首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we describe a set of models to predict the colours of galaxies over a wide range of redshifts. We present examples of output from the simulations, and discuss their application to the selection of galaxies at high redshifts, particularly through identification of the Lyman break. Additionally we consider the optimal choices of filters for selection at a range of redshifts.
An interface to a subset of the simulations has been made available on the World Wide Web for the benefit of the community at the location http://www-astro.physics.ox.ac.uk/~rejs/research/galcols.html/  相似文献   

2.
We have performed deep imaging of a diverse sample of 26 low surface brightness galaxies (LSBGs) in the optical and the near-infrared. Using stellar population synthesis models, we find that it is possible to place constraints on the ratio of young to old stars (which we parametrize in terms of the average age of the galaxy), as well as the metallicity of the galaxy, using optical and near-infrared colours. LSBGs have a wide range of morphologies and stellar populations, ranging from older, high-metallicity earlier types to much younger and lower-metallicity late-type galaxies. Despite this wide range of star formation histories, we find that colour gradients are common in LSBGs. These are most naturally interpreted as gradients in mean stellar age, with the outer regions of LSBGs having lower ages than their inner regions. In an attempt to understand what drives the differences in LSBG stellar populations, we compare LSBG average ages and metallicities with their physical parameters. Strong correlations are seen between an LSBG's star formation history and its K -band surface brightness, K -band absolute magnitude and gas fraction. These correlations are consistent with a scenario in which the star formation history of an LSBG primarily correlates with its surface density and its metallicity correlates with both its mass and its surface density.  相似文献   

3.
4.
5.
We have determined a dust-free colour–magnitude (CM) relation for spiral galaxies, by using I  −  K colours in edge-on galaxies above the plane. We find that the scatter in this relation is small and approximately as large as can be explained by observational uncertainties. The slope of the near-IR CM relation is steeper for spirals than for elliptical galaxies. We suggest two possible explanations. First, the difference could be caused by vertical colour gradients in spiral galaxies. In that case these gradients should be similar for all galaxies, on average ∼0.15 dex in [Fe/H] per scaleheight, and should increase for later galaxy types. The most likely explanation, however, is that spirals and ellipticals have intrinsically different CM relations. This means that the stars in spirals are younger than those in ellipticals. The age, however, or the fraction of young stars in spiral galaxies would be determined solely by the luminosity of the galaxy, and not by its environment.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
We describe a new formula capable of quantitatively characterizing the Hubble sequence of spiral galaxies including grand design and barred spirals. Special shapes such as ring galaxies with inward and outward arms are also described by the analytic continuation of the same formula. The formula is   r (φ) = A /log [ B tan   (φ/2 N )]  . This function intrinsically generates a bar in a continuous, fixed relationship relative to an arm of arbitrary winding sweep. A is simply a scale parameter while B , together with N , determines the spiral pitch. Roughly, greater N results in tighter winding. Greater B results in greater arm sweep and smaller bar/bulge, while smaller B fits larger bar/bulge with a sharper bar/arm junction. Thus B controls the 'bar/bulge-to-arm' size, while N controls the tightness much like the Hubble scheme. The formula can be recast in a form dependent only on a unique point of turnover angle of pitch – essentially a one-parameter fit, aside from a scalefactor. The recast formula is remarkable and unique in that a single parameter can define a spiral shape with either constant or variable pitch capable of tightly fitting Hubble types from grand design spirals to late-type large barred galaxies. We compare the correlation of our pitch parameter to Hubble type with that of the traditional logarithmic spiral for 21 well-shaped galaxies. The pitch parameter of our formula produces a very tight correlation with ideal Hubble type suggesting it is a good discriminator compared to logarithmic pitch, which shows poor correlation here similar to previous works. Representative examples of fitted galaxies are shown.  相似文献   

14.
We study the chemical and spectrophotometric evolution of galactic discs with detailed models calibrated on the Milky Way and using simple scaling relations, based on currently popular semi-analytic models of galaxy formation. We compare our results with a large body of observational data on present-day galactic discs, including disc sizes and central surface brightness, Tully–Fisher relations in various wavelength bands, colour–colour and colour–magnitude relations, gas fractions versus magnitudes and colours and abundances versus local and integrated properties, as well as spectra for different galactic rotational velocities. Despite the extremely simple nature of our models, we find satisfactory agreement with all those observables, provided that the time-scale for star formation in low-mass discs is longer than for more massive ones. This assumption is apparently in contradiction with the standard picture of hierarchical cosmology. We find, however, that it is extremely successful in reproducing major features of present-day discs, like the change in the slope of the Tully–Fisher relation with wavelength, the fact that more massive galaxies are on average 'redder' than low-mass ones (a generic problem of standard hierarchical models) and the metallicity–luminosity relation for spirals. It is concluded that, on a purely empirical basis, this new picture is at least as successful as the standard one. Observations at high redshifts could help to distinguish between the two possibilities.  相似文献   

15.
16.
17.
We present a highly simplified model of the dynamical structure of a disc galaxy where only two parameters fully determine the solution, mass and angular momentum. We show through simple physical scalings that once the mass has been fixed, the angular momentum parameter λ is expected to regulate such critical galactic disc properties as colour, thickness of the disc and bulge-to-disc ratio. It is, hence, expected to be the determinant physical ingredient resulting in a given Hubble type. A simple analytic estimate of λ for an observed system is provided. An explicit comparison of the distribution of several galactic parameters against both Hubble type and λ is performed using observed galaxies. Both such distributions exhibit highly similar characteristics for all galactic properties studied, suggesting λ as a physically motivated classification parameter for disc galaxies.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号