首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gulf of Kachchh (GoK) is situated in the northeastern Arabian Sea. The presence of several industries along its coastal belt makes GoK a highly sensitive coastal ecosystem. In the present study, an attempt is made for the first time to study GoK thermohaline structure and its variability, based on field measurements and model simulations. Though GoK is considered as a well-mixed system, the study reveals that only the central Gulf is well mixed. Vertical gradients in temperature and salinity fields are noticed in the eastern Gulf, where a cold and high saline tongue is observed in the subsurface layers. Salinity indicates the characteristic feature of an inverse estuary with low values (37.20 psu) near the mouth and high values (>40.0 psu) near the head of the Gulf. The model simulated temperature and salinity fields exhibit semidiurnal oscillations similar to that of field observations. Model results show cold, high saline waters advecting from the east during ebb forming a transition zone, which oscillates with tides. A high salinity tongue is seen in the bottom layer, indicating a westward flowing bottom current. The transient zone acts as an dynamic barrier, and plays a vital role in the pollutant transport.  相似文献   

2.
Spatial and temporal variations of Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD) in the Gulf of Kachchh (GoK), India are assessed based on data collected since 1976. DO concentrations in the interior GoK vary within a narrow range (6.05-6.86 mg l(-1)), whereas near-shore waters show wider variations (3.5-7.8 mg l(-1)). The DO concentration levels in the Gulf waters are close to saturation, varying from 75.4% to 108.6%, which is much higher than the 60% saturation level set for the SW-1 waters. BOD-DO simulation shows that when effluents containing a BOD concentration of 50.0 mg l(-1) are introduced at three select locations, DO reduces from 5.1 mg l(-1) to 3.1, 5.0 and 3.8 mg l(-1), respectively, indicating a strong sensitivity to effluent load. Based on the DO analysis, BOD assimilation capacity of coastal waters around the Marine National Park (MNP) and Marine Sanctuary (MS) in the Gulf is determined. DO available for utilization for various categories of water use is illustrated, keeping in mind the ecology of MNP and MS areas. The significance of DO as a target indicator to zone the Gulf for different water use, is highlighted in this study.  相似文献   

3.
Gorgan Bay is a semi-enclosed basin located in the southeast of the Caspian Sea, Iran. The bay is recognized as a resting place for migratory birds as well as a spawning habitat for native fish. However, apparently, no detailed research on its physical processes has previously been conducted. In this study, a 3D coupled hydrodynamic and solute transport model was used to investigate general circulation, thermohaline structure, and residence time in Gorgan Bay. Model outputs were validated against a set of field observations. Bottom friction and attenuation coefficient of light intensity were tuned in order to achieve optimum agreement with the observations. Results revealed that, due to the interaction between bathymetry and prevailing winds, a barotropic double-gyre circulation, dominating the general circulation, existed during all seasons in Gorgan Bay. Furthermore, temperature and salinity fluctuations in the bay were seasonal, due to the seasonal variability of atmospheric fluxes. Results also indicated that under the prevailing winds, the domain-averaged residence time in Gorgan Bay would be approximately 95 days. The rivers discharging into Gorgan Bay are considered as the main sources of nutrients in the bay. Since their mouths are located in the area with a residence time of over 100 days, Gorgan Bay could be at risk of eutrophication; it is necessary to adopt preventive measures against water quality degradation.  相似文献   

4.
Wenrui Huang  M. Spaulding 《水文研究》2002,16(15):3051-3064
Residence time of an estuary can be used to estimate the rate of removal of freshwater and pollutants from river inflow. In this study, a calibrated three‐dimensional hydrodynamic model was used to determine residence time in response to the change of freshwater input in Apalachicola Bay. The bay is about 40 km long and 7 km wide, with an average 3 m water depth. Through hydrodynamic model simulations, the spatial and temporal salinity and the total freshwater volume in the bay were calculated. Then the freshwater fraction method was used to estimate the residence time. Results indicate that the residence time in Apalachicola Bay typically ranges between 3 and 10 days for the daily freshwater input ranging from 177 m3/s to 4561 m3/s. Regression analysis of model results shows that an exponential regression equation can be used to correlate the estuarine residence time to changes of freshwater input. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Fundamental concepts of exchange and transport time scales in a coastal sea   总被引:1,自引:0,他引:1  
Concepts of age, residence time, transit time, and turn-over time are summarized which are useful for describing the exchange and transport of water or materials in a coastal sea. The age of a particle is defined as a time which has elapsed since it entered the reservoir, and the residence time is defined as a time which will be taken for a particle to reach the outlet. Time scales based on the age are simply related with those based on the residence time. It is shown that a suitable time scale for representing the exchange characteristics is the average residence time and not the turnover time, which has often been used as the exchange time scale. Further, the ‘remnant function’ which describes the phenomena of exchange or transport is introduced, and is related to the residence time. Exchange and transport time scales in a coastal sea are discussed on the basis of the residence time which can be applied to not only steady-state cases, but also the cases where material is injected instantaneously. The average residence time in a one-dimensional channel and bay is obtained from the solutions of the advection-diffusion equation. If we know a flow speed and diffusion coefficient in a channel or bay regarded as one-dimensional, we can translate them into the average residence time. As an example, the average residence time of the Seto Inland Sea is discussed.  相似文献   

6.
The macro-tidal Gulf of Kachchh, covering nearly 7000 km(2), is located about 150 km south of the Indus River mouth. In spite of semi-arid climate and lack of major rivers flowing into it, the Gulf is highly turbid with suspended sediment concentrations (SSC) during October-November 2002 ranging between 0.5 and 674 mgl(-1). Highly turbid waters are observed towards the northern portion of the mouth of the Gulf, at the head of the Gulf and adjacent to the numerous shoals present within the Gulf. Perennial high SSC in the Gulf is due to resuspension of sediments by strong tidal currents, shallow bathymetry and presence of fine-grained sediments on the sea floor. Numerical model studies show that there is a dynamic barrier in the central Gulf, which prevents the exchange of water and suspended sediments between the outer and inner Gulf. This dynamic barrier associated with strong east-west tidal currents restricts the turbid waters mainly to the northern Gulf, resulting in relatively clear waters (SSC<10 mgl(-1)) in the southern and central portions of the Gulf. Laser particle size distribution, clay mineralogy and geochemistry of the suspended matter show that the main source of sediments to the Gulf of Kachchh is the Indus River. Although the Indus discharge has been severely curtailed in the recent decades due to construction of numerous dams and barrages, the Gulf of Kachchh continues to receive resuspended sediments from the numerous meso and macro-tidal creeks of the Indus delta. The sediments at the head of the Gulf appear to be a mixture of sediments derived from the Indus as well as the numerous seasonal rivers draining the Rann of Kachchh.  相似文献   

7.
在复杂湖泊水动力环境作用下,换水周期和传输时间变化直接影响着污染物的迁移和转化.本文运用数值模拟方法,定量研究了季节水情动态下鄱阳湖换水周期和示踪剂传输时间的空间分布.结果表明,不同季节下鄱阳湖换水周期均具有较高的空间异质性,贯穿整个湖区的主河道换水周期约10 d,大多湖湾区的换水周期则长达300多天.尽管不同季节下换水周期空间分布格局几乎相似,但受鄱阳湖水动力场的季节变化影响,夏、秋季的换水周期要明显大于春、冬季.基于换水周期频率分布曲线的统计表明,80%的鄱阳湖区的换水周期约30 d,其余湖区换水周期为几十天至几百天,表明鄱阳湖应该更加确切地描述为一个快速换水和慢速换水同时共存的湖泊系统.鄱阳湖示踪剂传输时间介于4~32 d,夏、秋季的传输时间(11~32 d)约为春、冬季(4~8 d)的4倍,主要与鄱阳湖季节性水情特征及示踪剂的迁移路径有关.本文所获取的换水周期和示踪剂传输时间的时空分布信息可为今后鄱阳湖水质、水环境和生态系统管理和维护等方面提供重要科学参考.  相似文献   

8.
We examined the occurrence of seasonal hypoxia (O2<2 mg l−1) in the bottom waters of four river-dominated ocean margins (off the Changjiang, Mississippi, Pearl and Rhône Rivers) and compared the processes leading to the depletion of oxygen. Consumption of oxygen in bottom waters is linked to biological oxygen demand fueled by organic matter from primary production in the nutrient-rich river plume and perhaps terrigenous inputs. Hypoxia occurs when this consumption exceeds replenishment by diffusion, turbulent mixing or lateral advection of oxygenated water. The margins off the Mississippi and Changjiang are affected the most by summer hypoxia, while the margins off the Rhône and the Pearl rivers systems are less affected, although nutrient concentrations in the river water are very similar in the four systems. Spring and summer primary production is high overall for the shelves adjacent to the Mississippi, Changjiang and Pearl (1–10 g C m−2 d−1), and lower off the Rhône River (<1 g C m−2 d−1), which could be one of the reasons of the absence of hypoxia on the Rhône shelf. The residence time of the bottom water is also related to the occurrence of hypoxia, with the Mississippi margin showing a long residence time and frequent occurrences of hypoxia during summer over very large spatial scales, whereas the East China Sea (ECS)/Changjiang displays hypoxia less regularly due to a shorter residence time of the bottom water. Physical stratification plays an important role with both the Changjiang and Mississippi shelf showing strong thermohaline stratification during summer over extended periods of time, whereas summer stratification is less prominent for the Pearl and Rhône partly due to the wind effect on mixing. The shape of the shelf is the last important factor since hypoxia occurs at intermediate depths (between 5 and 50 m) on broad shelves (Gulf of Mexico and ECS). Shallow estuaries with low residence time such as the Pearl River estuary during the summer wet season when mixing and flushing are dominant features, or deeper shelves, such as the Gulf of Lion off the Rhône show little or no hypoxia.  相似文献   

9.
Deep water circulation, residence time, and chemistry in a karst complex   总被引:4,自引:0,他引:4  
We investigated the hydrochemistry of a complex karst hydrosystem made of two carbonate units along a coastal lagoon. Ground water emerges on the lagoon floor from a submarine spring. In addition, thermal waters circulate through the limestone and mix with karst water near the lagoon shore. A distinction between the water from the two carbonate units is related to marine influences and human activities. In one of the massifs, the data show an incongruent dissolution of dolomite with time. In the other system, a slight contamination by saline fluids from the thermal reservoir has led to high calcium and magnesium concentrations. 36Cl, 14C, and 3H data constrain the residence time of the water, and allow for the distinguishing of four circulation types: (1) shallow surface circulation (primarily above sea level) in the karstic units with short residence times (<20 years); (2) shallow subsurface circulation (approximately 0 to -50 m) below the karstic units with residence time in the order of 50 years; (3) deep circulation at depth of 700 to 1500 m in the Jurassic limestones below thick sedimentary cover, with residence time of several thousand years for a part of the water; and (4) deep circulation at a depth of approximately 2500 m, which represents the thermal reservoir in the Jurassic units with residence time of approximately 100,000 years. An interpretative hydrogeological framework is based on the constraints of the geochemical analyses of the deep thermal system, and by water flow from the surface to the deep parts of the carbonate formations.  相似文献   

10.
234Th:238U disequilibria have been used extensively as tracers of particle dynamics in marine environments. 234Th (t1/2=24.1 days) can be used as “proxy” for particle reactive pollutants, due to their similar rapid rate of scavenging onto particles and subsequent removal from the water column, to the sediments. Radioactive disequilibrium can be exploited to determine the rates and time-scales of processes occurring over days to months; in this instance the residence times of dissolved and particulate species with the benthic nepheloid layer (BNL).Three sampling cruises were undertaken in Thermaikos Gulf (NW Aegean Sea) during contrasting periods, to examine the impact of natural and anthropogenic activity on sediment resuspension. September and October 2001 represented background and trawling periods, respectively; January 2002 represented a mixed period, of trawling and storms.Dissolved 234Th is scavenged actively at the BNL, in the presence of suspended particulate material (SPM), with a mean residence time of 16 days. There is a weak inverse correlation between dissolved 234Th residence time and SPM concentration in the BNL, with the shortest residence times occurring during October 2001. No relationship was observed between particulate 234Th activities and SPM concentrations, indicating that particles are rapidly removed from the system, either by sinking or advection. The mean particulate 234Th residence time is 5 days.  相似文献   

11.
Calcium and magnesium levels have been monitored in slope foot drainage waters on a dolomite bedrock. Both calcium and magnesium rich pulses occur. Short term dissolution experiments demonstrate high calcium levels in solution while other authors have suggested that long residence time groundwater has relatively high levels of magnesium due to calcite precipitation. Patterns of field fluctuations in Ca: Mg ratios can thus be tentatively interpreted in terms of short residence time water of high calcium content mixing with long residence time water of high magnesium content. Fluorometric dye tracing has been used to indicate the orders of magnitude of soil water residence times, suggesting that quickflow components are resident in the system for a few hours to a few days. Further work is in progress.  相似文献   

12.
Surface water samples from marinas, commercial ports and open bay areas collected from Biscayne Bay and the Miami River, Florida, USA, were analyzed for the occurrence of IRGAROL 1051 by GC/MS. The anifouling boosting herbicide was found in 80% (46/57) of the samples collected between March 1999 and September 2000. Concentrations within the bay range between non-detected (<1 ppt) and 61 ppt (ng/L) and were generally low compared with levels reported in European or Japanese waters. Aside from the elevated concentrations observed along the Miami River South Fork (61 ppt), the highest concentrations observed in the bay corresponded to marinas with high density of pleasure craft and restricted water circulation. In contrast, occurrence of IRGAROL 1051 along the commercial port or the cruise line terminal was generally lower (<1-2.2 ppt). Concentrations around Coconut Grove Marina were consistently higher (5-12 ppt) than the rest of the bay waters during the whole period of time surveyed.  相似文献   

13.
A probabilistic method of calculating the occurrence of oxygen-depleted water within a combined hydrothermal and water quality model was presented in this paper to investigate the environmental impact of eutrophication on the living resources. The method was applied to an eutrophicated shallow coastal bay in western Japan, where the occurrence of red tides at the water surface and the onset of bottom hypoxic waters are observed every summer. Both meteorology and freshwater inflow contribute to the development of stratification of the bay, thus limiting the dissolved oxygen supply to bottom waters. The resulting hydrodynamics enhances the development of oxygen-depleted bottom waters by transporting organic matter produced by algal blooms to the inner bay, where it decomposes and exerts high SOD. During August, about 60% of the inner bay is hypoxic for prolonged durations and as a result most of the benthic biota and fish die. The method used here is a very useful and informative way to evaluate the spatial and temporal damage and severity caused by hypoxia on living resources. Moreover, the model results agreed very well with the observed hydrodynamics, thermal structure and water quality data of the stratified bay. The model can be used for other lakes and bays where knowledge of temperature and density stratification is important for assessing water quality.  相似文献   

14.
《Continental Shelf Research》1987,7(10):1139-1159
Princess Charlotte Bay, located on the northern Great Barrier Reef, is an environment of terrigenous and carbonate deposition. The dynamics on this shelf are controlled by the Great Barrier Reef at the edge of the shelf, and the mid-shelf, shore-normal reefs. This study examines the dynamics during the dry season, with six time-series records from instrumented tripod deployments and numerous hydrographic stations.The shallow nearshore waters and the estuaries prove to be the sites where most active sediment resuspension and transport takes place. Sediment resuspension is effected primarily by waves in the nearshore, and channeling of tidal currents in the estuaries. Bedload transport did not occur during this study, mainly because current velocities were too low. Suspended particulate matter (SPM) transport in the bay is governed by tides and winds. Strong tidal flow imparts a strong offshore component to the transport, and strong southeast winds impart an alongshore component that transports SPM out of the bay to the northwest. Rattlesnake Channel, east of Princess Charlotte Bay, is another route by which SPM leaves the bay. Flow through this channel is predominantly tidal, with ebb waters (leaving Princess Charlotte Bay) carrying higher SPM concentrations than flood waters.SPM flux in the nearshore was an order of magnitude higher than at offshore stations, with highest fluxes generally occurring at times of sustained southeast winds. Transect data show that SPM drops to average bay values in water 11 m deep, indicating most SPM is transported in nearshore waters.  相似文献   

15.
Dissolved and particulate (210)Pb and (210)Po were determined at 15 stations along the coastline off western Taiwan in April 2007. The (210)Pb activities in dissolved and particulate phases fell within a relatively small range of 2.4-5.2 dpm 100 L(-1) and 1.0-3.2 dpm 100 L(-1), respectively. The dissolved and particulate (210)Po activities also fell within a small range of 0.8-3.4 dpm 100 L(-1) and 1.1-2.9 dpm 100 L(-1), respectively. The correlation of the distribution coefficients (K(d)) of (210)Pb and (210)Po with particle concentration in turbid waters are not as evident as in the open ocean. The mass balance calculation shows that the residence times of (210)Pb and (210)Po with respect to particle removal from the nearshore waters ranges from 3 to 15 days and from 14 to 125 days, respectively. The flux of particulate organic carbon was estimated by (210)Po proxy and ranged from 4.8 to 33.7 mmol-C m(-2) d(-1).  相似文献   

16.
The concentrations of two greenhouse gases, nitrous oxide (N2O) and methane (CH4), and the bacterial processes involved in their production (nitrification and denitrification for N2O, and methanogenesis for CH4), were determined in surface waters of two coastal areas under the influence of freshwater inputs, on one part in the Gulf of Lions and the Rhone River plume, in northwestern Mediterranean Sea, and on the other part in the inner Thermaikos Gulf, in Aegean Sea, eastern Mediterranean Sea. High concentrations of dissolved CH4 and N2O were recorded in the surface waters of Gulf of Lions and Gulf of Thermaikos, up to 1300 nM for CH4, and 40 nM for N2O. No direct relationship could be found between the concentration and production of the biogases, as they may also be produced in deep water or bottom sediment in shallow areas, or derived from anthropogenic activity or ship contamination in polluted areas. Irrespective of the origin of CH4 and N2O, the presence of extremely high concentrations of these two gases in superficial seawater implies that they can easily escape to the atmosphere; consequently, these nearshore waters enriched in greenhouse gases may play an important role in the increase in atmospheric concentration of both CH4 and N2O.  相似文献   

17.
18.
The total pollution load management system (TPLMS) was first applied in 2007 to the highly developed Masan Bay watershed, Korea. To evaluate the effect of TPLMS on water quality improvement, we analyzed the water qualities in rivers and bay during 2005-2010, targeting chemical oxygen demand (COD), suspended sediment (SS), total nitrogen (TN), and total phosphorus (TP) loads. Land-based pollutant loading all decreased during this period, with a significant reduction in COD and SS loads (p<0.01). The COD reduction in seawater, following the TPLMS implementation, was also significant (p<0.01). Time-lagged responses in COD and Chl-a supported an estimated seawater residence time of ~1 month. Land-based nutrient loads were also significantly reduced for TN (p<0.01) and TP (p<0.05), however, significant reductions were not observed in the bay, indicating potential alternative nutrient inputs from non-point sources into the bay system.  相似文献   

19.
Water quality and health status of the Senegal River estuary   总被引:1,自引:0,他引:1  
The Senegal River estuary was sampled in May 2002 to get the first data on both the trophic and sanitary status of the water of the main river of the northwest African coast. Several physical, chemical and microbiological variables were measured twice along a transect. Inorganic nutrient concentrations were low while phytoplanktonic abundances (0.58-1.8 x 10(5) cells ml(-1)), bacterial abundances (0.27-8.1 x 10(7) cells ml(-1)), activity (22-474 pmol l(-1) h(-1)), were among the highest recorded in such ecosystems. Microbiological variables revealed a eutrophicated status for this estuary. Largest abundances of fecal contamination bacterial indicators were only detected in localized areas (Saint-Louis city and surrounding areas). The apparent good survival of fecal indicator bacteria in the estuarine waters despite a long residence time (4-5 days) has been evaluated by complementary survival experiments. Exposed to a salinity gradient, a local Escherichia coli strain showed a significantly better survival than those of an E. coli reference strain.  相似文献   

20.
The Sable Gully is a broad deep underwater canyon located to the east of Sable Island on the edge of the Scotian Shelf. Being the home of many marine species including the endangered Northern Bottlenose Whale, the Gully was designated as a marine protected area (MPA) in 2004. Better understanding of physical environmental conditions over this MPA is needed for sustainable ecosystem management. In this study, a multi-nested ocean circulation model and a particle tracking model are used to examine the three-dimensional (3D) circulation and movement of particles carried passively by the flow over the Sable Gully. The 3D circulation model is driven by tides, wind, and surface heat/freshwater fluxes. The model performance is assessed by comparing the results with the previous numerical tidal results and current meter observations made in the Gully. The simulated tidal circulation over the Gully and adjacent waters is relatively strong on shallow banks and relatively weak on the continental slope. Below the depth of the Gully rim ( ~ 200 m), the tidal currents are constrained by the thalweg of the Gully and amplified toward the Gully head. The simulated subtidal circulation in the Gully has a complex spatial structure and significant seasonal variability. The simulated time-dependent 3D flow fields are then used in a particle tracking model to study the particle movements, downstream and upstream areas, and residence time of the Gully. Based on the movements of particles released at the depth of the Gully rim and tracked forward in time, the e-folding residence time is estimated to be about 7 and 13 days in February and August 2006, respectively. The Gully flanks are identified as high retention areas with the typical residence time of 10 and 20 days in February and August 2006, respectively. Tracking particles with and without tides reveals that tidal circulation reduces the value of residence time in the Gully, particularly along the Gully flanks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号