首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groundwater is a major resource for meeting huge domestic and agricultural requirements of Kaithal district in Haryana. Therefore, evaluation of its quality in terms of suitability for domestic and agricultural sectors is necessary for sustainable management of the resource. The present study has analyzed pre- and post-monsoon physico-chemical data of groundwater samples from bore wells spread over the entire district. Spatial distribution maps were generated for hydrogen ion concentration, total dissolved solids, total hardness, electrical conductivity, sodium adsorption ratio, residual sodium carbonate and percent sodium using the geographic information system. Furthermore, the study area was demarcated into different groundwater quality zones for domestic and agricultural use by applying various national and international standards. It was observed from the study that the groundwater was predominantly hard, alkaline and saline in nature. However, it was within safe limits for domestic use. Further, it was also experienced from the analysis that in about two-third parts of the district, groundwater was in desirable-to-permissible quality class for agricultural use but hazardous for soil as well as for crops in the remaining part. Also, a moderation in water quality was observed after the monsoon season, which can be attributed to a possible dilution due to groundwater recharge.  相似文献   

2.
Groundwater is a very important resource across Ismailia area as it is used in domestic, agricultural, and industrial purposes. This makes it absolutely necessary that the effects of land use change on groundwater resources are considered when making land use decisions. Careful monitoring of groundwater resource helps minimize the contamination of this resource. This study developed a GIS-based model to assess groundwater contamination in the West Ismailia area based on its hydrochemical characteristics. The model incorporated five different factors which are standardized to a common evaluation scale. The produced factor maps include the depth to the water table, the potential recharge, the soil type, the topography, and the thickness of saturation. These maps are combined in ERDAS Imagine, ARC INFO, and ARC GIS software using geostatistics and a weighted overlay process to produce the final groundwater potential risk map. The model output is then used to determine the vulnerability of groundwater to contamination by domestic, agricultural, and industrial sources. The produced risk maps are then combined with the groundwater contamination potentiality map using an arithmetic overlay in order to identify areas which were vulnerable to contamination. The results of this study revealed that the groundwater is highly vulnerable to contamination that may result from the inappropriate application of agrichemicals and domestic and industrial activities. The produced integrated potential contamination maps are very useful tools for a decision maker concerned with groundwater protection and development.  相似文献   

3.
文章以MAPGIS65为基础平台,采用Visual C#编程语言进行二次开发,利用组件式开发技术,建立地下水水化学辅助分析信息系统(EKGHAS),在实现基本数据管理、图形显示及查询的同时,实现等值线生成和叠置分析等空间分析功能,绘制相关图件。然后,将之用于鄂尔多斯盆地洛河组地下水水化学类型的分区研究,结果显示该区域水化学类型分布与当地水动力场分布所反映出的地下水补、径、排规律基本一致,表明该GIS系统能满足对地下水水化学场研究所需数据的实时、可视化管理需要。 更多还原  相似文献   

4.
Earthquakes and tsunamis along Morocco’s coasts have been reported since historical times. The threat posed by tsunamis must be included in coastal risk studies. This study focuses on the tsunami impact and vulnerability assessment of the Casablanca harbour and surrounding area using a combination of tsunami inundation numerical modelling, field survey data and geographic information system. The tsunami scenario used here is compatible with the 1755 Lisbon event that we considered to be the worst case tsunami scenario. Hydrodynamic modelling was performed with an adapted version of the Cornell Multigrid Coupled Tsunami Model from Cornell University. The simulation covers the eastern domain of the Azores-Gibraltar fracture zone corresponding to the largest tsunamigenic area in the North Atlantic. The proposed vulnerability model attempts to provide an insight into the tsunami vulnerability of building stock. Results in the form of a vulnerability map will be useful for decision makers and local authorities in preventing the community resiliency for tsunami hazards.  相似文献   

5.
The dependency of people on groundwater has increased in the past few decades due to tremendous increase in crop production, population and industrialization. Groundwater is the main source of irrigation in Shiwaliks of Punjab. In the present study the samples were collected from predetermined location as was located on satellite image on basis of spectral reflectance. Global positioning system was used to collect samples from specific locations. Principal components analysis (PCA) together with other factor analysis procedures consolidate a large number of observed variables into a smaller number of factors that can be more readily interpreted. In the present study, concentrations of different constituents were correlated based on underlying physical and chemical processes such as dissociation, ion exchange, weathering or carbonate equilibrium reactions. The PCA produced six significant components that explained 78% of the cumulative variance. The concentration of the few trace metals was found to be much higher indicating recharge due to precipitation as main transport mechanism of transport of heavy metals in groundwater which is also confirmed by PCA. Piper and other graphical methods were used to identify geochemical facies of groundwater samples and geochemical processes occurring in study area. The water in the study area has temporary hardness and is mainly of Ca–Mg–HCO3 type.  相似文献   

6.
Konarsiah salt diapir is situated in the Simply Folded Zone of the Zagros Mountain, south Iran. Eight small permanent brine springs emerge from the Konarsiah salt body, with average total dissolved solids of 326.7 g/L. There are numerous brackish to saline springs emerging from the alluvial and karst aquifers adjacent to the diapir. Concerning emergence of Konarsiah diapir in the study area, halite dissolution is the most probable source of salinity in the adjacent aquifers. However, other sources including evaporation and deep brines through deep Mangerak Fault are possible. The water samples of the study area were classified based on their water-type, salinity, and the trend of the ions concentration curves. The result of this classification is in agreement with the hydrogeological setting of the study area. The hydrochemical and isotopic evaluations show that the groundwater samples are the result of mixing of four end members; Gachsaran sulfate water, Sarvak and Asmari carbonate fresh waters, and diapir brine. The molar ratios of Na/Cl, Li/Cl, Br/Cl, and SO4/Cl; and isotopic signature of the mixed samples justify a groundwater mixing model for the aquifers adjacent to the salt diapir. The share of brine in each adjacent aquifer was calculated using Cl mass balance. In addition, concentrations of 34 trace elements were determined to characterize the diapir brine and to identify the possible tracers of salinity sources in the mixed water samples. B, Mn, Rb, Sr, Cs, Tl, and Te were identified as trace elements evidencing contact of groundwater with the salt diapir.  相似文献   

7.
The present work was carried out in Nalbari district of Assam (India) with an objective to assess the quality of groundwater and to check its suitability for drinking and irrigation purposes. Groundwater samples were collected from 50 different locations during pre- and post-monsoon seasons of 2016. Results of chemical analysis revealed that mean concentration of cations varied in the order Ca2+?>?Na+?>?Mg2+?>?K+, while for anions the order was HCO3 ??>?Cl??>?SO42??>?NO32??>?F? during both pre- and post-monsoon seasons. The suitability of groundwater samples for drinking purpose was assessed by comparing the results of physico-chemical analysis of groundwater with Indian Standards. Further, its suitability for irrigation purpose was assessed by evaluating several parameters like sodium adsorption ratio (SAR), sodium percentage (Na%), magnesium ratio, Kelly’s ratio and residual sodium carbonate (RSC). The SAR values obtained for all the samples were plotted against EC values in the US Salinity Laboratory diagram, and it was revealed that the most of the samples fall under water type C2-S1 indicating medium salinity and low SAR. Further, it was found that the majority of the samples belong to Ca–Mg–HCO3 hydrochemical facies followed by Ca–Mg–Cl–SO4, whereas only a few samples belong to Na–K–HCO3 hydrochemical facies.  相似文献   

8.
In this study, fuzzy AHP method is used for extracting the water quality indicators based on the Schuler standard and World Health Organization (WHO) guidelines during a 20-year period. For this purpose, the best fit of the zoning model was performed. Furthermore, by comparing the standard errors, the continuous Raster layer was extracted from the important parameters used in generating the qualitative potential assessment index. The classified layer was generated by integrating continuous layers in the GIS environment and with the use of Python programming. The similarity of the outputs of both methods indicates the presence of large sections of aquifers in the middle and southwestern regions of Iran in the “temporarily drinkable” and “bad” classes. The calculations showed that the majority of aquifers that were located in the “inappropriate” class during the first 10 years fell to less valuable class types. Based on the results of the model, there is a direct correlation between the drop in water resources and the decline in the quality indices. In addition, in the Urmia and Bushehr coastal aquifers, due to excessive water withdrawal and salty water penetration, the quality of the table water is in critical condition. Based on the results of the research, the aquifers in the range of Zagros and Alborz mountains show the least change in water quality. The reason for this is the depth of the aquifer and the ability to recharge it.  相似文献   

9.
The purpose of this study is to develop statistical models for groundwater quality assessment in urban areas using Geographic Information Systems (GIS). To develop the models, the concentrations of nitrate (expressed as nitrogen, NO3-N), which are different according to the type of land use, well depth and distribution of rainfall, were analyzed in the Seoul (the capital of South Korea) area. Data such as land use, location of wells and groundwater quality data for nitrate contamination were collected and a database constructed within GIS. The distribution of NO3-N concentrations is not normal, and the results of the Mann-Whitney U-test analysis show the difference of NO3-N concentration by well depth and by distribution of rainfall. In both the shallow and deep wells, the radius of influence is 200 m in the dry season and 250 m in the rainy season, showing the tendency to increase in the rainy season. The results of correlation and regression analysis indicate that mixed residential and business areas and cropped field areas are likely to be the major contributor of increasing NO3-N concentration. Land uses are better correlated with NO3-N in deep wells than in shallow wells.  相似文献   

10.
11.
A method based on concept of fuzzy set theory has been used for decision-making for the assessment of physico-chemical quality of groundwater for drinking purposes. Conventional methods for water quality assessment do not consider the uncertainties involved either in measurement of water quality parameters or in the limits provided by the regulatory bodies. Fuzzy synthetic evaluation model gives the certainty levels for the quality class of the water based on the prescribed limit of various regulatory bodies and opinion of the experts from the field of drinking water quality. In this paper, application of fuzzy rule based optimization model is illustrated with twenty groundwater samples from Sohna town of Gurgaon district of Southern Haryana, India. These samples were analysed for 15 different physico-chemical parameters, out of them nine important parameters were used for the quality assessment using fuzzy synthetic evaluation approach. From this study, it has been concluded that all the water samples are in acceptable category whose certainty level ranges from 44 to 100%. Water from these sources can be used for the drinking purposes if alternate water source is not available without any health concern on the basis of physico-chemical characteristics.  相似文献   

12.
A study was carried in Mettur taluk, Salem district of Tamilnadu, India to develop a DRASTIC vulnerability index in GIS environment owing to groundwater pollution with increasing population, industries, and agricultural activities. Seven DRASTIC layers were created from available data (depth to water table, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity) and incorporated into DRASTIC model to create a groundwater vulnerability map by overlaying the hydrogeological parameters. The output map indicates southwestern part of the study area with high pollution potential, northern and northwestern parts as moderate pollution potential and northeastern parts as low and no risk of pollution potential. For validating the vulnerability assessment, a total of 46 groundwater samples were collected from different vulnerability zones of the study area for two different seasons (pre- and post-monsoon) and analyzed for major anions and cations. Higher ionic concentrations were noted in wells located near highly industrialized, urbanized, and agricultural active zones. The water types represent Na–Mg–HCO3 and Na–Cl–HCO3 type indicating dominance of anthropogenic-related activities. Nitrate and chloride were demarcated as pollution indicators and correlated with DRASTIC vulnerability map. The results show that southwestern, northwestern, and northern parts of the study area recorded with high and moderate vulnerable zones, record higher nitrate values. In contrast to DRASTIC method predicted, low vulnerable zones show higher chloride concentration may be due to agricultural and urban development.  相似文献   

13.
Groundwater samples (n = 163) were collected across Kashmir Valley in 2010 to assess the hydrogeochemistry of the groundwater in shallow and deep aquifers and its suitability for domestic, agriculture, horticulture, and livestock purposes. The groundwater is generally alkaline in nature. The electrical conductivity (EC) which is an index to represent the total concentration of soluble salts in water was used to measure the salinity hazard to crops as it reflects the TDS in groundwater ranging from 97 to 1385 μS/cm, except one well in Sopore. The average concentration of major ions was higher in shallow aquifers than in deeper aquifers. In general, Ca2+ is the dominant cation and HCO \(_{3}^{-}\) the dominant anion. Ca–HCO3, Mg–HCO3, Ca–Mg–HCO3, Na–HCO3 were the dominant hydrogeochemical facies. High concentration of HCO3 and pH less than 8.8 clearly indicated that intense chemical weathering processes have taken place in the study area. The groundwater flow pattern in the area follows the local surface topography which not only modifies the hydrogeochemical facies but also controls their distribution. The groundwater in valley flows into four directions, i.e., SW–NE, NE–W, SE-NW and SE–NE directions. The results suggest that carbonate dissolution is the dominant source of major ions followed by silicate weathering and ion-exchange processes. The concentrations of all the major ions determined in the present study are within the permissible limits of WHO and BIS standards. The results of Total Hardness, SAR, Na%, Kelly Index, USDA classification, Magnesium absorption ratio, residual sodium carbonate, and PI suggested that groundwater is good for drinking, livestock, and irrigation purposes.  相似文献   

14.
The chemical composition of 29 bore well water samples throughout the Kalpakkam region, South India, was determined to identify the major hydrogeochemical processes and the suitability of groundwater for domestic and irrigation purposes. The hydrochemical data were analyzed with reference to World Health Organization (WHO) standards and their hydrochemical facies were determined. The Piper plot shows that most of the groundwater samples fall in the field of mixed calcium–sodium–bicarbonate type followed by sodium–chloride, calcium–bicarbonate and mixed calcium–magnesium–chloride water types. The concentration of total dissolved solids exceeds the desirable limit in about 14% of samples; alkalinity values exceed the desirable limit in about 34% of the samples. The concentration of sulphate is well within the desirable limit at all the locations. The dominance of various heavy metals in the groundwater followed the sequence: Zn > Fe > Mn > Cu > Ni > Pb > Cr > Cd. Among the metal ions, the concentration of chromium and cadmium are within the permissible limit. Data are plotted on the US Salinity Laboratory diagram, which illustrates that most of the samples fall in the field of high salinity and low sodium hazard, which can be used to irrigate salt tolerant and semi-tolerant crops under favorable drainage conditions. Based on the analytical results, chemical indices like sodium adsorption ratio and residual sodium carbonate were calculated which show that most of the samples are good for irrigation.  相似文献   

15.
干旱区地下水咸化机制的区域氘盈余解析   总被引:1,自引:1,他引:0  
定量研究干旱区地下水的咸化机制对于水资源管理具有重要意义。针对已有研究需要考虑补给源水δ18O和δ2H值的局限,提出了一种利用区域氘盈余计算初始水、蒸发和溶滤对地下水咸化贡献的方法,并以罗山地区第四系地下水为例进行了分析。结果表明:该方法计算误差较小,可以有效区分蒸发和溶滤的贡献。地下水先溶滤后蒸发的自然咸化过程决定了溶滤作用的主导地位,咸化规模主要取决于溶滤作用程度。  相似文献   

16.
A hydrochemical study has been carried out on the fresh groundwater resources of Potharlanka, Krishna Delta, India. Groundwater samples were collected at 58 sites and analyzed in June and December 2001. The groundwater is mildly alkaline with a pH of 7.2–8.2, electrical conductivity (EC) varies from 645–4,700 µS/cm in June 2001 (pre-monsoon) and from 605–5,770 µS/cm in December 2001 (post-monsoon). More than 75% of the samples have >1000 mg/l TDS which is higher than the maximum permissible limit for potable water. Na and Cl are the dominating cations and these are directly proportional to TDS. Extremely low HCO 3/Cl and variable high Mg/Ca (molar ratios) indicated the transformation of the fresh groundwater aquifer systems to saline. Groundwater of this island is classified as Na–Cl, Na–Ca–Cl–HCO 3, Na–Mg–Cl–SO 4 and mixed types. A high percentage of mixed water types indicates the possibility of simultaneous fresh groundwater dilution activity along with a seawater ingression/intrusion process. Low rainfall and excessive withdrawal of groundwater has caused the increase of saline water intrusion.  相似文献   

17.
18.
Assessment of groundwater resources in India is guided by National Water Policy (1987, 2002) which states that groundwater resources can be exploited only up to its recharge limit. The methodology for groundwater resources assessment in India is broadly based on Ground Water Resources Estimation Methodology, 1997 and it involves assessment of annual replenishable groundwater resources (recharge), annual groundwater draft (utilization) and the percentage of utilization with respect to recharge (stage of development). The assessment units (blocks/watersheds) are categorized based on stage of groundwater development (utilization) and the long term water level trend. The present methodology though useful in identification and prioritization of areas for groundwater management, falls short of addressing several critical issues like spatial and temporal variation of groundwater availability within the aquifer, accessibility of groundwater resources and quality of groundwater. This paper introduces a new categorisation scheme considering the above issues. The proposed scheme takes into account four criteria, viz. (i) stage of exploitation, (ii) extractability factor, (iii) temporal availability factor and (iv) quality factor. In comparison to the existing method used for categorisation, the proposed approach is more inclusive. The methodology is also equally suitable for both alluvial and hard rock terrain since it takes into consideration the variable characteristics of different types of aquifers and convergence of quantitative and qualitative assessment. The categorisation proposed here involves GIS based integration of different parameters/ themes. This allows better representation of spatial variability. The proposed methodology is demonstrated in this paper taking a case study from a hard rock terrain in central India.  相似文献   

19.
GIS for the assessment of the groundwater recharge potential zone   总被引:4,自引:0,他引:4  
Water resources in Taiwan are unevenly distributed in spatial and temporal domains. Effectively utilizing the water resources is an imperative task due to climate change. At present, groundwater contributes 34% of the total annual water supply and is an important fresh water resource. However, over-exploitation has decreased groundwater availability and has led to land subsidence. Assessing the potential zone of groundwater recharge is extremely important for the protection of water quality and the management of groundwater systems. The Chih-Pen Creek basin in eastern Taiwan is examined in this study to assess its groundwater resources potential. Remote sensing and the geographical information system (GIS) are used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge are derived using aerial photos, geology maps, a land use database, and field verification. The resultant map of the groundwater potential zone demonstrates that the highest recharge potential area is located towards the downstream regions in the basin because of the high infiltration rates caused by gravelly sand and agricultural land use in these regions. In contrast, the least effective recharge potential area is in upstream regions due to the low infiltration of limestone.  相似文献   

20.
The purpose of this research is to evaluate the groundwater quality in Dindugal district of Tamil Nadu based on the water quality index by geographic information system (GIS) and statistical analysis. This area consists of 80 functional tanneries around Dindigul town with a capacity to process about 200 Mt of hides and skins as leather. In 13 villages, as many as 1090 houses were damaged by tannery contamination. A total of 66 groundwater samples were collected to identify the geochemical sources and contamination. The order of major cations is Na > Ca > Mg > K, while that of anions is Cl > SO4 > HCO3 > F > PO4. CaCl2, MgCl2, and (CaHCO3)2 types suggested that the mixing of high-salinity water was caused by irrigation return flow, domestic wastewater, and septic tank effluents, with existing water followed by ion exchange reactions. Moreover, Gibbs plots indicated that groundwater contamination was derived from the weathering of granitic gneisses as well as the leaching of evaporated and crystallized ions from agricultural and industrial effluents. The water quality index (WQI) exhibited 8 % of the groundwater samples were not suitable for drinking purpose. The GIS maps showed that the poor water quality decreased toward the southern part of the study area. WQI of TDS, fluoride, sodium, potassium, and bicarbonate were high in groundwater. Multivariate statistical analyses (principal component analysis (PCA), factor analysis (FA)) suggested that the groundwater chemistry was changed by the weathering of source rocks ion exchange and leaching of inorganic components and addition from anthropogenic effluents. Finally, it is thought that the monitoring and assessment works are very useful to understand the degree and sources of groundwater contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号