首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We perform a study of the spatial and kinematical distribution of young open clusters in the solar neighbourhood, discerning between bound clusters and transient stellar condensations within our sample. Then, we discriminate between Gould Belt (GB) and local Galactic disc (LGD) members, using our previous estimate of the structural parameters of both systems obtained from a sample of O-B6 Hipparcos stars. Single membership probabilities of the clusters are also calculated in the separation process. Using this classified sample, we analyse the spatial structure and the kinematic behaviour of the cluster system in the GB. The two star formation regions that dominate and give the GB its characteristic-inclined shape show a striking difference in their content of star clusters: while Ori OB1 is richly populated by open clusters, not a single one can be found within the boundaries of Sco OB2. This is mirrored in the velocity space, translating again into an abundance of clusters in the region of the kinematic space populated by the members of Ori OB1, and a marginal number of them associated with Sco OB2. We interpret all these differences by characterizing the Orion region as a cluster complex typically surrounded by a stellar halo, and the Sco-Cen region as an OB association in the outskirts of the complex. In the light of these results, we study the nature of the GB with respect to the optical segment of the Orion Arm, and we propose that the different content of star clusters, the different heights over the Galactic plane and the different residual velocities of Ori OB1 and Sco OB2 can be explained in terms of their relative position to the density maximum of the Local Arm in the solar neighbourhood. Although morphologically intriguing, the GB appears to be the result of our local and biased view of a larger star cluster complex in the Local Arm, that could be explained by the internal dynamics of the Galactic disc.  相似文献   

2.
Based on high-latitude molecular clouds with highly accurate distance estimates taken from the literature, we have redetermined the parameters of their spatial orientation. This systemcan be approximated by a 350 × 235 × 140 pc ellipsoid inclined by the angle i = 17° ± 2° to the Galactic plane with the longitude of the ascending node l Ω = 337° ± 1°. Based on the radial velocities of the clouds, we have found their group velocity relative to the Sun to be (u 0, v 0, w 0) = (10.6, 18.2, 6.8) ± (0.9, 1.7, 1.5) km s?1. The trajectory of the center of the molecular cloud system in the past in a time interval of ~60 Myr has been constructed. Using data on masers associated with low-mass protostars, we have calculated the space velocities of the molecular complexes in Orion, Taurus, Perseus, and Ophiuchus. Their motion in the past is shown to be not random.  相似文献   

3.
《New Astronomy Reviews》1999,43(6-7):431-435
New results are presented from high resolution images of the peculiar T Tauri star V1331 Cyg and its nebular environment. A complex nebular fountain-like structure that appears to originate from the star was found. The morphology of the nebular structure is quantified and discussed. Evidence for secular outflows is found from the optical data.  相似文献   

4.
We present new population synthesis calculations of close young neutron stars. In comparison with our previous investigation we use a different neutron star mass spectrum and different initial spatial and velocity distributions. The results confirm that most of ROSAT dim radioquiet isolated neutron stars had their origin in the Gould Belt. We predict that about several tens of young neutron stars can be identified in ROSAT All Sky Survey data at low galactic latitudes. Some of these sources also can have counterparts among EGRET unidentified sources.  相似文献   

5.
A survey of emission-line stars was carried out in the CMa star formation region, based on spectral observations with the Kiso Schmidt telescope. In total, 128 emission-line stars were detected, ranging fromV=6 to 15, and the majority are found withV between 11 and 14. A comparison with the existing catalogues shows that some emission-line stars are common with ours, while some exhibit no detectable emission line on our plates, suggesting the variability of emission-line strength. The two-colour (U–B, B–V) diagram is also shown for the detected stars.Paper presented at the IAU Third-Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.On leave from the Bosscha Observatory, Institute of Technology Bandung, Indonesia.  相似文献   

6.
7.
We have redetermined the kinematic parameters of the Gould Belt using currently available data on the motion of nearby young (log t < 7.91) open clusters, OB associations, and moving stellar groups. Our modeling shows that the residual velocities reach their maximum values of ?4 km s?1 for rotation (in the direction of Galactic rotation) and +4 km s?1 for expansion at a distance from the kinematic center of ≈300 pc. We have taken the following parameters of the Gould Belt center: R 0 = 150 pc and l 0 = 128°. The whole structure is shown to move relative to the local standard of rest at a velocity of 10.7 ± 0.7 km s?1 in the direction l = 274° ± 4° and b = ?1° ± 3°. Using the derived rotation velocity, we have estimated the virial mass of the Gould Belt to be 1.5 × 106 M .  相似文献   

8.
The mapping observations of CO J = 2-1, CO J = 3-2, 13 CO J = 2-1 and 13 CO J = 3-2 lines in the direction of IRAS 22506+5944 have been made. The results show that the cores in the J = 2-1 transition lines have a similar morphology to those in the J = 3-2 transition lines. Bipolar molecular outflows are verified. The prior IRAS 22506+5944 observations indicated that two IRAS sources and three H 2 O masers were located close to the peak position of the core. One of the IRAS sources may be the driving source ...  相似文献   

9.
10.
11.
The near-infrared variable source, IRAS 04000+5052, was observed using the Italian 1.5 m TIRGO infrared telescope, located in the Gornergrat Observatory, Switzerland. High-resolution images were obtained in the JHK broad bands and H2 S(1) 1-0, Brγ narrow bands. Photometry and astrometry were also carried out. From the observations, it is found that IRAS source is not a single young object, but a small-sized, compact star-forming region with many young objects. Even in such a small and compact region, stars are not formed at the same time.  相似文献   

12.
The Gould Belt Legacy Survey will survey nearby star-forming regions (within 500 pc), using Heterodyne Array Receiver Programme (HARP), Submillimetre Common-User Bolometer Array 2 and Polarimeter 2 on the James Clerk Maxwell Telescope. This paper describes the initial data obtained using HARP to observe 12CO, 13CO and C18O   J = 3 → 2  towards two regions in Orion B, NGC 2024 and NGC 2071. We describe the physical characteristics of the two clouds, calculating temperatures and opacities utilizing all the three isotopologues. We find good agreement between temperatures calculated from CO and from dust emission in the dense, energetic regions. We determine the mass and energetics of the clouds, and of the high-velocity material seen in 12CO emission, and compare the relative energetics of the high- and low-velocity material in the two clouds. We present a clumpfind analysis of the 13CO condensations. The slope of the condensation mass functions, at the high-mass ends, is similar to the slope of the initial mass function.  相似文献   

13.
14.
Based on the Hipparcos catalog and the radial velocities of stars published to date, we perform a kinematic analysis of OB stars. Parameters of the general Galactic rotation were determined from distant OB stars. We used the residual velocities of stars corrected for the general Galactic rotation to study the proper rotation of nearby OB stars. Geometrical characteristics of the Gould Belt were estimated by analyzing its kinematic parameters. We obtained parameters of peculiar solar motion as well as parameters of the proper rotation, expansion, and contraction for rotation around both the Galactic z axis and an axis perpendicular to the plane of symmetry of the disk. Kinematic parameters of the proper differential rotation were found for two age groups of nearby OB stars. Almost all of the nearby OB stars were shown to rotate in the same direction as the Galactic rotation. We constructed rotation curves.  相似文献   

15.
16.
Selected examples of the use of observationally inferred molecular level populations and chemical compositions in the diagnosis of interstellar sources and processes important in them (and in other diffuse astrophysical sources) are given. The sources considered include the interclump medium of a giant molecular cloud, dark cores which are the progenitors of star formation, material responding to recent star formation and which may form further stars, and stellar ejecta (including those of supernovae) about to merge with the interstellar medium. The measurement of the microwave background, mixing of material between different nuclear burning zones in evolved stars and turbulent boundary layers (which are present in and influence the structures and evolution of all diffuse astrophysical sources) are treated.  相似文献   

17.
18.
We summarize the results of numerical simulations of colliding gas-rich disk galaxies in which the impact velocity is set parallel to the spin axes of the two galaxies. The effects of varying the impact speed are studied with particular attention to the resulting gaseous structures and shockwave patterns, and the time needed to produce these structures. The simulations employ an N-body treatment of the stars and dark matter, together with an SPH treatment of the gas, in which all components of the models are gravitationally active. The results indicate that for such impact geometries, collisions can lead to the very rapid formation of a central, rapidly rotating, dense gas disk, and that in all cases extensive star formation is predicted by the very high gas densities and prevalence of shocks, both in the nucleus and out in the galactic disks. As the dense nucleus is forming, gas and stars are dispersed over very large volumes, and only fall back towards the nucleus over long times. In the case of low impact velocities, this takes an order of magnitude more time than that needed for the formation of a dense nucleus. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号