首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new version of the magnetic-tape catalog of ABELL clusters of galaxies is used to obtain redshift estimators and to generate two samples of clusters. A procedure for searching for superclusters of galaxies is applied and the results are given in tabular and graphic form. For a lmited homogeneous sample (distance 60–275 Mpc, galactic latitude B > 35°), 12 multiplets, having member clusters with known redshifts, are found. It is shown that the spatial covariance function for rich clusters has the form ξ = (r0/r)γ with r0 = 22.4 ± 1.8 Mpc and γ = 1.90 ± 0.25 for 3 Mpc ≲ r ≲ 80 Mpc.  相似文献   

2.
We present a correlation function analysis for the catalogue of photometric redshifts obtained from the Hubble Deep Field image by Fernandez-Soto, Lanzetta & Yahil. By dividing the catalogue into redshift bins of width Δ z =0.4 we measured the angular correlation function w ( θ ) as a function of redshift up to z ∼4.8. From these measurements we derive the trend of the correlation length r 0. We find that r 0( z ) is roughly constant with look-back time up to z ≃2, and then increases to higher values at z ≳2.4. We estimate the values of r 0, assuming ξ ( r , z )=[ r r 0( z )]− γ , γ =1.8 and various geometries. For Ω0=1 we find r 0( z =3)≃7.00±4.87  h −1 Mpc, in good agreement with the values obtained from analysis of the Lyman break galaxies.  相似文献   

3.
Correlation properties of the large-scale structure of the distribution of luminous red galaxies are evaluated using data from Data Release 5 of the Sloan Digital Sky Survey. The correlations on small scales are characterized by the distribution of distances to the nearest neighboring galaxy ω(r). The conditional number density Γ(r) indicates a power law correlation with an exponent γ = 1.0±0.1 over scales of [1, 30] Mpc/h in redshift space. For larger scales of [30, 200] Mpc/h, a transition from a power law to a flat segment is observed. However, the presence of a flat segment in the estimated conditional density is only a necessary, but not sufficient, condition for homogeneity of a given sample. In particular, the flat segment may be caused by the presence of superlarge structures (such as have been discovered in the most recent ultra-deep COSMOS survey) which lead to a systematic shift in the estimated conditional number density. The behavior of the reduced two-point correlation function) ξ(r) is also discussed for scales of [1, 200] Mpc/h. Over small scales, where ξ(r) >> 1, the slopes of the reduced correlation function and the conditional number density are the same. __________ Translated from Astrofizika, Vol. 51, No. 3, pp. 393–408 (August 2008).  相似文献   

4.
Compressible homogeneous spheres with constant adiabatic index γ were studied for their dynamical stability by Chandrasekhar and he found that for each value of u (≡ mass to size ratio), there is a value of γ = γc, such that for γ < γc, the configuration is dynamically unstable. On examining the properties of the Chandrasekhar's spheres (homogeneous spheres with constant γ) it is found that these spheres are non-isentropic, and the speed of sound within these spheres is finite. The authors find that (i) for the causality condition to be fulfilled throughout the configuration, the value of γ ≤ [2/(surface redshift)], (ii) for a given value of u, the binding coefficient, αr = (Mr -M)/M, vanishes for some value of γ = γb and for all the values of γ < γb the configurations are unbound, and (iii) for u≤ (1/3), one can find configurations which are bound, dynamically stable, and the speed of sound is less than that of light throughout the configuration, whereas, for u >(1/3), the physically viable models of homogeneous density distribution are not possible. If the configuration is considered to be isentropic, then both γ and the speed of sound become infinite throughout the configuration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We calculate the parameters of the two-point correlation function of quasars w(r) = (r c /r) γ on the basis of the SDSS DR3 data. The correlation functions are first determined from projected distances with the use of a special technique for compiling randomized catalogs. Next the parameters of the spatial correlation function are obtained with the assumption of local isotropy. For the quasars with redshifts z = 0.8–2.1, we obtained the estimates γ = 1.76 ± 0.14, r c = 6.60 ± 0.85 h ?1 Mpc in the comoving distance range 2–30 Mpc and γ = 1.90 ± 0.11, r c = 6.95±0.57 h ?1 Mpc in the range 2–50 Mpc. These estimates agree, within the limits of errors, with the estimates obtained for the redshifts 0.4 < z < 2.1. The original catalog shows some deficit of pairs with separations less than 1 Mpc.  相似文献   

6.
We analyse the dark energy problem using observational H(z) data plus the curvature constraint given by WMAP. After a non-parametric statistical study covering the most probable range of Ω m0 and H 0 from different combination of data, we investigate the possibility of having the dark energy EoS parameter ω x ≠−1. In order to keep strict flatness (1% of deviation from Ω=1), our results point out this is the case for 0.20≲Ω m0≲0.23 and H 0≈67 km/s/Mpc, with ω x ≈−0.55. However, if we admit a 10% deviation from the flatness condition, ω x may have any value in the range [−1.2,−0.5] for 0.20≲Ω m0≲0.35 and 67≲H 0≲74 km/s/Mpc.  相似文献   

7.
The perihelion advance of the orbit of Mercury has long been one of the observational cornerstones for testing General Relativity (G.R.).The main goal of this paper is to discuss how, presently, observational and theoretical constraints may challenge Einstein's theory of gravitation characterized by β=γ=1. To achieve this purpose, we will first recall the experimental constraints upon the Eddington-Robertson parameters γ,β and the observational bounds for the perihelion advance of Mercury, Δωobs. A second point will address the values given, up to now, to the solar quadrupole moment by several authors. Then, we will briefly comment why we use a recent theoretical determination of the solar quadrupole moment, J 2=(2.0 ± 0.4) 10-7, which takes into account both surfacic and internal differential rotation, in order to compute the solar contribution to Mercury's perihelion advance. Further on, combining bounds on γ and J 2 contributions, and taking into account the observational data range for Δωobs,we will be able to give a range of values for β. Alternatively, taking into account the observed value of Δωobs, one can deduce a dynamical estimation of J 2 in the setting of G.R. This point is important as it provides a solar model independent estimation that can be confronted with other determinations of J 2 based upon solar theory and solar observations (oscillation data, oblateness...). Finally, a glimpse at future satellite experiments will help us to understand how stronger constraints upon the parameter space (γω J 2) as well as a separation of the two contributions (from the quadrupole moment, J 2, or purely relativistic, 2α2+2αγ–β) might be expected in the future. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Based on data for 102 OB3 stars with known proper motions and radial velocities, we have tested the distances derived by Megier et al. from interstellar Ca II spectral lines. The internal reconciliation of the distance scales using the first derivative of the angular velocity of Galactic rotation Ω′0 and the external reconciliation with Humphreys’s distance scale for OB associations refined by Mel’nik and Dambis show that the initial distances should be reduced by ≈20%. Given this correction, the heliocentric distances of these stars lie within the range 0.6–2.6 kpc. A kinematic analysis of these stars at a fixed Galactocentric distance of the Sun, R 0 = 8 kpc, has allowed the following parameters to be determined: (1) the solar peculiar velocity components (u , v , ω ) = (8.9, 10.3, 6.8) ± (0.6, 1.0, 0.4) km s−1; (2) the Galactic rotation parameters Ω0 = −31.5 ± 0.9 km s−1 kpc−1, Ω′0 = +4.49 ± 0.12 km s−1 kpc−2, Ω″0 = −1.05 ± 0.38 km s−1 kpc−3 (the corresponding Oort constants are A = 17.9 ± 0.5 km s−1 kpc−1, B = −13.6 ± 1.0 km s−1 kpc−1 and the circular rotation velocity of the solar neighborhood is |V 0| = 252 ± 14 km s−1); (3) the spiral density wave parameters, namely: the perturbation amplitudes for the radial and azimuthal velocity components, respectively, f R = −12.5±1.1 km s−1 and f ϑ = 2.0 ± 1.6 km s−1; the pitch angle for the two-armed spiral pattern i = −5.3° ± 0.3°, with the wavelength of the spiral density wave at the solar distance being λ = 2.3 ± 0.2 kpc; the Sun’s phase in the spiral wave x = −91° ± 4°.  相似文献   

9.
We have discovered a giant radio halo in the massive merging cluster MACSJ0417.5-1154. This cluster, at a redshift of 0.443, is one of the most X-ray luminous galaxy cluster in the MAssive Cluster Survey (MACS) with an X-ray luminosity in the 0.1–2.4 keV band of 2.9×1045 erg s − 1. Recent observations from GMRT at 230 and 610 MHz have revealed a radio halo of ∼ 1.2 × 0.3 Mpc2 in extent. This halo is elongated along the North-West, similar to the morphology of the X-ray emission from Chandra. The 1400 MHz radio luminosity (L r) of the halo is ∼2 × 1025 W Hz − 1, in good agreement with the value expected from the L x − L r correlation for cluster halos.  相似文献   

10.
The spatial-temporal distribution of absorption-line systems (ALSs) observed in QSO spectra within the cosmological redshift interval z=0.0–4.3 is investigated on the base of our updated catalog of absorption systems. We consider so-called metallic systems including basically lines of heavy elements. The sample of the data displays regular variations (with amplitudes ∼15–20%) in the z-distribution of ALSs as well as in the η-distribution, where η is a dimensionless line-of-sight comoving distance, relatively to smoother dependences. The η-distribution reveals the periodicity with period Δη=0.036±0.002, which corresponds to a spatial characteristic scale (108±6)h −1 Mpc or (alternatively) a temporal interval (350±20)h −1 Myr for the ΛCDM cosmological model. We discuss the possibility of a spatial interpretation of the results, treating the pattern obtained as a trace of an order imprinted on the galaxy clustering in the early Universe.  相似文献   

11.
Recently, Breiter et al. [Celest. Mech. Dyn. Astron., 2004, 88, 153–161] reported the computation of Hansen coefficients X k γ ,m for non-integer values of γ. In fact, the Hansen coefficients are closely related to the Laplace b s (m), and generalized Laplace coefficients b s,r (m) [Laskar and Robutel, 1995, Celest. Mech. Dyn. Astron., 62, 193–217] that do not require s,r to be integers. In particular, the coefficients X 0 γ ,m have very simple expressions in terms of the usual Laplace coefficients b γ +2 (m), and all their properties derive easily from the known properties of the Laplace coefficients.  相似文献   

12.
Any calibration of the present value of the Hubble constant (H 0) requires recession velocities and distances of galaxies. While the conversion of observed velocities into true recession velocities has only a small effect on the result, the derivation of unbiased distances which rest on a solid zero point and cover a useful range of about 4–30 Mpc is crucial. A list of 279 such galaxy distances within v < 2,000 km s−1 is given which are derived from the tip of the red-giant branch (TRGB), from Cepheids, and/or from supernovae of type Ia (SNe Ia). Their random errors are not more than 0.15 mag as shown by intercomparison. They trace a linear expansion field within narrow margins, supported also by external evidence, from v = 250 to at least 2,000 km s−1. Additional 62 distant SNe Ia confirm the linearity to at least 20,000 km s−1. The dispersion about the Hubble line is dominated by random peculiar velocities, amounting locally to <100 km s−1 but increasing outwards. Due to the linearity of the expansion field the Hubble constant H 0 can be found at any distance >4.5 Mpc. RR Lyr star-calibrated TRGB distances of 78 galaxies above this limit give H 0 = 63.0 ± 1.6 at an effective distance of 6 Mpc. They compensate the effect of peculiar motions by their large number. Support for this result comes from 28 independently calibrated Cepheids that give H 0 = 63.4 ± 1.7 at 15 Mpc. This agrees also with the large-scale value of H 0 = 61.2 ± 0.5 from the distant, Cepheid-calibrated SNe Ia. A mean value of H 0 = 62.3 ± 1.3 is adopted. Because the value depends on two independent zero points of the distance scale its systematic error is estimated to be 6%. Other determinations of H 0 are discussed. They either conform with the quoted value (e.g. line width data of spirals or the D n σ method of E galaxies) or are judged to be inconclusive. Typical errors of H 0 come from the use of a universal, yet unjustified P–L relation of Cepheids, the neglect of selection bias in magnitude-limited samples, or they are inherent to the adopted models.  相似文献   

13.
We present the results of spectroscopic and photometric observations for the B star StHα62 with an IR excess, a post-AGB candidate identified with the IR source IRAS 07171+1823. High-resolution spectroscopy has allowed the λ4330–7340 Å spectrum of the star to be identified: it contains absorption lines of an early B star and emission lines of a gaseous shell. The residual line intensities have been measured. The heliocentric radial velocities measured from absorption lines of the star and emission lines of the shell are 〈V r 〉 = +45 ± 1 and +52 ± 1 km s?1, respectively. The line-of-sight velocities of gas-dust clouds determined from the interstellar Na I lines are 12 and 33 km s?1. The He I λ5876 Å line exhibits a P Cyg profile, which is indicative of an ongoing mass loss by the star. The expansion velocity of the outer shell estimated from forbidden lines is 12–13 km s?1. Quantitative classification gives the spectral type B0.51 for the star. The parameters of the gaseous shell have been determined: N e = 3.1 × 103 cm?3 and T e ~ 21 000 K. Over 4 years of its observations, the star showed rapid irregular light variations with the amplitudes ΔV = We present the results of spectroscopic and photometric observations for the B star StHα62 with an IR excess, a post-AGB candidate identified with the IR source IRAS 07171+1823. High-resolution spectroscopy has allowed the λ4330–7340 ? spectrum of the star to be identified: it contains absorption lines of an early B star and emission lines of a gaseous shell. The residual line intensities have been measured. The heliocentric radial velocities measured from absorption lines of the star and emission lines of the shell are 〈V r 〉 = +45 ± 1 and +52 ± 1 km s−1, respectively. The line-of-sight velocities of gas-dust clouds determined from the interstellar Na I lines are 12 and 33 km s−1. The He I λ5876 ? line exhibits a P Cyg profile, which is indicative of an ongoing mass loss by the star. The expansion velocity of the outer shell estimated from forbidden lines is 12–13 km s−1. Quantitative classification gives the spectral type B0.51 for the star. The parameters of the gaseous shell have been determined: N e = 3.1 × 103 cm−3 and T e ∼ 21 000 K. Over 4 years of its observations, the star showed rapid irregular light variations with the amplitudes ΔV = , ΔB = , and ΔU = and no color-magnitude correlation. We estimate the total extinction for the star from our photometric observations as A v = . Near-IR observations have revealed dust radiation with a temperature of ∼1300 K. We estimate the distance to StHα62 to be r = 5.2 ± 1.2 kpc by assuming that the star is a low-mass (M = 0.55 ± 0.05 M ) protoplanetary nebula. Original Russian Text ? V.P. Arkhipova, V.G. Klochkova, E.L. Chentsov, V.F. Esipov, N.P. Ikonnikova, G.V. Komissarova, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 10, pp. 737–747.  相似文献   

14.
15.
Based on high precision measurements of the distances to nearby galaxies with the Hubble telescope, we have determined the radii of the zero velocity spheres for the local group, R0 = 0.96±0.03Mpc, and for the group of galaxies around M 81/M 82, 0.89±0.05Mpc. These yield estimates of MT = (1.29±0.14)· 1012 M and (1.03±0.17)· 1012 M, respectively, for the total masses of these groups. The R0 method allows us to determine the mass ratios for the two brightest members in both groups, as well. By varying the position of the center of mass between the two principal members of a group to obtain minimal scatter in the galaxies on a Hubble diagram, we find mass ratios of 0.8:1.0 for our galaxy and Andromeda and 0.54:1.00 for the M82 and M81 galaxies, in good agreement with the observed ratios of the luminosities of these galaxies. __________ Translated from Astrofizika, Vol. 49, No. 1, pp. 5–22 (February 2006).  相似文献   

16.
We have worked out a ’statistical algorithm’ for obtaining the posterior probability density of the deceleration parameter q0 from quasars where there is a luminosity indicator available. We point out that the role of the luminosity indicator is to provide asecond estimate of individual luminosities after a first estimate has been obtained from measured brightness and redshift together with an assumed q0. Discrimination of q0 is to be sought in the statistical properties of the set of differences between the two estimates (the residuals). We show that the variance of the residuals and their correlation with redshifts (further refined to luminosity distances) are two independent test-statistics for q0, whose known distributions then lead to the probability density sought. We have applied the above algorithm to a sample of flat-spectrum radio quasars with measured CIV, MgII and Ly α lines. A combined Baldwin’s relation was used for all 3 lines. Our result is that log q0 is normally distributed with a mean value of + 0.270± 0.135 (s.d.), or, q0 = + 1.86 ± 0.135 dex. This result, we believe, is the sharpest result so far published on q0.  相似文献   

17.
We analyze the properties of galaxy clusters in the region of the Leo supercluster using observational data from the SDSS and 2MASS catalogs. We have selected 14 galaxy clusters with a total dynamical mass of 1.77 × 1015 M in the supercluster region 130 by 60 Mpc in the plane of the sky (z ≃ 0.037). The composite luminosity function of the supercluster is described by a Schechter function with parameters that, within the error limits, correspond to field galaxies and does not differ from the luminosity function of the richer Ursa Major (UMa) supercluster for the same luminosity range (the bright end). The luminosity functions of early-type and late-type galaxies in Leo at the faint end are characterized by a sharp decrease (α = −0.60±0.08) and a steep increase (α = −1.44± 0.10) in the number of galaxies, respectively. In the virialized cluster regions, the fraction of early-type galaxies selected by the u-r color, bulge contribution, and concentration index among the galaxies brighter than M K * + 1 is, on average, 62%. This fraction is smaller than that in the UMa supercluster at a 2–3σ level. The near-infrared luminosities of galaxy clusters down to a fixed absolute magnitude correlate with their masses almost in the same way as for other samples of galaxy clusters (L 200,K M 2000.63±0.11)).  相似文献   

18.
The value of Hubble parameter (H0) is determined using the morphologically type dependent Ks-band Tully-Fisher Relation (K-TFR). The slope and zero point are determined using 36 calibrator galaxies with ScI morphology. Calibration distances are adopted from direct Cepheid distances, and group or companion distances derived with the Surface Brightness Fluctuation Method or Type Ia Supernova. It is found that a small morphological type effect is present in the K-TFR such that ScI galaxies are more luminous at a given rotational velocity than Sa/Sb galaxies and Sbc/Sc galaxies of later luminosity classes. Distances are determined to 16 galaxy clusters and 218 ScI galaxies with minimum distances of 40.0 Mpc. From the 16 galaxy clusters a weighted mean Hubble parameter of H0 = 84.2 ± 6 km s−1 Mpc−1 is found. From the 218 ScI galaxies a Hubble parameter of H0 = 83.4 ± 8 km s−1 Mpc−1 is found. When the zero point of K-TFR is corrected to account for recent results that find a Large Magellanic Cloud distance modulus of 18.39±0.05, a Hubble parameter of 88.0 ± 6 km s−1 Mpc−1 is found. Effects from Malmquist bias are shown to be negligible in this sample as galaxies are restricted to a minimum rotational velocity of 150 km s−1. It is also shown that the results of this study are negligibly affected by the adopted slope for the K-TFR, inclination binning, and distance binning. A comparison with the results of the Hubble Key Project (Freedman et al. 2001) is made. Discrepancies between the K-TFR distances and the HKP I-TFR distances are discussed. Implications for Λ-CDM cosmology are considered with H0 = 84 km s−1 Mpc−1. It is concluded that it is very difficult to reconcile the value of H0 found in this study with ages of the oldest globular clusters and matter density of the universe derived from galaxy clusters in the context of Λ-CDM cosmology.  相似文献   

19.
A Fourier analysis on galaxy number counts from redshift data of both the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey indicates that galaxies have preferred periodic redshift spacings of Δz= 0.0102, 0.0246, and 0.0448 in the SDSS and strong agreement with the results from the 2dF GRS. The redshift spacings are confirmed by the mass density fluctuations, the power spectrum P(z) and N pairs calculations. Application of the Hubble law results in galaxies preferentially located on co-moving concentric shells with periodic spacings. The combined results from both surveys indicate regular co-moving radial distance spacings of 31.7±1.8 h?1?Mpc, 73.4±5.8 h?1?Mpc and 127±21 h?1? Mpc. The results are consistent with oscillations in the expansion rate of the universe over past epochs.  相似文献   

20.
R. P. Kane 《Solar physics》2007,246(2):471-485
Many methods of predictions of sunspot maximum number use data before or at the preceding sunspot minimum to correlate with the following sunspot maximum of the same cycle, which occurs a few years later. Kane and Trivedi (Solar Phys. 68, 135, 1980) found that correlations of R z(max) (the maximum in the 12-month running means of sunspot number R z) with R z(min) (the minimum in the 12-month running means of sunspot number R z) in the solar latitude belt 20° – 40°, particularly in the southern hemisphere, exceeded 0.6 and was still higher (0.86) for the narrower belt > 30° S. Recently, Javaraiah (Mon. Not. Roy. Astron. Soc. 377, L34, 2007) studied the relationship of sunspot areas at different solar latitudes and reported correlations 0.95 – 0.97 between minima and maxima of sunspot areas at low latitudes and sunspot maxima of the next cycle, and predictions could be made with an antecedence of more than 11 years. For the present study, we selected another parameter, namely, SGN, the sunspot group number (irrespective of their areas) and found that SGN(min) during a sunspot minimum year at latitudes > 30° S had a correlation +0.78±0.11 with the sunspot number R z(max) of the same cycle. Also, the SGN during a sunspot minimum year in the latitude belt (10° – 30° N) had a correlation +0.87±0.07 with the sunspot number R z(max) of the next cycle. We obtain an appropriate regression equation, from which our prediction for the coming cycle 24 is R z(max )=129.7±16.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号