首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Recent work by Dyer and Morfill has shown that satellite measurements of the diffuse cosmic X-ray spectrum made with crystal scintillators may include errors due to radioactive spallation products formed in the detector by inner belt and cosmic ray protons.

An estimate is made of the magnitude of this source of background for the various experimental situations and it is shown that apparent features at 40 keV and 1 MeV are likely to be due to radioactive decays in the instruments. A review is made of experiments covering the range 1 keV-100 MeV in order to ascertain whether a single exponent spectrum is capable of fitting the experimental results. The astrophysical implications of such a spectrum are briefly considered.

Suggestions are made for the location and correction for background of future experiments.

  相似文献   

2.
Previous work has shown the importance of induced radioactivity as a source of background counts in X- and -ray astronomy experiments which use scintillation detectors. Comprehensive data on the decay spectra observed in Caesium Iodide crystals following irradiation by 155 MeV protons has been obtained by the Imperial College group and is presented here. The spectra cover the energy loss range from 20 keV to 3.4 MeV and were collected at times after irradiation ranging from 1 min until 200 d. A sufficient selection of spectra is given to enable calculations to be made of the time variations in radioactivity which would be observed in similar space-borne detectors subjected to irradiation by inner belt and cosmic ray protons. Examples of such calculations are given.  相似文献   

3.
130Te is one of the candidates for the search for neutrinoless double beta decay. It is currently planned to be used in two experiments: CUORE and SNO+. In the CUORE experiment TeO2 crystals cooled at cryogenic temperatures will be used. In the SNO+ experiment natTe will be deployed up to 0.3% loading in the liquid scintillator volume. A possible background for the signal searched for, are the high Q-value, long-lived isotopes, produced by cosmogenic neutron and proton spallation reaction on the target material. A total of 18 isotopes with Q-value larger than 2 MeV and T1/2 > 20 days have been identified as potential backgrounds. In addition low Q-value, high rate isotopes can be problematic due to pile-up effects, specially in liquid scintillator based detectors. Production rates have been calculated using the ACTIVIA program, the TENDL library, and the cosmogenic neutron and proton flux parametrization at sea level from Armstrong and Gehrels for both long and short lived isotopes. The obtained values for the cross sections are compared with the existing experimental data and calculations. Good agreement has been generally found. The results have been applied to the SNO+ experiment for one year of exposure at sea level. Two possible cases have been considered: a two years of cooling down period deep underground, or a first purification on surface and 6 months of cooling down deep underground. Deep underground activation at the SNOLAB location has been considered.  相似文献   

4.
We perform Monte Carlo simulations of cosmic ray-induced hard X-ray radiation from the Earth's atmosphere. We find that the shape of the spectrum emergent from the atmosphere in the energy range 25–300 keV is mainly determined by Compton scatterings and photoabsorption, and is almost insensitive to the incident cosmic ray spectrum. We provide a fitting formula for the hard X-ray surface brightness of the atmosphere as would be measured by a satellite-borne instrument, as a function of energy, solar modulation level, geomagnetic cut-off rigidity and zenith angle. A recent measurement by the INTEGRAL observatory of the atmospheric hard X-ray flux during the occultation of the cosmic X-ray background by the Earth agrees with our prediction within 10 per cent. This suggests that Earth observations could be used for in-orbit calibration of future hard X-ray telescopes. We also demonstrate that the hard X-ray spectra generated by cosmic rays in the crusts of the Moon, Mars and Mercury should be significantly different from that emitted by the Earth's atmosphere.  相似文献   

5.
Hard X-ray detectors in space are prone to background signals due to the ubiquitous cosmic rays and cosmic diffuse background radiation that continuously bombards the satellites which carry the detectors. In general, the background intensity depends on the space environment as well as the material surrounding the detectors. Understanding the behavior of the background noise in the detector is very important to extract the precise source information from the detector data. In this paper, we carry out Monte Carlo simulations using the GEANT-4 toolkit to estimate the prompt background noise measured with the detectors of the RT-2 Experiment onboard the CORONAS-PHOTON satellite.  相似文献   

6.
It has been suggested that the highest-energy cosmic rays might be protons resulting from collapsing cosmic strings in the Universe. We point out that this mechanism, although attractive, has important shortcomings, notably the fact that gamma rays produced along with the protons and those produced by the protons in their interactions with the cosmic background radiation generate cascades in the Universe and result in unacceptably high fluxes of cosmic gamma rays in the region of hundreds of MeV.  相似文献   

7.
A lead-free neutron monitor operating at High Altitude Research Laboratory (HARL), Gulmarg optimized for detecting 2.45 MeV neutron bursts produced during the atmospheric lightning discharges is also concurrently used for studying background neutron component present in the atmosphere. These background neutrons are produced due to the interaction of primary cosmic rays with the atmospheric constituents. In order to study and extract the information about the yield of the neutron production during transient atmospheric lightning discharges, the system is continuously operated to monitor and record the cosmic ray produced background secondary neutrons in the atmosphere. The data analysis of the background neutrons recorded by Lead-Free Gulmarg Neutron Monitor (LFGNM) has convincingly established that the modulation effects due to solar activity phenomena compare very well with those monitored by the worldwide IGY or NM64 type neutron monitors which have optimum energy response relatively towards the higher energy regime of the cosmic rays. The data has revealed various types of modulation phenomena like diurnal variation, Forbush decrease etc. during its entire operational period. However, a new kind of a periodic/seasonal variation pattern is also revealed in the data from September 2007 to September 2012, which is seen to be significantly consistent with the data recorded by Emilio Segre observatory, Israel (ESOI) Neutron Monitor. Interestingly, both these neutron monitors have comparable latitude and altitude. However, the same type of consistency is not observed in the data recorded by the other conventional neutron monitors operating across the globe.  相似文献   

8.
We analyze uncertainties in the cosmic X-ray background measurements performed by the INTEGRAL observatory. We find that the most important effect limiting the accuracy of the measurements is related to the intrinsic background variation in detectors. Taking into account all of the uncertainties arising during the measurements we conclude that the X-ray background intensity obtained in the INTEGRAL observations is compatible with the historic X-ray background observations performed by the HEAO-1 satellite.  相似文献   

9.
Based on monoenergetic proton beam tests of both NaI and CsI, a method for estimating the spallation background, due to the cosmic ray protons and trapped protons, has been developed. Comparisons between the calculated background noise and those measured by telescopes on board satellites are made. Good agreements of these comparisons demonstrate that the approach is capable of providing realistic estimates for specific space borne gamma-ray telescopes in well defined orbits.  相似文献   

10.
We estimate energy spectra and fluxes at the Earth’s surface of the cosmic and Galactic neutrino backgrounds produced by thermonuclear reactions in stars. The extra-galactic component is obtained by combining the most recent estimates of the cosmic star formation history and the stellar initial mass function with accurate theoretical predictions of the neutrino yields all over the thermonuclear lifetime of stars of different masses. Models of the structure and evolution of the Milky Way are used to derive maps of the expected flux generated by Galactic sources as a function of sky direction. The predicted neutrino backgrounds depend only slightly on model parameters. In the relevant 50 keV–10 MeV window, the total flux of cosmic neutrinos ranges between 20 and 65 cm−2 s−1. Neutrinos reaching the Earth today have been typically emitted at redshift z2. Their energy spectrum peaks at E0.1–0.3 MeV. The energy and entropy densities of the cosmic background are negligible with respect to the thermal contribution of relic neutrinos originated in the early universe. In every sky direction, the cosmic background is outnumbered by the Galactic one, whose integrated flux amounts to 300–1000 cm−2 s−1. The emission from stars in the Galactic disk contributes more than 95% of the signal.  相似文献   

11.
Abstract— We have determined the recoil range of spallation xenon produced by irradiation of Ba glass targets with ?1190 and ?268 MeV protons, using a catcher technique, where spallation products are measured in target and catcher foils. The inferred range for 126Xe produced in silicon carbide is ?0.19 μm, which implies retention of ?70% for 126Xe produced in “typical” presolar silicon carbide grains of 1 μm size. Recoil loss of spallation xenon poses a significantly smaller problem than loss of the spallation neon from SiC grains. Ranges differ for the various Xe isotopes and scale approximately linearly as function of the mass difference between the target element, Ba, and the product. As a consequence, SiC grains of various sizes will have differences in spallation Xe composition. In an additional experiment at ?66 MeV, where the recoil ranges of 22Na and 127Xe produced on Ba glass were determined using γ‐spectrometry, we found no evidence for recoil ranges being systematically different at this lower energy. We have used the new data to put constraints on the possible presolar age of the SiC grains analyzed for Xe by Lewis et al. (1994). Uncertainties in the composition of the approximately normal Xe component in SiC (Xe‐N) constitute the most serious problem in determining an age, surpassing remaining uncertainties in Xe retention and production rate. A possible interpretation is that spallation contributions are negligible and that trapped 124Xe/126Xe is ?5% lower in Xe‐N than in Q‐Xe. But also for other reasonable assumptions for the 124Xe/126Xe ratio in Xe‐N (e.g., as in Q‐Xe), inferred exposure ages are considerably shorter than theoretically expected lifetimes for interstellar grains. A short presolar age is in line with observations by others (appearance, grain size distribution) that indicate little processing in the interstellar medium (ISM) of surviving (crystalline) SiC. This may be due to amorphization of SiC in the ISM on a much shorter time scale than destruction, with amorphous SiC not surviving processing in the early solar system. A large supply of relatively young grains may be connected to the proposed starburst origin (Clayton 2003) for the parent stars of the mainstream SiC grains.  相似文献   

12.
《Astroparticle Physics》2010,32(6):417-420
We revisit calculations of the cosmogenic production rates for several long-lived isotopes that are potential sources of background in searching for rare physics processes such as the detection of dark matter and neutrinoless double-beta decay. Using updated cosmic-ray neutron flux measurements, we use TALYS 1.0 to investigate the cosmogenic activation of stable isotopes of several detector targets and find that the cosmogenic isotopes produced inside the target materials and cryostat can result in large backgrounds for dark matter searches and neutrinoless double-beta decay. We use previously published low-background HPGe data to constrain the production of 3H on the surface and the upper limit is consistent with our calculation. We note that cosmogenic production of several isotopes in various targets can generate potential backgrounds for dark matter detection and neutrinoless double-beta decay with a massive detector, thus great care should be taken to limit and/or deal with the cosmogenic activation of the targets.  相似文献   

13.
We revisit calculations of the cosmogenic production rates for several long-lived isotopes that are potential sources of background in searching for rare physics processes such as the detection of dark matter and neutrinoless double-beta decay. Using updated cosmic-ray neutron flux measurements, we use TALYS 1.0 to investigate the cosmogenic activation of stable isotopes of several detector targets and find that the cosmogenic isotopes produced inside the target materials and cryostat can result in large backgrounds for dark matter searches and neutrinoless double-beta decay. We use previously published low-background HPGe data to constrain the production of 3H on the surface and the upper limit is consistent with our calculation. We note that cosmogenic production of several isotopes in various targets can generate potential backgrounds for dark matter detection and neutrinoless double-beta decay with a massive detector, thus great care should be taken to limit and/or deal with the cosmogenic activation of the targets.  相似文献   

14.
We present the measured cosmic ray- and electron-induced background detected by a proportional counter in Earth orbit. The data were obtained by the Hard X-ray Experiment on board the Astronomical Netherlands Satellite. The data are presented as a function of satellite position above the Earth, i.e. geographical longitude and latitude, with the altitude varying between 200 and 1100 km.  相似文献   

15.
We present Cassini data revealing that protons between a few keV and about 100 keV energy are not stably trapped in Saturn's inner magnetosphere. Instead these ions are present only for relatively short times following injections. Injected protons are lost principally because the neutral gas cloud converts these particles to energetic neutral atoms via charge exchange. At higher energies, in the MeV to GeV range, protons are stably trapped between the orbits of the principal moons because the proton cross-section for charge exchange is very small at such energies. These protons likely result from cosmic ray albedo neutron decay (CRAND) and are lost principally to interactions with satellite surfaces and ring particles during magnetospheric radial diffusion. A main result of this work is to show that the dominant energetic proton loss and source processes are a function of proton energy. Surface sputtering by keV ions is revisited based on the reduced ion intensities observed. Relatively speaking, MeV ion and electron weathering is most important closer to Saturn, e.g. at Janus and Mimas, whereas keV ion weathering is most important farther out, at Dione and Rhea.  相似文献   

16.
We analyze the time variation of microwave spectra and hard X-ray spectra of 1989 March 18, which are obtained from the Solar Array at the Owens Valley Radio Observatory (OVRO) and the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM), respectively. From this observation, it is noted that the hard X-ray spectra gradually soften over 50–200 keV on-and-after the maximum phase while the microwaves at 1–15 GHz show neither a change in spectral shape nor as rapid a decay as hard X-rays. This leads to decoupling of hard X-rays from the microwaves in the decay phase away from their good correlation seen in the initial rise phase. To interpret this observation, we adopt a view that microwave-emitting particles and hard X-ray particles are physically separated in an inhomogeneous magnetic loop, but linked via interactions with the Whistler waves generated during flares. From this viewpoint, it is argued that the observed decoupling of microwaves from hard X-rays may be due to the different ability of each source region to maintain high energy electrons in response to the Whistler waves passing through the entire loop. To demonstrate this possibility, we solve a Fokker-Planck equation that describes evolution of electrons interacting with the Whistler waves, taking into account the variation of Fokker-Planck coefficients with physical quantities of the background medium. The numerical Fokker-Planck solutions are then used to calculate microwave spectra and hard X-ray spectra for agreement with observations. Our model results are as follows: in a stronger field region, the energy loss by electron escape due to scattering by the waves is greatly enhanced resulting in steep particle distributions that reproduce the observed hard X-ray spectra. In a region with weaker fields and lower density, this loss term is reduced allowing high energy electrons to survive longer so that microwaves can be emitted there in excess of hard X-rays during the decay phase of the flare. Our results based on spectral fitting of a flare event are discussed in comparison with previous studies of microwaves and hard X-rays based on either temporal or spatial information.  相似文献   

17.
宇宙线从发现起至今已超过百年。在20世纪上半叶,大型粒子加速器技术成熟以前,对宇宙线的研究引领着基本粒子物理的发展,从宇宙线研究中取得的多项成果斩获诺贝尔奖。21世纪,宇宙线因其与极端高能的物理规律和暗物质等新物理现象联系密切而绽放出新的活力,宇宙线起源、加速、传播等相关的天文学及物理学问题也备受关注。简述了近年来在空间直接观测宇宙线实验方面取得的进展,以及其对理解宇宙线物理问题的推动。最后概述了中国在相关领域的研究历程和现状。  相似文献   

18.
The integral flux of low energy protons (> 10 MeV) observed by the University of New Hampshire cosmic ray detector aboard the Pioneer 9 spaceprobe has been compared with similar measurements of the near-Earth spacecraft Explorer 34 during the decay phase of the February 25–March 2, 1969 series of solar cosmic ray events. At this time the Pioneer 9 spaceprobe was 0.8 AU from the Sun and close to the Sun-Earth radial line. The ratio of integral fluxes as measured by the separated spacecraft can be calculated theoretically during the convective phase of the decay of these events and will depend on whether energy loss processes are operative. A comparison of the observed and theoretically calculated ratios suggests that the adiabatic energy loss process is operative.  相似文献   

19.
We present the observed relation between Δ T SZ, the cosmic microwave background (CMB) temperature decrement due to the Sunyaev–Zeldovich (SZ) effect, and L , the X-ray luminosity of galaxy clusters. We discuss this relation in terms of the cluster properties, and show that the slope of the observed Δ T SZ– L relation is in agreement with both the L – T e relation based on numerical simulations and X-ray emission observations, and the M gas– L relation based on observation. The slope of the Δ T SZ– L relation is also consistent with the M tot– L relation, where M tot is the cluster total mass based on gravitational lensing observations. This agreement may be taken to imply a constant gas mass fraction within galaxy clusters, however, there are large uncertainties, dominated by observational errors, associated with these relations. Using the Δ T SZ– L relation and the cluster X-ray luminosity function, we evaluate the local cluster contribution to arcmin-scale cosmic microwave background anisotropies. The Compton distortion y -parameter produced by galaxy clusters through the SZ effect is roughly two orders of magnitude lower than the current upper limit based on FIRAS observations.  相似文献   

20.
It is shown that an appreciable flux of positrons below a few MeV in the cosmic radiation could arise from the decay of cobalt nuclei in the decay chain56Ni56Co56Fe, which occurs in the silicon burning shells of supernovae just after their ejection at relativistic velocities. The equilibrium spectrum of positrons in the interstellar space has been calculated on the assumption that the observed abundance of iron nuclei in the cosmic radiation is the result of the above process. It is found that the observation below about 10 MeV can be well explained with a moderate acceleration of the positrons in the expanding envelope of supernovae prior to their propagation in the interstellar space. The total56Ni content in the shells of supernova necessary to account for the observed positrons is in agreement with that required to explain the peak luminosity during the supernova outburst. Since this model deals with positrons created at the time of injection of cosmic rays into the interstellar space, it becomes possible to study the shape of the injection spectrum of cosmic rays.On leave from Tata Institute of Fundamental Research, Bombay, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号