共查询到20条相似文献,搜索用时 62 毫秒
1.
Seismograms predicted from acoustic or elastic earth models depend very non-linearly on the long wavelength components of velocity. This sensitive dependence demands the use of special variational principles in waveform-based inversion algorithms. The differential semblance variational principle is well-suited to velocity inversion by gradient methods, since its objective function is smooth and convex over a large range of velocity models. An extension of the adjoint state technique yields an accurate estimate of the differential semblance gradient. Non-linear conjugate gradient iteration is quite successful in locating the global differential semblance minimum, which is near the ordinary least-squares global minimum when coherent data noise is small. Several examples, based on the 2D primaries-only acoustic model, illustrate features of the method and its performance. 相似文献
2.
从频率域3-D声波波动方程出发,结合井间观测方式的特点,基于Tarantola广义反演理论,提出了一种频率域2.5-D井间波形层析成像方法.数值模型试验结果表明:该方法对薄层厚度的分辨能力能达到约主频波长的1/4,且分辨率显著高于走时层析成像,尤其垂直分辨率有实质改善.模拟资料的抗噪试验表明:在信噪比为0.8的情况下,随机噪声对波形层析成像的影响较小;而相干噪声对全波形层析成像的影响显著,特别是初至波附近的强振幅干扰影响更为严重.井间实际资料的试处理结果表明:波形层析成像能很好地刻画井间介质的分布情况与储层连通性,对于油藏开发阶段的方案实施具有指导意义. 相似文献
3.
Giuliana Rossi Davide Gei Gualtiero Böhm Gianni Madrussani José M. Carcione 《Geophysical Prospecting》2007,55(5):655-669
We estimate the quality factor (Q) from seismic reflections by using a tomographic inversion algorithm based on the frequency‐shift method. The algorithm is verified with a synthetic case and is applied to offshore data, acquired at western Svalbard, to detect the presence of bottom‐simulating reflectors (BSR) and gas hydrates. An array of 20 ocean‐bottom seismographs has been used. The combined use of traveltime and attenuation tomography provides a 3D velocity–Q cube, which can be used to map the spatial distribution of the gas‐hydrate concentration and free‐gas saturation. In general, high P‐wave velocity and quality factor indicate the presence of solid hydrates and low P‐wave velocity and quality factor correspond to free‐gas bearing sediments. The Q‐values vary between 200 and 25, with higher values (150–200) above the BSR and lower values below the BSR (25–40). These results seem to confirm that hydrates cement the grains, and attenuation decreases with increasing hydrate concentration. 相似文献
4.
5.
Verifying adequacy of the seismic deformation method by using real examples of earthquake damage 总被引:1,自引:0,他引:1
In a seismic design, the dynamic loads are generally dependent on the inertial interaction caused by earthquake. But for the foundations embedded in soil, the dynamic loads are influenced by both the inertial and kinematic interactions among superstructure, foundation and soil. Especially, when a foundation is embedded in soft surface ground, the effects due to the kinematic interaction increase and should be considered in seismic design. For this reason, a method called seismic deformation method (SDM), which is suitable for an intensive earthquake motion (level 2 earthquake motion), has been stipulated recently in a new design code called Seismic Design Code for railway structures (the Railway Code, drawn up by Railway Technical Research Institute, Japan, 1999) [Railway Technical Research Institute. Seismic Design Code for railway structures. Tokyo: Maruzen; 1999]. In order to grasp the suitability of the SDM to actual structures, pile foundations, which experienced the Hyogoken-Nanbu earthquake, were taken as the objects for investigations. Comparison studies between the SDM analysis and reconnaissance were conducted. As a result, the adequacy of the SDM to actual foundations was confirmed to prove good agreement between the two results from the viewpoint of engineering practice.In addition, determination of indices for seismic-performance evaluation and speculation of damage mechanism of the foundations are also discussed in this paper. 相似文献
6.
TheapplicationofresistivitytomographytohydrogeologicalexplorationRUIFENG1)(冯锐)XIAO-QINLI2)(李晓芹)YU-LUTAO2)(陶裕录)CI-CHANGSUN2)(... 相似文献
7.
8.
Jun Guo Jianzhong Zhou Lixiang Song Qiang Zou Xiaofan Zeng 《Stochastic Environmental Research and Risk Assessment (SERRA)》2013,27(4):985-1004
Assessment of parameter and predictive uncertainty of hydrologic models is an essential part in the field of hydrology. However, during the past decades, research related to hydrologic model uncertainty is mostly done with conceptual models. As is accepted that uncertainty in model predictions arises from measurement errors associated with the system input and output, from model structural errors and from problems with parameter estimation. Unfortunately, non-conceptual models, such as black-box models, also suffer from these problems. In this paper, we take the artificial neural network (ANN) rainfall-runoff model as an example, and the Shuffled Complex Evolution Metropolis algorithm (SCEM-UA) is employed to analysis the parameter and predictive uncertainty of this model. Furthermore, based on the results of uncertainty assessment, we finally arrive at a simpler incomplete-connection artificial neural network (ICANN) model as well as with better performance compared to original ANN rainfall-runoff model. These results not only indicate that SCEM-UA can be a useful tool for uncertainty analysis of ANN model, but also prove that uncertainty does exist in ANN rainfall-runoff model. Additionally, in some way, it presents that the ICANN model is with smaller uncertainty than the original ANN model. 相似文献
9.
从设备功耗、气象条件、太阳能板、蓄电池规格等方面设计卫星传输方式所需电源方案,并用于实际传输。由3个月考核运行期的运行率表明:卫星传输方式的电源设计是成功的、合理的,保证卫星地震台站稳定可靠的运行。 相似文献
10.
A system of algorithms and software modules is described for automatic real time determination of epicenters and magnitudes
of potential tsunami earthquakes. Modules are compiled into a single software system called Tsunami Source Quick Location
(SS TSQL). The TSQL complex was successfully tested on dozens of real digital recordings. Currently, the TSQL complex is continuously
operated in a test mode within the first phase of the seismic subsystem of the Tsunami Warning System (SS TWS) in the Far
East of Russia. 相似文献
11.
M. Corciulo A. Zollo M. Vassallo P. Dell'Aversana S. Morandi 《Geophysical Prospecting》2008,56(4):541-553
In order to retrieve a 2D background velocity model and to retrieve the geometry and depth of shallow crustal reflectors in the Southern Apennines thrust belt a separate inversion of first arrival traveltimes and reflected waveforms was performed. Data were collected during an active seismic experiment in 1999 by Enterprise Oil Italiana and Eni-Agip using a global offset acquisition geometry. A total of 284 on-land shots were recorded by 201 receivers deployed on an 18 km line oriented SW–NE in the Val D'Agri region (Southern Apennines, Italy).
The two-step procedure allows for the retrieval of a reliable velocity model by using a non-linear tomographic inversion and reflected waveform semblance data inversion. The tomographic model shows that the P wave velocity field varies vertically from approximately 3 km/s to 6 km/s within 4 km from the Earth's surface. Moreover, at a distance of approximately 11 km along the profile, there is an abrupt increase in the velocity field. In this zone indeed, an ascent from 2 km depth to 0 km above sea level of the 5.2 km/s iso-velocity contour can be noted. The retrieved velocity can be associated with Plio-Pleistocene clastic deposits outcropping in the basin zone and with Mesozoic limestone deposits. The inversion of waveform semblance data shows that a P-to-P reflector is retrieved at a depth of approximately 2 km. This interface is deeper in the north-eastern part of the profile, where it reaches 3 km depth and can be associated with a limestone horizon. 相似文献
The two-step procedure allows for the retrieval of a reliable velocity model by using a non-linear tomographic inversion and reflected waveform semblance data inversion. The tomographic model shows that the P wave velocity field varies vertically from approximately 3 km/s to 6 km/s within 4 km from the Earth's surface. Moreover, at a distance of approximately 11 km along the profile, there is an abrupt increase in the velocity field. In this zone indeed, an ascent from 2 km depth to 0 km above sea level of the 5.2 km/s iso-velocity contour can be noted. The retrieved velocity can be associated with Plio-Pleistocene clastic deposits outcropping in the basin zone and with Mesozoic limestone deposits. The inversion of waveform semblance data shows that a P-to-P reflector is retrieved at a depth of approximately 2 km. This interface is deeper in the north-eastern part of the profile, where it reaches 3 km depth and can be associated with a limestone horizon. 相似文献
12.
V. HRISSANTHOU 《水文科学杂志》2013,58(2):279-292
Abstract Two mathematical models were used to estimate the annual sediment yield resulting from rainfall and runoff at the outlet of the Nestos River basin (Toxotes, Thrace, Greece). The models were applied to that part of the Nestos River basin (838 km2) which lies downstream of three dams. Both models consist of three submodels: a simplified rainfall-runoff submodel, a physically-based surface erosion submodel and a sediment transport submodel for streams. The two models differ only in the surface erosion submodel: that of the first model is based on the relationships of Poesen (1985) for splash detachment and splash transport, while the corresponding submodel of the second model is based on the relationships of Schmidt (1992) for the momentum flux exerted by the droplets and the momentum flux exerted by the overland flow. The degree of conformity between the annual values of sediment yield at the basin outlet according to both models is satisfactory. 相似文献
13.
Earthquakes are one of the most destructive natural disasters and the spatial distribution of their epicentres generally shows diverse interaction structures at different spatial scales. In this paper, we use a multi-scale point pattern model to describe the main seismicity in the Hellenic area over the last 10 years. We analyze the interaction between events and the relationship with geological information of the study area, using hybrid models as proposed by Baddeley et al. (2013). In our analysis, we find two competing suitable hybrid models, one with a full parametric structure and the other one based on nonparametric kernel estimators for the spatial inhomogeneity. 相似文献
14.
Ignacio Vidal 《Stochastic Environmental Research and Risk Assessment (SERRA)》2014,28(3):571-582
With the objective of modelling annual rainfall maximum intensities in different geographical zones of Chile, we have created a Bayesian inference method for the generalized extreme value type I distribution (Gumbel distribution). We considered an uninformative prior distribution for the location parameter, μ, and three different prior distributions for the scale parameter, σ. Under these conditions we obtained the posterior distribution of (μ, σ) and associated summary statistics such as modes, expected values, quantiles and credibility intervals. In order to predict and estimate return periods, we obtained the posterior distribution of future observations, its expected value, quantiles and credibility intervals. To obtain several of these posterior summary measures it was necessary to utilize both numerical and Laplace approximations. Furthermore we estimate return period curves and intensity–duration–frequency curves. 相似文献
15.
We propose a two-dimensional, non-linear method for the inversion of reflected/converted traveltimes and waveform semblance designed to obtain the location and morphology of seismic reflectors in a lateral heterogeneous medium and in any source-to-receiver acquisition lay-out. This method uses a scheme of non-linear optimization for the determination of the interface parameters where the calculation of the traveltimes is carried out using a finite-difference solver of the Eikonal equation, assuming an a priori known background velocity model. For the search for the optimal interface model, we used a multiscale approach and the genetic algorithm global optimization technique. During the initial stages of inversion, we used the arrival times of the reflection phase to retrieve the interface model that is defined by a small number of parameters. In the successive steps, the inversion is based on the optimization of the semblance value determined along the calculated traveltime curves. Errors in the final model parameters and the criteria for the choice of the best-fit model are also estimated from the shape of the semblance function in the model parameter space. The method is tested and validated on a synthetic dataset that simulates the acquisition of reflection data in a complex volcanic structure. This study shows that the proposed inversion approach is a valid tool for geophysical investigations in complex geological environments, in order to obtain the morphology and positions of embedded discontinuities. 相似文献
16.
A comparative testing of two methods for reconstructing a nonlinear force-free field in a bounded spatial domain has mainly
been studied based on the optimization method, using (1) fixed boundary values and weighting function and (2) purposefully
varied boundary values. The quantitative and qualitative characteristics, reflecting the degree of correspondence between
the calculated and known model fields, are presented. It is indicated that the second approach to the implementation of the
optimization method gives the best approximation to the required solution, corresponding to the finite solution in an unbounded
domain, and the quality of this solution remains unchanged up to the reconstruction domain boundaries. 相似文献
17.
Elsa Aristodemou Christopher Pain Cassiano de Oliveira Adrian Umpleby Tony Goddard Christopher Harris 《Geophysical Prospecting》2006,54(2):99-120
Simulating radiation transport of neutral particles (neutrons and γ‐ray photons) within subsurface formations has been an area of research in the nuclear well‐logging community since the 1960s, with many researchers exploiting existing computational tools already available within the nuclear reactor community. Deterministic codes became a popular tool, with the radiation transport equation being solved using a discretization of phase‐space of the problem (energy, angle, space and time). The energy discretization in such codes is based on the multigroup approximation, or equivalently the discrete finite‐difference energy approximation. One of the uncertainties, therefore, of simulating radiation transport problems, has become the multigroup energy structure. The nuclear reactor community has tackled the problem by optimizing existing nuclear cross‐sectional libraries using a variety of group‐collapsing codes, whilst the nuclear well‐logging community has relied, until now, on libraries used in the nuclear reactor community. However, although the utilization of such libraries has been extremely useful in the past, it has also become clear that a larger number of energy groups were available than was necessary for the well‐logging problems. It was obvious, therefore, that a multigroup energy structure specific to the needs of the nuclear well‐logging community needed to be established. This would have the benefit of reducing computational time (the ultimate aim of this work) for both the stochastic and deterministic calculations since computational time increases with the number of energy groups. We, therefore, present in this study two methodologies that enable the optimization of any multigroup neutron–γ energy structure. Although we test our theoretical approaches on nuclear well‐logging synthetic data, the methodologies can be applied to other radiation transport problems that use the multigroup energy approximation. The first approach considers the effect of collapsing the neutron groups by solving the forward transport problem directly using the deterministic code EVENT, and obtaining neutron and γ‐ray fluxes deterministically for the different group‐collapsing options. The best collapsing option is chosen as the one which minimizes the effect on the γ‐ray spectrum. During this methodology, parallel processing is implemented to reduce computational times. The second approach uses the uncollapsed output from neural network simulations in order to estimate the new, collapsed fluxes for the different collapsing cases. Subsequently, an inversion technique is used which calculates the properties of the subsurface, based on the collapsed fluxes. The best collapsing option is chosen as the one that predicts the subsurface properties with a minimal error. The fundamental difference between the two methodologies relates to their effect on the generated γ‐rays. The first methodology takes the generation of γ‐rays fully into account by solving the transport equation directly. The second methodology assumes that the reduction of the neutron groups has no effect on the γ‐ray fluxes. It does, however, utilize an inversion scheme to predict the subsurface properties reliably, and it looks at the effect of collapsing the neutron groups on these predictions. Although the second procedure is favoured because of (a) the speed with which a solution can be obtained and (b) the application of an inversion scheme, its results need to be validated against a physically more stringent methodology. A comparison of the two methodologies is therefore given. 相似文献
18.
19.
Seismic sample areas defined from incomplete catalogues: an application to the Italian territory 总被引:1,自引:0,他引:1
The comprehensive understanding of earthquake source-physics under real conditions requires the study not of single faults as separate entities but rather of a seismically active region as a whole, accounting for the interaction among different structures. We define “seismic sample area” the most convenient region to be used as a natural laboratory for the study of seismic source physics. This coincides with the region where the average large magnitude seismicity is the highest. To this end, time and space future distributions of large earthquakes are to be estimated. Using catalog seismicity as an input, the rate of occurrence is not constant but appears generally biased by incompleteness in some parts of the catalog and possible nonstationarities in seismic activity. We present a statistical procedure which is capable, under a few mild assumptions, of both detecting nonstationarities in seismicity and finding the incomplete parts of a seismic catalog. The procedure is based on Kolmogorov-Smirnov nonparametric statistics, and can be applied without a priori assuming the parent distribution of the events. The efficiency of this procedure allows the analysis of small data sets. An application to the Italian territory is presented, using the most recent version of the ENEL seismic catalog. Seismic activity takes place in six well defined areas but only five of them have a number of events sufficient for analysis. Barring a few exceptions, seismicity is found stationary throughout the whole catalog span 1000–1980. The eastern Alps region stands out as the best “sample area”, with the highest average probability of event occurrence per time and area unit. Final objective of this characterization is to stimulate a program of intensified research. 相似文献
20.
《Journal of Hydrology》1963,1(4):355-363
A method is developed for determining the optimal size of a single purpose reservoir to provide carryover storage for consumptive use on a stream where inflows in successive years may be serially correlated. The operating policy on an annual basis is obtained as a consequence of the analysis. The procedure combines dynamic programming sequenced over time, with different return functions for each interval of time, with a Monte Carlo technique using a number of equally likely sample sequences of inflow drawn randomly from a long synthetically generated period of record.The analysis gives an optimum operating policy, the expected value of the optimal return and the degree of risk involved which arises from the hydrologic characteristics of the stream. 相似文献