首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The Vikinghøgda Formation (250 m) is defined with a stratotype in Deltadalen-Vikinghøgda in central Spitsbergen. The Vikinghøgda Formation replaces the Vardebukta and Sticky Keep Formations of Buchan et al. (1965) and the lower part of the Barentsøya Formation of Lock et al. (1978) as extended geographically by Mørk, Knarud et al. (1982) in central Spitsbergen, Barentsøya and Edgeøya. The formation consists of three member: the Deltadalen Member (composed of mudstones with sandstones and siltstones), the Lusitaniadalen Member (dominated by mudstones with thin siltstone beds and some limestone concretions) and the Vendomdalen Member (composed of dark shales with dolomite interbeds and nodules). The Lusitaniadalen and Vendomdalen members replace the former Sticky Keep Formation/ Member in the siirne areu. The Vikinghøda Formation can be followed through central and eastern Spitsbergen to Barentøya and Edgeøya and includes all sediments between the chert-rich Kapp Starostin Formation (Permian) and the organic-rich shales of the Botneheia Formation (Middle Triassic). The subdivision into three members is also reflected in the organic carbon content and palynofacies. Upwards. each succeeding member becomes more distal, organic-rich and oil-prone than the one below.
The Vikinghøda Formation is well-dated by six ammonoid zones. although the transitional beds between the Deltadalen and Lusitaniadalen members lack age diagnostic macrofossils. Corresponding palynozonation and magnetustratigraphy have also been determined. The overall stratigraphical development correlates well with other key Triassic areas in the Arctic, although intervals in the late Dienerian and early Smithian may be condensed or missing.  相似文献   

2.
The Triassic succession of Bjørnøya (200 m) comprises the Lower Triassic Urd Formation (65 m) of the Sassendalen Group, and the Middle and Upper Triassic Skuld Formation (135 m) of the Kapp Toscana Group. These units are separated by a condensed '.'Middle Triassic sequence represented by a phosphatic remainé conglomerate (0.2m).
The Urd Formation consists of grey to dark grey shales with yellow weathering dolomitic beds and nodules. Palynology indicates the oldest beds to be Diencrian; ammonoid faunas in the middle and upper part of the formation arc of Smithian age. The organic content (c. 1 %) includes kerogen of land and marine origin, reflecting a shallow marine depositional environment.
The Skuld Formation is dominated by grey shales with red weathering siderite nodules. There are minor coarsening upwards sequences; the highest bed exposed is a 20 m thick, very fine-grained sandstone. Palynomorphs indicate a late Ladinian age for the lower part of the formation, and macrofossils and palynomorphs indicate Ladinian to Carnian ages for the upper part. Sedimentary structures, a sparse marine fauna and microplankton indicate deposition in a shallow marine environment. The organic residues contain dominantly terrestrially derived kerogen.  相似文献   

3.
The Western Irish Namurian Basin reassessed   总被引:1,自引:0,他引:1  
ABSTRACT Current basin models for the Western Irish Namurian Basin (WINB) envisage an elongate trough along the line of the present‐day Shannon Estuary that was infilled with clastic sediments derived from a hinterland that lay to the W or NW. This paper argues for an alternative basin configuration with source areas to the SW supplying sediment to a basin where deepest water conditions were in northern County Clare. Rapid subsidence along the present‐day Shannon Estuary ponded sediment in this area throughout the early Namurian and, only with the rapid increase of sedimentation rates within the mid‐Namurian (Kinderscoutian Stage), were substantial amounts of sediment able to prograde to the NE of the basin. This alternative model better explains the overwhelming predominance of NE‐directed palaeocurrents in the Namurian infill, but requires fundamental revisions to most aspects of current depositional models. Deep‐water black shales (Clare Shale Formation) initially accumulated throughout the region and were progressively downlapped by an unconfined turbidite system (Ross Formation) prograding to the NE. This in turn was succeeded by an unstable, siltstone‐dominated slope system (Gull Island Formation) characterized by large‐scale soft‐sediment deformation, which also prograded to the NE. In the northern‐most basin outcrops, in northern County Clare, this early phase of basin infill was developed as a condensed succession of radiolarian‐rich black shales, minor turbiditic sandstones and undisturbed siltstones. The new basin model envisages the northern exposures of County Clare to be a distal, basin floor succession whereas the traditional model considers it a relatively shallow, winnowed, basin margin succession. Later stages of basin infill consist of a series of deltaic cycles that culminate in major, erosive‐based sandstone bodies (e.g. Tullig Sandstone) interpreted either as axial, deltaic feeder channels or incised valley fills genetically unrelated to the underlying deltaic facies. Within the context of the new basin model the former alternative is most likely and estimated channel depths within the Tullig Sandstone indicate that the basal erosive surface could have been generated by intrinsic fluvial scour without recourse to base‐level fall. The northerly flowing Tullig channels pass down‐dip into isolated channel sandbodies interbedded with wave‐dominated strata that suggest the deltas of the WINB were considerably more wave‐influenced than hitherto proposed. The retreat of the Tullig delta during sea‐level rise saw the rapid southerly retrogradation of parasequences, as may be expected if the basin margin lay to the SW of the present‐day outcrops.  相似文献   

4.
A new Lower Cretceous lithostratigraphic unit of the Western Barents Shelf, named the Klippfisk Formation, is formally introduced. The formation represents a condensed carbonate succession deposited on platform areas and structural highs, where it consists of limestones and marls, often glauconitic. The limestones may have a nodular appearance, and fossil debris, which are dominated by Inoceramus prisms, may be abundant. The Klippfisk Formation is composed of two members: the Kutling Member defined herein from cores drilled on the Bjarmeland Platform, and the coeval Tordenskjoldberget Member described on Kong Karls Land. The base of the formation is defined by the abrupt decrease in gamma-ray intensity, where the dark shales of the underlying Hekkingen or Agardhfjellet formations are replaced by marls. It is often unconformable. The Klippfisk Formation is of Berriasian to Early Barremian age and appears to be time-transgressive over parts of the Western Barents Shelf (including Kong Karls Land). It passes laterally into the basinal Knurr Formation. On Kongsøya (Kong Karls Land) a thin shale unit, bounded by unconformities, earlier included in the Tordenskjoldberget Member, represents the northernmost extension of the overlying Kolje Formation in the Barents Shelf.  相似文献   

5.
The Middle to Upper Triassic Tanzhuang Formation represents part of the infill of the early Mesozoic Jiyuan-Yima Basin. The upper part of this stratigraphic unit records deposition within prevailing shallow lake conditions. Well-developed sequences crop out near Jiyuan, western Henan Province, central China. Six sedimentary facies clustered into two facies assemblages were recognized in the lacustrine section. Facies assemblage 1 consists of stacked coarsening-upward sequences composed, from base to top, of organic-rich shales (facies E, type I), laminated siltstones (facies A) and current-rippled laminated sandstones (facies B). Units of assemblage 1 record progradation of small mouth-bar deltas within a perennial open lacustrine system under temperate and humid conditions. Facies assemblage 2 lacks a clear vertical pattern and consists of interbedded fine-grained carbonates and siltstones (facies C); deformed and wave-reworked sandstones (facies D); organic-rich shales (facies E, type II) and clayey mudstones (facies F). The assemblage also represents a perennial, hydrologically-open, shallow lacustrine system, but characterized by strong seasonal climatic control. Water stratification probably occurred in several periods of the lake history. Pangaean megamonsoonal influence is envisaged to explain the strong seasonality imprint evidenced toward the upper part of the Tanzhuang lacustrine column.This is the fourth paper in a series of papers published in this issue on Climatic and Tectonic Rhythms in Lake Deposits.  相似文献   

6.
Eleven shallow cores display 315 m of the >700 m thick Lower and Middle Triasic successional of the Svalis Dome, a Salt diapir in the central south-western Barents Sea. The Svalis Dome was uplifted in the late Mesozoic. and Trisassic rocks suherop below Quaternary till around the Upper Palaeozoic core of the dome. Deposition of the Triassic succession took place in deep shelf to basinal environments below storm wave base. The succession is dated by macrofossils and palynomorphs and can be assigned to four formations. The basal beds of the shaly greenish grey Havert Formation (Griesbachian) occur above Permian bioclastic carbonate. The Klappmyss Formation (Smithian) in the lower part contains gravity flow sands deposited as submarine fans pussible triggered by tectonic movements along the adjacent ault zones overlian by silty claystones. An organic-rich dark shale unit is here formally defined as the Steinkobbe overlain by silty claystones. An organic-rich dark shale unit is here formally defined as the Steinkobbe Formation, and was deposited in a large bight by restricted water circulation. The Snadd Formation. on top, representes a marine shelf unit deposited in front of an emerging land area in the north-east. A minimum of six higher order transgressive-regressive sequences are recognized at the Svalis Dome and these are correlated with other Arctic areas.  相似文献   

7.
The <1.5‐km thick Fiq Member of the Ghadir Manqil Formation, Huqf Supergroup, Oman, contains a succession of Marinoan‐age glacially and non‐glacially influenced deposits overlain by a transgressive, 13C‐depleted, deep‐water dolostone (Hadash Formation) that deepens up into the marine shales and siltstones of the Masirah Bay Formation. The Fiq Member and Hadash–Masirah Bay Formations are well exposed in the core of the Jebel Akhdar of northern Oman and provide a valuable insight into the processes operating during a Neoproterozoic glacial epoch and its aftermath. The Fiq Member comprises seven stratigraphic units (F1–F7) of proximal and distal glacimarine, non‐glacial sediment gravity flow, and non‐glacial shallow marine facies associations. These units can be correlated over almost the entire Neoproterozoic outcrop belt (ca. 80 km) of the Jebel Akhdar. Four units contain glacimarine rainout diamictites, commonly at the top of cycles beneath strong lithofacies dislocations suggesting flooding. The units are thought to have been generated by combined glacio‐isostatic and glacio‐eustatic forcing caused by changing volumes of terrestrial glacier ice. The lateral persistence and thickness of massive diamictite units increase upwards in the stratigraphy, the youngest (F7) diamictite being abruptly overlain by the Hadash Formation. Correlation of lithofacies associations across the rift basin and palaeocurrents indicate that siliciclastic sediment and glacially entrained debris were derived from both basin margins. Open‐water conditions existed during interglacials, attested to by the presence of wave‐rippled sandstones in the western part of the basin. The Hadash carbonate also exhibits variations between east and west, showing that despite an overall deep‐water depositional setting, rift margin and intrabasinal structure continued to exert a control on facies development during the post‐glacial aftermath. Onlap of basin margins continued through the deposition of the Masirah Bay Formation. The sedimentology and stratigraphy of the Fiq Member and Hadash–Masirah Bay Formations have a number of implications for the Snowball Earth hypothesis. The overall stratigraphic evolution of the Fiq Member suggests a dynamic, temperate/polythermal style of glaciation, perhaps nucleated on uplifted continental or rift margin topography, with marine‐terminating glaciers. Some transgressions coupled to deglaciations within the Fiq glacial epoch were accompanied by minor deposition of carbonate. However, final deglaciation triggered the deposition of a <8‐m thick, deep‐water dolomite contaminated with siliciclastics, with a lithofacies assemblage still reflecting the underlying bathymetric template, followed by relatively deep marine shales and siltstones. The preservation of relatively deep marine Masirah Bay sediments above the Fiq basin margin suggests either tectonic collapse of the rift shoulder or, more likely, rapid eustatic rise accompanying deglaciation.  相似文献   

8.
Bivalve, brachiopod and cirripede faunas from the latest Jurassic and Early Cretaceous Barents Sea boreholes 7320/3-U-l and 7425/9-U-l are systematically described and illustrated. Microfossils have also been studied and the cores arc dated on the basis of the fossil recovery. The bivalve Buchia whose zonal sequence has been used for correlation of boreal marine sections is the most important biostratigraphic marker group in the condensed Boreal Berriasian-Hauterivian intervals of these cores. A new species of cirripede Zeugmatolepas? borealis Collins sp. nov. and dinoflagellate cyst Muderongia aequicornus Århus sp. nov. are described.
The Late Jurassic fine-grained elastics of core 7320/3-U-l are overlain by about 3 m of grey dolomitic limestone of Valanginian and Hauterivian age. The lowermost part of 7425/9-U-l is represented by a latest Volgian-earliest Berriasian fossiliferous greyish green marl. It is followed by a reddish brown fossilifcrous claystone of Berriasian and perhaps partly Valanginian age. Core 7425/9-U-l also contains a mainly Valanginian greyish green marly limestone which changes into a dark grey to black limestone of Early Barremian age in its upper part. The sedimentological change from condensation to dark grey clay deposition took place in the middle Barremian H. rude-fissicostatum ammonite Zone in 7425/9-U-l and probably slightly earlier in 7320/3-U-l. This was commenced at about the same time as deposition of the inaccurately and only indirectly dated fluvio-deltaic Festningen Sandstone Member on Spitsbergen. The dark claystone may thus be a distal equivalent to this sandstone unit.  相似文献   

9.
Lacustrine deposits of the Malanzán Formation record sedimentation in a small and narrow mountain paleovalley. Lake Malanzán was one of several water bodies formed in the Paganzo Basin during the Late Carboniferous deglaciation. Five sedimentary facies have been recognized. Facies A (Dropstones-bearing laminated mudstones) records deposition from suspension fall-out and probably underflow currents coupled with ice-rafting processes in a basin lake setting. Facies B (Ripple cross-laminated sandstones and siltstones) was deposited from low density turbidity currents in a lobe fringe environment. Facies C (Massive or graded sandstones) is thought to represent sedimentation from high and low density turbidity currents in sand lobes. Facies D (Folded sandstones and siltstones) was formed from slumping in proximal lobe environments. Facies E (Wave-rippled sandstones) records wave reworking of sands supplied by turbidity currents above wave base level.The Lake Malanzán succession is formed by stacked turbidite sand lobe deposits. These lobes were probably formed in proximal lacustrine settings, most likely relatively high gradient slopes. Paleocurrents indicate a dominant direction from cratonic areas to the WSW. Although the overall sequence shows a regressive trend from basin fine-grained deposits to deltaic and braided fluvial facies, individual lobe packages lack of definite vertical trends in bed thickness and grain size. This fact suggests aggradation from multiple-point sources, rather than progradation from single-point sources. Sedimentologic and paleoecologic evidence indicate high depositional rate and sediment supply. Deposition within the lake was largely dominated by event sedimentation. Low diversity trace fossil assemblages of opportunistic invertebrates indicate recolonization of event beds under stressed conditions.Three stages of lake evolutionary history have been distinguished. The vertical replacement of braided fluvial deposits by basinal facies indicates high subsidence and a lacustrine transgressive episode. This flooding event was probably linked to a notable base level rise during postglacial times. The second evolutionary stage was typified by the formation of sand turbidite lobes from downslope mass-movements. Lake history culminates with the progradation of deltaic and braided fluvial systems  相似文献   

10.
This paper presents new stratigraphic and sedimentological data of the Ordovician, Silurian, and Mesozoic succession exposed on the western flank of Al Kufrah Basin. Field data (logged sections, photographs, palaeocurrent analyses) are presented from the Jabal Eghei region. This region lies ca. 200 km E of the closest stratigraphic tie point at Mourizidie on the eastern flank of the Murzuq Basin. The succession starts with the Hawaz Formation (Middle Ordovician) comprising >100 m of cross‐bedded and bioturbated sandstones that are interpreted as deposits of tidal currents in an open shelf setting. The contact between the Hawaz and Mamuniyat formations is an erosional unconformity, incised during advance of Late Ordovician ice sheets towards the NE. The Mamuniyat Formation comprises >150 m of massive and graded sandstones tentatively assigned to the Hirnantian, and contains an intraformational, soft‐sediment striated surface that is interpreted to record re‐advance of ice sheets over Jabal Eghei. The outcrop section suggests the sandstone would form an excellent reservoir in the subsurface. The Mamuniyat Formation is overlain by the Tanezzuft Formation (uppermost Ordovician–lowermost Silurian). This includes sandy limestone/calcareous sandstone, a Planolites horizon, and then 50 m of interbedded shale, silt and fine‐grained, graded and hummocky cross‐stratified sandstone recording deposition from both shallow marine turbidity currents and storm flows. A striated pavement in the lower part of this sequence is overlain by calcareous lonestone‐bearing intervals (interpreted as ice‐rafted debris). These features testify to late phases of glacial advance probably post‐dating the regional Hirnantian glacial maximum. The basal Silurian ‘hot shale’ facies is not developed in this area, probably because late glacial advance suppressed the preservation of organic matter. The upper part of the Tanezzuft Formation is truncated by an unconformity above which palaeosol‐bearing fluvial deposits (undifferentiated Mesozoic) occur.  相似文献   

11.
During the Early Triassic the Jameson Land Basin (Central East Greenland) was located around 30° N, in the Northern arid belt, but by the Early Jurassic was positioned at a latitude of approximately 50° N. This study examines the record of this transition through a largely continental succession using clay mineralogy, sedimentology, petrography and heavy mineralogy. The Jameson Land Basin is aligned north–south and is 280 km long and 80 km wide. Following an Early Triassic marine phase the basin was filled by predominantly continental sediments. The Early‐to‐Late Triassic succession comprises coarse alluvial clastics (Pingo Dal Formation) overlain by a succession of fine‐grained evaporite‐rich playa/lacustrine sediments (Gipsdalen Formation), indicative of arid climatic conditions. The overlying buff, dolomitic and then red lacustrine mudstones with subordinate sandstones (Fleming Fjord Formation) record reduced aridity. The uppermost Triassic grades into dark organic‐rich, and in places coaly, mudstones and buff coarse‐grained sandstones of lacustrine origin that belong to the Kap Stewart Group, which spans the Triassic–Jurassic boundary, and appear to record more humid climatic conditions. Clay mineralogy analyses highlight significant variations in the kaolinite/illite ratio, from both mudstone and sandstone samples, through the Triassic and into the earliest Jurassic. Complementary heavy mineral analyses demonstrate that the variations recognised in clay mineralogy and sandstone maturity through the Triassic–Early Jurassic succession are not a product of major provenance change or the effect of significant diagenetic alteration. The observed variations are consistent with sedimentological evidence for a long‐term trend towards more humid conditions through the Late Triassic to Early Jurassic, and the suggestion of a significant pluvial episode in the mid‐Carnian.  相似文献   

12.
A synthesis has been undertaken based on regionally compiled data from the post early Eocene foreland basin succession of Svalbard. The aim has been to generate an updated depositional model and link this to controlling factors. The more than kilometer thick progradational succession includes the offshore shales of the Gilsonryggen Member of the Frysjaodden Formation, the shallow marine sandstones of the Battfjellet Formation and the predominantly heterolithic Aspelintoppen Formation, together recording the progressive eastwards infill of the foredeep flanking the West Spitsbergen fold‐and‐thrust belt. Here we present a summary of the paleo‐environmental depositional systems across the basin, their facies and regional distribution and link these together in an updated depositional model. The basin‐margin system prograded with an ascending shelf‐edge trajectory in the order of 1°. The basin fill was bipartite, with offset stacked shelf and shelf‐edge deltas, slope clinothems and basin floor fans in the western and deepest part and a simpler architecture of stacked shelf‐deltas in the shallower eastern part. We suggest a foredeep setting governed by flexural loading, likely influenced by buckling, and potentially developing into a wedge top basin in the mature stage of basin filling. High‐subsidence rates probably counteracted eustatic falls with the result that relative sea‐level falls were uncommon. Distance to the source terrain was small and sedimentation rates was temporarily high. Time‐equivalent deposits can be found outbound of Stappen High in the Vestbakken Volcanic Province and the Sørvestsnaget Basin 300 km further south on the Barents Shelf margin. We cannot see any direct evidence of coupling between these more southerly systems and the studied one; southerly diversion of the sediment‐routing, if any, may have taken place beyond the limit of the preserved deposits.  相似文献   

13.
The Western Irish Namurian Basin developed in Early Carboniferous times as a result of extension across the Shannon Lineament which probably coincides with the lapetus Suture. During the late Dinantian, axial areas of the NE-SW elongate trough became deep, whilst shallow-water limestones were deposited on the flanks. This bathymetry persisted into the Namurian when carbonate deposition ceased. In axial areas, a relatively thick mudstone succession spans earliest Namurian to Chokierian whilst on the northwestern marginal shelf, a thin, condensed Namurian mudstone sequence, in which pre-Chokierian sediments are apparently absent, rests unconformably on the Dinantian. From late Chokierian to early Kinderscoutian, the basin was filled by sand-dominated clastic sediments. Sand deposition began in the axial area with deposition of a thick turbidite sequence, the Ross Formation, which is largely equivalent to the condensed mudstone succession on the flanks. Turbidity currents flowed mainly axially towards the north-east and deposited a sequence lacking well-defined patterns of vertical bed-thickness change. Channels and slide sheets occur towards the top of the formation. The turbidite system seems to have lacked well-defined lobes and stable distributary channels. Overlying the Ross Formation, the Gull Island Formation shows a decreasing incidence of turbidite sandstones at the expense of increasing siltstones. This formation is characterized by major slides and slumps interbedded with undisturbed strata. In the flanking areas of the basin, the formation is thinner, has only a few turbidites in the sequence above the condensed mudstones and contains only one slide sheet. Overall the formation is interpreted as the deposit of a major prograding slope, the lower part representing a ramp upon which turbidites were deposited, the upper part a highly unstable muddy slope lacking any conspicuous feeder channels through which sand might have been transferred to deeper water. Progradation of the slope appears to have been increasingly from the northwestern flank of the trough which is similar to the direction deduced for the overlying deltaic Tullig cyclothem which completes the initial basin fill. Whilst several features of the succession can be explained by envisaging the whole sequence as the product of one linked depositional system, the shifting directions of palaeocurrents and palaeoslope raise problems. The switch from axial to lateral supply casts doubt on the strict application of Walther's Law to the total sequence and seems to demand large avulsive shifts of the delta system on the shelf area to the west.  相似文献   

14.
A palaeomagnetic study has been carried out on late Palaeozoic rocks exposed in the Sierras Australes thrust and fold belt of Buenos Aires province (Argentina), in the early Permian red sandstones and clay siltstones of the Tunas Formation. The sections sampled are exposed in the eastern parts of the belt, in Sierra de las Tunas (north) and Sierra de Pillahuincó (south). More than 300 specimens were collected from 25 sites, in three localities with different structural attitudes. Demagnetization at high temperatures isolated a characteristic remanence at 20 sites. All the localities have a reverse characteristic remanence, suggesting that the magnetization was acquired during the Kiaman interval. Stepwise tectonic tilt correction suggests that the Tunas Formation in these localities acquired its magnetization during folding in early Permian times. Palaeomagnetic poles were computed for each locality based on partial tilt-corrected remanence directions. Taking into account the fact that these localities are close to one another and that the rocks are all of reverse polarity, a group syntectonic palaeomagnetic pole called Tunas was calculated: longitude: 13.9°E, latitude: 63.0°S; A 95 = 5.4°, K = 39.7, N = 19. This pole is consistent with previously calculated poles from South America assigned to the early Permian. In age it corresponds to the early Permian San Rafaelic tectonic phase of the Sierras Australes. Independent geological evidence indicates that the Tunas Formation underwent syndepositional deformation. We conclude that the Tunas Formation was deposited, deformed and remagnetized, all during the early Permian.  相似文献   

15.
Facies distributions, stratal geometry and regional erosional bevelling surfaces in Upper Cretaceous (Cenomanian-Santonian) strata of the Alberta foreland basin are interpreted in terms of high-frequency (probably eustatic) relative changes in sea level, superimposed on longer-term basin-floor warping, related to episodic tectonic loading. Thick marine shales correspond to periods of rapid subsidence whereas thin but extensive strandplain sandstones record rapid progradation during slow subsidence. Westward-thickening wedges of coastal plain strata were deposited during initial downwarping of a near-horizontal strandplain, prior to marine transgression. Surfaces of erosional bevelling beneath which between 40 and >160m of strata have been removed extend at least 300 km from the present deformation front and are interpreted to reflect forebulge uplift in the east. Uplift appears to have lagged about 0.25-0.5 Myr behind the onset of accelerated loading. Thin marine sandstones which grade westward into mudstone are interpreted as material winnowed from the crest of the rising forebulge. Subsidence and/or westward migration of the forebulge allowed the sea to flood westward across the eastern flank of the eroded forebulge. The transgressive shoreface cut asymmetric notches which were later blanketed by marine shales which lap out from east to west. The two unconformities which embody the largest erosional vacuity are veneered locally with oolitic ironstone which accumulated in a shallow, sediment-starved setting on the crest of the forebulge. The consistent pattern of erosional bevelling and lap-out of transgressive shales might be interpreted as evidence that the forebulge migrated towards the thrust load over a period of <1 Myr.  相似文献   

16.
There are three areas in eastern Svalbard where Vendian tillites are exposed: eastern Ny Friesland, western Nordaustlandet (north and south of Murchisonfjorden) and further east in inner Wahlenbergfjorden, near Aldousbreen. Clasts within the massive unmetamorphosed clay-mica-carbonate matrix of the tillites include carbonates, sandstones, siltstones, metavolcanics, schists and different granitoids, the metamorphic and igneous rock types being more frequent in the upper levels of the formation. Large granite boulders, up to 1 m in diameter, are known from the easternmost outcrop at Aldousbreen. Three granitoid boulders from the Aldousbreen outcrop, differing in petrography and chemistry. have been dated by the Pb-Pb singlezircon method. They yield ages of 2830 ± 5 Ma, 1802 ± 4 Ma and 1497 ± 26 Ma. These clasts also differ in petrography, chemistry and age from all known granitic rocks on Nordaustlandet, which have recently yielded Grenvillian (950-960 Ma) and Caledonian (ca. 410 Ma) ages. The concentration of large granitic clasts in the easternmost known tillite outcrops suggests derivation from the east and/or south. Possible areas include those beneath the ice of Austfonna and below the Carboniferous strata of southeastem Nordaustlandet. The apparent lack of a significant Grenvillian overprint suggests the possibility of a more distant source.  相似文献   

17.
In a recent study, Andrews et al. (2020) describe “exhumed hydrocarbon traps” in North-East Greenland. The basic premise for their interpretation is that dark-coloured, pyrobitumen-bearing sandstones represent the remnants of once buried petroleum reservoirs. We do not see the necessary field or analytical evidence to support a model that has strong implications for resource evaluations. Andrews et al. (2020) have not considered previous published information on diagenetic and thermal maturity history of the area. A more probable model would include the intrusion of dykes and sills into a sedimentary succession with immature petroleum source rocks and reservoir-quality sandstones. The heating caused rapid generation of petroleum components and local hydrothermal circulation systems in adjacent porous sandstones. Any petroleum was rapidly destroyed leaving essentially only black grain-coatings and minor particles of pyrobitumen—essentially in one short-lived continuous process. The existence of new plays in the North Atlantic as proposed by Andrews et al. (2020) is in our opinion not substantiated as this requires analytical data from unaltered oils from the less mature parts of the sedimentary succession and considerations of thermal maturity and basin evolution. To draw conclusions that have a serious impact on resource evaluations based on the dark colouration of sandstones without comprehensive analytical data is, in our opinion, ill advised.  相似文献   

18.
Neoproterozoic carbonates are known to show exceptional variations in their carbon isotopic ratios, and in the absence of biostratigraphy and a firm geochronological framework, these variations are used as a correlation tool. However, it is controversial whether the carbon isotope record reveals a primary oceanographic signal or secondary effects such as diagenesis. The Shuram Formation of the Nafun Group of Oman allows a stratigraphic test of this problem. The Nafun Group (Huqf Supergroup, Oman) in the Huqf area of east-central Oman consists of inner carbonate ramp facies of the Khufai Formation overlain by marine, storm-generated, red and brown siltstones of the Shuram Formation. Towards its top, the Shuram Formation is composed of distinctive shallowing-upward, 4–17-m-thick parasequences cropping out continuously over 35 km, which show recessive swaley cross-stratified siltstones capped by ledges comprising wave-rippled, intraclast-rich ooidal carbonate. These storm-dominated facies show a regional deepening in palaeobathymetry towards the south. The carbonates of the Shuram Formation are marked by an extreme depletion in 13C in bulk rock. δ13C values quickly reach a nadir of −12‰ just above the Khufai-Shuram boundary and steadily return to positive values in the overlying mainly dolomitic Buah Formation. The Shuram excursion is thought to be ca . 50 Myr in duration and extends over 600 m of stratigraphy. Carbon isotopic values show a systematic variation in the parasequence stack, with values varying both vertically through the stratigraphy (∼2‰ per 45 m) and laterally in the progradation distance (∼1‰ over 35 km). This supports a primary, oceanographic origin for these extremely negative carbon isotopic values and independently argues strongly against diagenetic resetting.  相似文献   

19.
The North Sea giant sand injectite province (NSGSIP) is the global type area for large‐scale sandstone intrusion complexes. Despite decades of research on the NSGSIP, this paper presents the first detailed case study in which all aspects of the intrusion process have been constrained, including fluid and sediment sources, injection timing and driving mechanisms. The study describes and analyses high‐amplitude discordant amplitude anomalies within the Oligocene succession in the eastern North Sea, which are interpreted as large‐scale brine‐saturated sand injectites. Potential feeder conduits extending from the top of the Paleocene Lista Formation to the base of the injectites indicate that the source sand was located within the Lista Formation; possibly deposited in a distinct valley cut into the top of the Chalk Group. The geometry of the observed injectites ranges from a basal sill with wings to V‐shaped and conical; their dimensions range from 300 to 3700 m in width and up to 150 m in height. In all cases, a significant deformation of the overburden is observed. The study area is located in the Ringkøbing‐Fyn High area above the basement high separating two smaller Paleozoic half‐grabens. During the Oligocene, rapid and significant differential loading occurred. We interpret that the injectites formed due to remobilization of the source sand facilitated by overpressure caused by differential loading combined with a possible influx of fluids from the deeper succession. The case study has with its assessment of the full injection system, implications for the understanding of subsurface remobilization processes and furthermore for oil and gas exploration in the eastern North Sea.  相似文献   

20.
四川盆地下三叠统飞仙关组(T_1f)紫色页岩,富含有机质、磷和多种微量元素T_1f紫色母质添加到两类基础肥力较低的紫色母质和黄壤内,种植稻麦试验后对照结果表明T_1f紫色页岩肥效显著,因此它是一种矿质肥源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号