次间冰期以来源自中亚的粉尘记录的对比   总被引:1,自引:0,他引:1  
中亚干旱区是全球重要的粉尘源区, 粉尘经过不同的大气环流系统的搬运和具体的沉积条件, 在其传输路径上沉积于不同的介质中, 如冰芯、黄土、湖泊和深海. 在前人所做工作的基础上, 以古里雅冰芯、宝鸡黄土剖面、琵琶湖风尘沉积、北太平洋风尘沉积和格陵兰冰芯等记录进行对比, 初步讨论近130 ka BP以来上述记录所反映的中亚粉尘的产生、搬运和沉积. 这些记录既表现出一致性, 也存在某些差异, 显示了搬运过程、沉积过程以及区域性因素对粉尘记录的影响.  相似文献   

14.
Changes in sea surface salinity, especially by sudden meltwater pulses, are the most effective process to modify the circulation in the Greenland–Iceland–Norwegian (GIN) seas. With “Sensitivity and Circulation of the Northern North Atlantic” (SCINNA), a three-dimensional ocean general circulation model, several experiments addressing the possible effects of meltwater inputs of different intensities were carried out. The experiments used (a) the last glacial maximum (LGM) reconstruction based on oxygen isotopes data from sediment cores and (b) the modern conditions of the GIN seas for their initial states. Meltwater inputs from Europe as recorded during the last deglaciation succeeding the LGM change the circulation pattern drastically. These pulses can push the high-salinity inflow from the northeast Atlantic away from Europe over to the southern coast of Iceland, thus allowing the low-salinity meltwater to spread all over the GIN seas. As a result, the deepwater formation in this region can be turned off and the circulation system shifts from the normal cyclonal-antiestuarine into an anticyclonal-estuarine mode. On the contrary, meltwater pulses originating from Greenland due to global warming mainly intensify the East Greenland Current without altering the overall circulation and temperature/salinity patterns significantly because they chiefly enhance the salinity minimum off the Greenland coast.  相似文献   

15.
Many sediment records from the margins of the Californias (Alta and Baja) collected in water depths between 60 and 1200 m contain anoxic intervals (laminated sediments) that can be correlated with interstadial intervals as defined by the oxygen-isotope composition of Greenland ice (Dansgaard–Oeschger, D–O, cycles). These intervals include all or parts of Oxygen Isotope Stage 3 (OIS3; 60–24 cal ka), the Bölling/Alleröd warm interval (B/A; 15–13 cal ka), and the Holocene. This study uses organic carbon (Corg) and trace-element proxies for anoxia and productivity, namely elevated concentrations and accumulation rates of molybdenum and cadmium, in these laminated sediments to suggest that productivity may be more important than ventilation in producing changes in bottom-water oxygen (BWO) conditions on open, highly productive continental margins. The main conclusion from these proxies is that during the last glacial interval (LGI; 24–15 cal ka) and the Younger Dryas cold interval (YD; 13–11.6 cal ka) productivity was lower and BWO levels were higher than during OIS3, the B/A, and the Holocene on all margins of the Californias. The Corg and trace-element profiles in the LGI–B/A–Holocene transition in the Cariaco Basin on the margin of northern Venezuela are remarkably similar to those in the transition on the northern California margin. Correlation between D–O cycles in Greenland ice with gray-scale measurements in varved sediments in the Cariaco Basin also is well established. Synchronous climate-driven changes as recorded in the sediments on the margins of the Californias, sediments from the Cariaco Basin, and in the GISP-2 Greenland ice core support the hypothesis that changes in atmospheric dynamics played a major role in abrupt climate change during the last 60 ka. Millennial-scale cycles in productivity and oxygen depletion on the margins of the Californias demonstrate that the California Current System was poised at a threshold whereby perturbations of atmospheric circulation produced rapid changes in circulation in the eastern North Pacific Ocean. It is likely that the Pacific and Atlantic Oceans were linked through the atmosphere. Warmer air temperatures during interstadials would have strengthened Hadley and Walker circulations, which, in turn, would have strengthened the subtropical high pressure systems in both the North Pacific and the North Atlantic, producing increased rainfall over the Cariaco Basin and increased upwelling along the margins of the Californias.  相似文献   

16.
The evolution of the Northern Hemisphere oceanic gateways has facilitated ocean circulation changes and may have influenced climatic variations in the Cenozoic time (66 Ma–0 Ma). However, the timing of these oceanic gateway events is poorly constrained and is often neglected in global paleobathymetric reconstructions. We have therefore re-evaluated the evolution of the Northern hemisphere oceanic gateways (i.e. the Fram Strait, Greenland–Scotland Ridge, the Central American Seaway, and the Tethys Seaway) and embedded their tectonic histories in a new global paleobathymetry and topography model for the Cenozoic time. Our new paleobathymetry model incorporates Northeast Atlantic paleobathymetric variations due to Iceland mantle plume activity, updated regional plate kinematics, and models for the oceanic lithospheric age, sediment thickness, and reconstructed oceanic plateaus and microcontinents. We also provide a global paleotopography model based on new and previously published regional models. In particular, the new model documents important bathymetric changes in the Northeast Atlantic and in the Tethys Seaway near the Eocene–Oligocene transition (~34 Ma), the time of the first glaciations of Antarctica, believed to be triggered by the opening of the Southern Ocean gateways (i.e. the Drake Passage and the Tasman Gateway) and subsequent Antarctic Circumpolar Current initiation. Our new model can be used to test whether the Northern Hemisphere gateways could have also played an important role modulating ocean circulation and climate at that time. In addition, we provide a set of realistic global bathymetric and topographic reconstructions for the Cenozoic time at one million-year interval for further use in paleo-ocean circulation and climate models.  相似文献   

17.
Continental shelf sediments from nine locations off Washington and Oregon have 239,240Pu inventories which average 8.0 ± 2.6 mCi/km2. The Columbia River and seawaters advecting over the shelf supply Pu which is removed to underlying sediments, principally through scavenging by inorganic paniculate matter. Mass balance calculations argue that less than 20 percent of the advected Pu need be scavenged from the water column to balance river input and total shelf sediment inventories. The percentage of the Pu removed through scavenging is consistent with observed participate concentrations in shelf waters and published sediment/water distribution coefficients.No marked separation of Pu from 137Cs is observed with depth in Pacific shelf sediments as has been reported in Atlantic coastal sediments. This interocean distinctness can be explained by differences in particle mixing and downward diffusion of Cs in sediments of varying porosities. The transuranic inventories and Pu/Cs ratios in the Pacific sediments do not support the hypothesis of Livingston and Bowen that Pu is remobilized within the sediment column by ‘complexone’ formation with (principally) organic substances.Excess 210Pb/239,240Pu inventory ratios in eight representative cores from the Washington shelf average 100 ± 19, even though absolute values of both inventories vary by much larger factors. This reasonably constant ratio, for a given water depth, permits estimation of total Pu inventories and prediction of sites of unusual Pu accumulation from data on the more easily measured natural radionuclide.  相似文献   

18.
Calculations based on temperature-corrected oxygen-isotope ratios from deep-sea cores yield a glacioeustatic sea-level fall in excess of 50 m during the first 10,000 yr of the last glaciation, and generally support the local regression of about 70 m inferred from tectonically rising New Guinea beaches. We propose that this rapid glacial buildup depended on high-latitude cooling, and large increases of high-latitude regional winter precipitation in the Laurentide and the Fennoscandian-Barents Sea areas, and that these factors were caused by a critical alteration of North Atlantic Drift currents and their associated subpolar atmospheric circulation. In support of this, faunal data from northeast North Atlantic deep-sea cores show that the glacial buildup was accompanied by a sudden loss of most of the North Atlantic Drift from the Greenland-Norwegian Sea, a factor favoring reduced heat input into the higher latitudes. Subpolar mollusk and foraminifera fauna from elevated marine deposits on the Baffin Island coast, and northwest North Atlantic core data suggest a continuation or an associated restoration of subpolar water west of Greenland as far north as Baffin Bay, a factor favoring precipitation in the northeast Canadian region. Heat transport and atmospheric circulation considerations suggest that the loss of the northeast North Atlantic Drift was itself a major instrument of high-latitude climate change, and probably marked the initiation of major new ice-sheet growth.  相似文献   

19.
北大西洋地区是全球环境变化研究的热点区域。对IODP(国际综合大洋钻探计划)北大西洋306航次U1313站位深海沉积物陆源组分的粒度分析发现,陆源组分主要由黏土(粒径小于4μm)和极细粉沙(4~8μm)两个粒级构成,以黏土为主,分选性较差。通过与钙质超微化石、有孔虫等生物化石资料和同位素测年等技术相结合,重建了古气候的变化情况:(1)2.415~1.897 Ma BP,气候呈周期性波动;(2)1.897~1.640 Ma BP,气候变化相对平缓;(3)1.640~1.471 Ma BP,气候波动剧烈且频繁。粒度指标所反映的几次粗颗粒增多事件与早更新世期间数次气候变冷事件的发生时间一致。1.6 Ma BP前后粒度参数的突然变化,可能与地球轨道参数的改变有关,进一步证实地球轨道参数作为气候系统外部驱动力的重要性。  相似文献   

20.
The supply and accumulation of silica in the marine environment   总被引:4,自引:0,他引:4  
Rivers and submarine hydrothermal emanations supply 6.1 × 1014g SiO2/yr to the marine environment. Approximately two-thirds of the silica supplied to the marine environment can be accounted for in continental margin and deep-sea deposits. Siliceous deep-sea sediments located beneath the Antarctic Polar Front (Convergence) account for over a fourth (1.6 × 1014g SiO2/yr) of the silica supplied to the oceans. Deep-sea sediment accumulation rates beneath the Polar Front are highest in the South Atlantic with values as large as 53cm/kyr during the last 18.000 yr. Siliceous sediments in the Bering Sea, Sea of Okhotsk, and Subarctic North Pacific accumulate 0.6 × 1014g SiO2/yr or 10% of the dissolved silica input to the oceans. The accumulation of biogenic silica in estuarine deposits removes a maximum of 0.8 × 1014g SiO2/yr. Although estuarine silica versus salinity plots indicate extensive removal of riverine silica from surface waters, the removal rates must be considered as maximum values because of dissolution of siliceous material in estuarine sediments and bottom waters. Siliceous sediments from continental margin upwelling areas (e.g. Gulf of California, Walvis Bay, or Peru-Chile coast) have the highest biogenic silica accumulation rates in the marine environment (69 g SiO2 cm2/kyr). Despite the rapid accumulation of biogenic silica, upwelling areas account for less than 5% of the silica supplied to the marine environment because they are confined laterally to such small areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号