首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A large-eddy simulation model with rotated coordinates and an open boundary is used to simulate the characteristics of katabatic flows over simple terrain. Experiments examine the effects of cross winds on the development of the slope-flow boundary layer for a steep (20°) slope and the role of drainage winds in preventing turbulence collapse on a gentle slope (1°). For the steep flow cases, comparisons between model average boundary-layer velocity, temperature deficit, and turbulence kinetic energy budget terms and tower observations show reasonable agreement. Results for different cross slope winds show that as the cross slope winds increase, the slope flow deepens faster and behaves more like a weakly stratified, sheared boundary layer. Analysis of the momentum budget shows that near the surface the flow is maintained by a balance between downslope buoyancy forcing and vertical turbulence flux from surface drag. Above the downslope jet, the turbulence vertical momentum flux reverses sign and acceleration of the flow by buoyancy is controlled by horizontal advection of slower moving ambient air. The turbulence budget is dominated by a balance between shear production and eddy dissipation, however, buoyancy and pressure transport both are significant in reducing the strength of turbulence above the jet. Results from the gentle slope case show that even a slight terrain variation can lead to significant drainage winds. Comparison of the gentle slope case with a flat terrain simulation indicates that drainage winds can effectively prevent the formation of very stable boundary layers, at least near the top of sloping terrain.  相似文献   

2.
2019年1月铜仁市发生了中到重度污染过程,本文利用铜仁市城区逐时环境监测资料,高空及地面气象观测资料,分析了本次污染过程气象条件特征。结果表明,此次首要污染物为细颗粒物(PM2.5)。污染天气发生时,铜仁上空是高压脊或一致的西南气流,地面为冷高压或均压区控制,气压梯度小,风小;当转为高空槽前,地面有冷空气补充,气压梯度增大时,污染物浓度得到降低。同时风速和相对湿度大小跟污染物浓度也有一定关系,地面风速小,空气干燥时,污染物浓度增加;相反,风速增大达4m/s以上,空气相对湿度增大达90%以上,特别是明显的雨雪天气发生时,污染物浓度得到快速降低。另外,污染天气伴随有近地层逆温层持续影响,逆温层厚度越厚,且逆温强度越强,抑制了大气垂直方向的湍流交换,有利于污染物浓度累积增长。受梵净山地形阻挡作用,当近地层为弱偏东风影响时,污染物不能翻越梵净山向西扩散,会在山的东侧堆积,导致铜仁城区污染物在本地循环累积,污染浓度维持较大值。上述研究结果,可为铜仁市空气质量预报及污染防控提供新的参考依据。  相似文献   

3.
Summary Local scale windfield and air mass characteristics during the onset of two foehn wind events in an alpine hydro-catchment are presented. Grounding of the topographically modified foehn was found to be dependent on daytime surface heating and topographic channelling of flow. The foehn front was observed to advance down-valley until the valley widened significantly. The foehn wind appeared to decouple from the surface downstream of the accelerated flow associated with the valley constriction, and to be lifted above local thermally generated circulations including a lake breeze. Towards evening, the foehn front retreated up valley in response to reduced surface heating and the intrusion into the study area of a deep and cool air mass associated with a regional scale mountain-plain circulation. Differences in the local windfield observed during both case study events reflect the importance of different thermal and dynamic forcings on airflow in complex terrain. These are the result of variation in surface energy exchanges, channelling and blocking of airflow. Observations presented here have both theoretical and applied implications with regard to forecasting foehn onset, wind hazard management, recreational activities and air quality management in alpine settings. Received January 23, 2001 Revised October 17, 2001  相似文献   

4.
石家庄市周边秸杆焚烧导致云凝结核变化的特征   总被引:1,自引:0,他引:1  
利用DMTCCN仪定点观测的云凝结核(cloud condensation nuclei,CCN)粒子浓度资料,对2007年6月11—13日石家庄市出现的一次空气质量和能见度均十分差的灾害性极端天气事件进行了分析。结果表明,这次极端事件与周边地区焚烧秸杆的人为活动密切相关;对流层中、高层维持的下沉气流,迫使烟雾聚集在近地面层而使得CCN粒子数相对增加;垂直湍流交换微弱抑制了近地面层烟雾的垂直扩散,从而加剧低能见度的恶化,并导致霾天气形成;逆温层的厚度和地面静风、风速偏小同样使形成的烟雾在特殊地形作用下聚集  相似文献   

5.
Summary The Southerly Change Experiment (SOUCHEX) was conducted to examine the influence of the New Zealand Southern Alps on the structure and evolution of cold fronts, locally called southerly changes, as they travel up the east coast. The extensive data obtained by the augmented surface weather station network is used to examine in detail the mesoscale wind field associated with the events observed during the experiment. A comparison of the wind fields observed during the different events illustrates the influence of local dynamic and thermal factors. In particular, lee trough-induced northeasterlies and thermally developed diurnal wind systems are seen to interact with the wind field created by the passage of the front over the Southern Alps.It is apparent that the wind field associated with southerly changes responds to a variety of factors as the cold fronts propagate northwards. For example, there is a tendency for the flow to turn onshore producing a southeast wind during daytime over the Canterbury Plains south of Banks Peninsula probably due to diabatic heating of the mountains and plains. This onshore flow is in direct opposition to pre-frontal foehn northwesterly flow which often continues in the mountain regions and aloft after the front has moved up the coast. The interaction of these air masses over Canterbury creates difficulties for local forecasting. Also, the nocturnal passage of a southerly change is often difficult to detect in surface anemograph traces because of the decoupling of the boundary layer air from that above, producing low level drainage flow over the Canterbury Plains. The overall effect is to create a complex mesoscale wind field resulting from interaction of cold fronts with regional orographic and thermal influences.With 8 Figures  相似文献   

6.
In this paper, we consider boundary-layer effects on atmospheric fronts. For this purpose we developed a dry, hydrostatic, two-dimensional numerical model with turbulence parameterized with the 1/2 -order eddy viscosity closure of Mellor and Yamada. In the surface layer we use Monin–Obukhov similarity and there is an interactive soil model to obtain lower boundary conditions for the atmospheric model. First, effects of turbulence are studied without thermal forcing at the surface and comparisons are made between inviscid and turbulent conditions. Sensitivity studies with respect to surface roughness are also performed. Subsequently we study effects of surface thermal forcing on fronts. The results show that, during summer, fronts display strong diurnal variation. Vertical velocities increase significantly during the day while gradients in temperature and vorticity across the front strengthen in the evening and at night. In winter the diurnal variation is much less pronounced. We attempt to find physical mechanisms responsible for such frontal behaviour and we compare our results with available observations.  相似文献   

7.
深凹露天矿内复环流和高湍能区的三维细网格非静力模拟   总被引:1,自引:0,他引:1  
王卫国  蒋维楣 《大气科学》1998,22(2):252-256
建立了一个准定常的三维非静力能量闭合的PBL模式模拟了深凹露天矿内复环流和高湍能区。针对露天矿具有范围小、地形复杂的特点,放弃了静力近似的假定,且采用了在复杂地形下应用较好的能量闭合方案,采用细网格系统对一个水平只有2 km×2 km的实际矿区进行了模拟,并将结果与同样条件下的风洞试验结果进行了比较。结果表明,矿坑的开口宽度与深度比和来流的性质对坑内气流和湍流情况有了较大影响。  相似文献   

8.
Atmospheric flow over complex terrain, particularly recirculation flows, greatly influences wind-turbine siting, forest-fire behaviour, and trace-gas and pollutant dispersion. However, there is a large uncertainty in the simulation of flow over complex topography, which is attributable to the type of turbulence model, the subgrid-scale (SGS) turbulence parametrization, terrain-following coordinates, and numerical errors in finite-difference methods. Here, we upgrade the large-eddy simulation module within the Weather Research and Forecasting model by incorporating the immersed-boundary method into the module to improve simulations of the flow and recirculation over complex terrain. Simulations over the Bolund Hill indicate improved mean absolute speed-up errors with respect to previous studies, as well an improved simulation of the recirculation zone behind the escarpment of the hill. With regard to the SGS parametrization, the Lagrangian-averaged scale-dependent Smagorinsky model performs better than the classic Smagorinsky model in reproducing both velocity and turbulent kinetic energy. A finer grid resolution also improves the strength of the recirculation in flow simulations, with a higher horizontal grid resolution improving simulations just behind the escarpment, and a higher vertical grid resolution improving results on the lee side of the hill. Our modelling approach has broad applications for the simulation of atmospheric flows over complex topography.  相似文献   

9.
A numerical two-dimensional-mesoscale model with a level 1.5 closure scheme for turbulence is described. The model is used to simulate the boundary layer over coastal complex terrain. Meteorological data available from the Øresund land-sea-land terrain experiment are used to study the performance of the model. The model could simulate generally observed complexities in the mean wind and temperature fields. Internal boundary layers over the water and land surfaces were identified by the height of lowest value in the turbulence kinetic energy profile and this showed good agreement with radiosonde (RS) observations.Some disagreements with the data were also noticed, especially near the surface. The wind speed was over-predicted. Attempts were made to improve the model performance by adopting different schemes for model initialisation. Results showed that initialisation with an early model start time and observed wind profile near the inflow boundary improved the performance. The wind speed over-prediction could be further minimised by using a more realistic objective initialisation scheme. The problem centred around the proper estimation of the turbulent diffusion coefficient K through the closure scheme. Despite using the most popular empirical relationships in the level 1.5 closure scheme, these differences persisted. While this needs further investigation, the present model can be used to supply wind fields for practical purposes such as air pollution calculations.  相似文献   

10.
We have analyzed eddy covariance data collected within open canopy to investigate the influence of non-flat terrain and wind direction shear on the canopy turbulence. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree at this site. A variety of turbulent statistics were examined as a function of wind direction in near-neutral conditions. Heterogeneous surface characteristics results in significant differences in measured turbulent statistics. Upwind trees on the flat and up-sloping terrains yield typical features of canopy turbulence while upwind elevated surface with trees yields significant wind direction shear, reduced u and w skewness, and negligible correlation between u and w. The directional dependence of turbulence statistics is due that strong wind blows more horizontally rather than following terrain, and hence combination of slope related momentum flux and canopy eddy motion decreases the magnitude of Sk w and r uw for the downslope flow while it enhances them for the upslope flow. Significant v skewness to the west indicates intermittent downdraft of northerly wind, possibly due to lateral shear of wind in the presence of significant wind direction shear. The effects of wind direction shear on turbulent statistics were also examined. The results showed that correlation coefficient between lateral velocities and vertical velocity show significant dependence on wind direction shear through change of lateral wind shear. Quadrant analysis shows increased outward interaction and reduced role of sweep motion for longitudinal momentum flux for the downslope flow. Multi-resolution analysis indicates that uw correlation shows peak at larger averaging time for the upslope flow than for the downslope flow, indicating that large eddy plays an active role in momentum transfer for the upslope flow. On the other hand, downslope flow shows larger velocity variances than other flows despite similar wind speed. These results suggest that non-flatness of terrain significantly influences on canopy-atmosphere exchange.  相似文献   

11.
Summary Hydrostatic and nonhydrostatic simulation models are employed to study the intensification of a terrain drag-induced dryline. The study develops a multi-stage theory for the evolution of the dryline including the concentration of potential vorticity accompanying meso-gamma scale dryline bulges.The numerical simulations indicate three fundamental stages of dryline intensification all of which are either directly or indirectly a result of the terrain-drag on the mid/upper-tropospheric jet stream by the Front Range of the Colorado Rocky Mountains. The first stage involves the downward momentum flux accompanying a large amplitude hydrostatic mountain wave which induces a downslope windstorm along the lee slopes. The surge of momentum (i.e., the dry, warm air associated with the downslope windstorm) propagates down the leeslope and modifies an existing weak dryline boundary. As the downslope windstorm initiates an undular bore along the lee slopes, the high momentum gradient which propagates downstream accompanying the bore, as well as the strong lower tropospheric sinking motions ahead of the bore, contract the scale of the surface moisture boundary between the dry air from above the leeslope and the moist air over the High Plains. This process further strengthens the dryline.The second stage involves the coupling of the terrain drag-induced along-stream ageostrophic front within the midtroposphere to the boundary layer through a thermally-indirect circulation. As the along-stream ageostrophic circulation intensifies within the middle troposphere down-stream from the mountain wave, sinking air parcels originating above 40 kPa descend to below 60 kPa over the High Plains where surface pressures are, only 85 kPa. These descending air parcels within the upstream branch of the along-stream ageostrophic thermally-indirect circulation contain high values of momentum and very low dewpoint values. As the planetary boundary layer (PBL) deepens due to surface warming during the morning hours, momentum and dry air from the midtropospheric along-stream ageostrophic front are entrained into the PBL. This process amplifies the bore-induced hydrostatic dryline bulge via low-level ageostrophic confluence.Finally, regions of low Richardson number (arising from strong vertical shears) within the amplifying midtropospheric along-stream ageostrophic thermally-indirect circulation become preferred regions for the development of non-hydrostatic evanescent internal gravity waves. These waves are embedded within the hydrostatic along-stream front above the low-level dryline and are accomapanied by very significant values of vertical momentum flux which act to focus the meso-gamma scale structure of the dryline into smaller scale bulges where low-level winds and vorticities are very high. This meso-gamma scale process follows the hydrostatic tilting and vortex tube stretching which creates meso-beta scale maxima of mid-lower tropospheric vorticity. The turbulent momentum fluxes accompanying wavebreaking within the nonhydrostatic dryline bulge create very large (i.e., stratospheric values of) potential vorticity near 70 kPa due to the nonconservation of potential vorticity on isentropic surfaces.With 30 Figures  相似文献   

12.
Surface meteorological observations, associated with gust fronts produced by thunderstorm outflows over Tehran, an area surrounded by mountains, have been analyzed. Distinctive features are sudden drop in air temperature, up to 10℃, sharp increase in wind speed, up to 30 m s-1, with wind shift, to northwesterly, ressure jump, up to 4 hPa, humidity increase, up to 40%, and rain after some 20 min. Gust fronts which often occur in spring time, have a typical thickness of about 1.5 km and produce vertical wind shear of the order of 10-2s-1. Although these features seem to be common for most of the events, their intensities differ from one event to another, indicating that the gust fronts may occur in different sizes and shapes. Apart from a dominant effect on the formation of the original thunderstorms, topography appears to break up the frontal structure of the gust fronts. The internal Rossby radius of deformation for these flows is small enough (~ 100 km) for rotational effects to be minor.A laboratory model of the gust front (gravity current) also shows that it initially has a distinctive head with a turbulent wake, and can be broken up by topography. It is shown that when the environment is stratified, turbulence due to lobes and clefts instabilities near the nose of the current is suppressed. When the ground is rough, these instabilities are highly amplified and the internal Froude number of the flow is reduced. The bottom slope in the presence of rough topography leads to the break up of the current head and produces a broad and highly non-uniform head, recognized in the density signals.  相似文献   

13.
Summary  A K-type diffusion model coupled with a massconsistent wind model is applied for one of the rural biological waste disposal sites in Austrian Alps. The site is situated in the P?ls valley in the eastern Alps, 250 km south-west of Vienna in Austria Aim of the study is to demonstrate dispersion of H2S from the site to near by village. Model simulations are carried out each for an evening and a morning transition case characterized by flow reversals. The role of locally generated wind in changing the pollutant distribution over nearby residential area is investigated. Surface observations at two stations toward the open boundaries of the main valley are used to derive the turbulence parameters and then to obtain initial inputs of wind profiles. The turbulence parameters behave analogous to that over a plane terrain after the establishment of the valley wind. The model simulations are done for eight hours during the evening transition and eighteen hours for the morning transition by incorporating the wind field from a mass consistent wind model. The results are compared with SF6 tracer experiments conducted during those periods. The model outputs and the observations at various points inside the valley are in good correlation except for NW part of the valley after the reversal of valley wind. The results also reveal the potential of a simple approach with minimized inputs. Received August 15, 1997 Revised August 15, 1998  相似文献   

14.
Nucleation of near nm sized aerosol particles and subsequent growth to ∼100 nm in 1–2 days has in recent years been frequently observed in the continental boundary layer at several European locations. In 1998–99, this was the focus of the BIOFOR experiment in Hyytiälä in the boreal Finnish forest. Nucleation occurred in arctic and to some extent in polar air masses, with a preference for maritime air in transition to continental air masses, and never in sub‐tropical air. The air masses originated north of the BIOFOR experiment by paths from the southwest to northeast sector. The nucleation was also associated with cold air advection behind cold fronts, never warm air advection. This may relate to low pre‐existing aerosol concentration, low cloudiness and large diurnal amplitudes in the continental boundary layer associated with cold air advection and clear skies. Arctic and polar air together with cold air advection did not always lead to nucleation. The most important limiting meteorological factors were cold front passages and high cloudiness, probably through reduced photochemistry and wet scavenging of precursor gases and new aerosol particles. The preference for nucleation to occur in arctic air masses, which seldom form in the summer, suggests a meteorological explanation for the annual cycle of nucleation, which has a minimum in summer. The connection to cold‐air outbreaks suggests that the maximum in nucleation events during spring and autumn may be explained by the larger latitudinal temperature gradients and higher cyclone activity at that time of the year. Nucleation was observed on the same days over large parts (1000‐km distance) of the same air mass. This suggests that the aerosol nucleation spans from the microphysical scale to the synoptic scale, perhaps connected through boundary layer and mesoscale processes.  相似文献   

15.
山丘地形的陆面过程及边界层特征的模拟   总被引:2,自引:1,他引:2       下载免费PDF全文
将模式NP-89的陆面过程参数化方法应用到北京大学的三维复杂地形中尺度数值模式中, 得到了一个较理想的三维陆面过程及边界层模式, 利用这个改进的三维模式对20 km×20 km范围的山丘地形的陆面过程及边界层特征进行了数值模拟。模拟结果表明, 由于地形阻挡所造成山后的湍流较山前强, 进而造成近地面温度梯度和感热支出小, 最终造成山后的温度比山前的温度明显偏高; 而且随着山高的增加, 这种现象更加明显, 即该模式对山丘地形条件下的陆面过程和大气边界层特征具有较强的模拟能力; 模拟结果合理, 对研究过山气流形成机制、起伏地形大气边界层物理特征和污染物的扩散具有理论和应用价值。  相似文献   

16.
1. IntroductionDuring June and July, from the mid-lower reachesof the Yangtze River basin in China to southern Japan,a precipitation zone with intensive torrential rain ap-pears and lasts for two to three weeks. This phe-nomenon is called the "mei-yu" in …  相似文献   

17.
Summary A dispersion modeling system consisting of a three-dimensional PBL model NHECM (non-hydrostaticE- closure model) and SLPTDM (seven-level puff transport and diffusion model) is developed to simulate the transport and dispersion of pollutant over coastal complex terrain. As an application of the system, the transport and dispersion of SO2 released from an elevated point source are simulated during typical sea-land breeze circulation in the Hongkong-Shenzhen area of China. The NHECM provides time-varying, three-dimensional distributions of wind and turbulence fields to the SLPTDM. The NHECM predictions compare well with observational data. Reflection of both the ground and the mixing layer top and penetration of the mixing layer top are improved in the SLPTDM. Results obtained from the system indicate that temporal variation and nonuniformity of airflow and turbulence obviously affect the concentration distributions, especially during the sea-land breeze transition period. A diurnal cycle of the GLC (ground-level concentration) is discussed. The results are compared with those estimated using a Gaussian model. The study's results illustrate the complexity of the dispersion patterns due to diurnal effects and mesoscale circulations, and demonstrate the potential of the mesoscale atmospheric dispersion modeling system for studies of air quality in complex terrain.With 8 Figures  相似文献   

18.
Monte-Carlo 法模拟复杂地形对扩散的影响   总被引:1,自引:0,他引:1  
田瑞明 《大气科学》1994,18(1):36-42
不考虑边界层中层结作用,引入Kao得到的复杂地形中的平均流场分布和近十年来PBL实验和理论研究导出的新的湍流统计量参数化关系,本文用Monte-Carlo模式模拟了复杂地形对扩散的影响,结果表明:地形的影响主要是迎风坡抬升和背风坡下沉;陡峭地形和平缓地形的影响不完全相同;在陡峭地形和大的平缓地形的背风坡能够形成空腔区,空腔区内出现闭合的浓度中心,且地形越陡峭,闭合浓度中心的范围越大;大地形对扩散的影响可以掩盖其下风方小地形的影响。  相似文献   

19.
桑建国 《气象学报》1989,47(2):191-198
本文采用二层模式,在一个斜坡地形上,求解大气波动方程,得出了下坡运动的普遍分析解,并对解在不同大气条件和地形条件下的物理意义做了分析。当下层大气厚而稳定、风速较强时,得到的是背风坡大风。而当下层大气强稳定、小风时,得到的是泄流风。对各类下坡运动近地面风速和大气层结、流场结构及Scorer参数之间的关系也做了讨论。  相似文献   

20.
A case study of the structure of the nocturnal boundary layer (NBL) over complex terrain is presented. Observations were made during the third night of Project STABLE (Weber and Kurzeja, 1991), whose main goal was to study turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia.The passage of a mesoscale phenomenon, defined as a turbulent meso-flow (TMF) with an explanation of the nomenclature used, and a composite structure of the lowest few hundred meters over complex terrain are presented. The spatial extent of the TMF was at least 30–50 km, but the forcing is not well understood. The TMF occurred without the presence of a synoptic-scale cold front, under clear conditions, and with no discernible discontinuity in a microbarograph pressure trace. The structure of the NBL over the complex terrain at SRS differed from the expected homogeneous terrain NBL. The vertical structure exhibited dual low level wind maxima, dual inversions, and a persistent elevated turbulent layer.The persistent elevated turbulent layer, with a spatial extent of at least 30 km, was observed for the entire night. The persistent adiabatic layer may have resulted from turbulence induced by shear instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号