首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a great number of magmatic inclusions in different types of phenocrystals in andesitic lavas from the Krakatau volcano, Indonesia. Sequence of crystallization (from early to late) has been established for the phenocrystals on the basis of homogenization temperatures and chemical compositions of the magmatic inclusions: the cantral phase of plagioclase phenocrystals (An 83.2–72.6), olivine→ the intermediate phase of plagioclase phenocrystals (An 61.3), clinopyroxene, titanomagnetite→ the peripheral phase of plagioclase phenocrystals (An 54.4–42.6). The crystallization of the central phase of plagioclase phenocrystals takes place in the depth of magma chamber at about 5 Kbar. High pressures and high titanium contents favor the silicate-liquid immiscibility in the magmatic inclusions of early plagioclase phenocrystals. This is typical of many andesitic lavas generated in subduction regions.  相似文献   

2.
Amphibole has been discussed to potentially represent an important phase during early chemical evolution of arc magmas, but is not commonly observed in eruptive arc rocks. Here, we present an in-depth study of metastable calcic amphibole megacrysts in basaltic andesites of Merapi volcano, Indonesia. Radiogenic Sr and Nd isotope compositions of the amphibole megacrysts overlap with the host rock range, indicating that they represent antecrysts to the host magmas rather than xenocrysts. Amphibole-based barometry suggests that the megacrysts crystallised at pressures of >500 MPa, i.e., in the mid- to lower crust beneath Merapi. Rare-earth element concentrations, in turn, require the absence of magmatic garnet in the Merapi feeding system and, therefore, place an uppermost limit for the pressure of amphibole crystallisation at ca. 800 MPa. The host magmas of the megacrysts seem to have fractionated significant amounts of amphibole and/or clinopyroxene, because of their low Dy/Yb ratios relative to the estimated compositions of the parent magmas to the megacrysts. The megacrysts’ parent magmas at depth may thus have evolved by amphibole fractionation, in line with apparently coupled variations of trace element ratios in the megacrysts, such as e.g., decreasing Zr/Hf with Dy/Yb. Moreover, the Th/U ratios of the amphibole megacrysts decrease with increasing Dy/Yb and are lower than Th/U ratios in the basaltic andesite host rocks. Uranium in the megacrysts’ parent magmas, therefore, may have occurred predominantly in the tetravalent state, suggesting that magmatic fO2 in the Merapi plumbing system increased from below the FMQ buffer in the mid-to-lower crust to 0.6–2.2 log units above it in the near surface environment. In addition, some of the amphibole megacrysts experienced dehydrogenation (H2 loss) and/or dehydration (H2O loss), as recorded by their variable H2O contents and D/H and Fe3+/Fe2+ ratios, and the release of these volatile species into the shallow plumbing system may facilitate Merapi’s often erratic eruptive behaviour.  相似文献   

3.
In order to unravel magma processes and the geochemical evolution of shallow plumbing systems beneath active volcanoes, we investigated U-series disequilibria of rocks erupted over the past 500 years (1469-2000 AD) from Miyakejima volcano, Izu arc, Japan. Miyakejima volcanic rocks show 238U-230Th-226Ra disequilibria with excess 238U and 226Ra, due to the addition of slab-derived fluids to the mantle wedge. Basaltic bombs of the 2000 AD eruption have the lowest (230Th/232Th) ratio compared to older Miyakejima eruptives, yielding the youngest 238U-230Th model age of 2 kyr. This reinforces our previous model that fluid release from the slab and subsequent magma generation in the mantle wedge beneath Miyakejima occur episodically on a several-kyr timescale. In the last 500 years, Miyakejima eruptives show: (1) a vertical trend in a (230Th/232Th)-(238U/232Th) diagram and (2) a positive linear correlation in a (226Ra/230Th)0 − 1/230Th diagram, which is also observed in lavas from some of the single eruptions (e.g., 1940, 1962, and 1983 AD). The variations cannot be produced by simple fractional crystallization in a magma chamber with radioactive decay of 230Th and 226Ra, but it is possibly produced by synchronous generation of melts in the mantle wedge with different upwelling rate or addition of multiple slab-derived fluids. A much more favorable scenario is that some basaltic magmas were intermittently supplied from deep in the mantle and injected into the crust, subsequently modifying the original magma composition and producing variations in (230Th/232Th) and (226Ra/230Th)0 ratios via assimilation and fractional crystallization (AFC). The assimilant of the AFC process would be a volcanic edifice of previous Miyakejima magmatism. Due to the relatively short timescales involved, the interaction between the assimilant and recent Miyakejima magmatism has not been recorded by the Sr-Nd-Pb isotopic systems. In such cases, Th isotopes and (226Ra/230Th) ratio are excellent geochemical tracers of magmatic evolution.  相似文献   

4.
U-series isotopes can provide unique insights into the physicalprocesses of magma evolution by constraining the time scalesover which they operate. This, however, requires rock suitesthat provide a clear and complete record of the liquid lineof descent. Sangeang Api volcano, in the east Sunda arc, providessuch an opportunity because it erupts potassic lavas (SiO2  相似文献   

5.
Gabbroic and ultramafic xenoliths and olivine and clinopyroxene phenocrysts in basaltic rocks from Gran Canaria, La Palma, El Hierro, Lanzarote and La Gomera (Canary Islands) contain abundant CO2-dominated fluid inclusions. Inclusion densities are strikingly similar on a regional scale. Histogram maxima correspond to one or more of the following pressures: (1) minimum 0.55 to 1.0 GPa (within the upper mantle); (2) between 0.2 and 0.4 GPa (the Moho or the lower crust); (3) at about 0.1 GPa (upper crust). Fluid inclusions in several rocks show a bimodal density distribution, the lower-density maximum comprising both texturally early and late inclusions. This is taken as evidence for an incomplete resetting of inclusion densities, and simultaneous formation of young inclusions, at well-defined magma stagnation levels. For Gran Canaria, pressure estimates for early inclusions in harzburgite and dunite xenoliths and olivine phenocrysts in the host basanites overlap at 0.9 to 1.0 GPa, indicating that such magma reservoir depths coincide with levels of xenolith entrainment into the magmas. Magma chamber pressures within the mantle, inferred to represent levels of mantle xenolith entrainment, are 0.65–0.95 GPa for El Hierro, 0.60–0.68 GPa for La Palma, and 0.55–0.75 GPa for Lanzarote. The highest-density fluid inclusions in many Canary Island mantle xenoliths have probably survived in-situ near-isobaric heating at the depth of xenolith entrainment. Inclusion data from all islands indicate ponding of basaltic magmas at Moho or lower crustal depths, and possibly at an additional higher level, strongly suggestive of two main crustal accumulation levels beneath each island. We emphasize that repeated magmatic underplating of primitive magmas, and therefore intrusive accretion, are important growth mechanisms for the Canary Islands, and by analogy, for other ocean islands. Comparable fluid inclusion data from primitive rocks in other tectonic settings, including Iceland, Etna and continental rift systems (Hungary, South Norway), indicate that magma accumulation close to Moho depths shortly before eruption is not, however, restricted to oceanic intraplate volcanoes. Lower crustal ponding and crystallization prior to eruption may be the rule rather than the exception, independent of the tectonic setting. Received: 30 May 1997 / Accepted: 6 February 1998  相似文献   

6.
Quaternary basalts, andesites and dacites from the Abu monogenetic volcano group, SW Japan, (composed of more than 40 monogenetic volcanoes) show two distinct chemical trends especially on the FeO*/MgO vs SiO2 diagram. One trend is characterized by FeO*/MgO-enrichment with a slight increase in SiO2 content (Fe-type trend), whereas the other shows a marked SiO2-enrichment with relatively constant FeO*/MgO ratios (Si-type trend). The Fe-type trend is explained by fractional crystallization with subtraction of olivine and augite from a primitive alkali basalt magma. Rocks of the Si-type trend are characterized by partially melted or resorbed quartz and sodic plagioclase phenocrysts and/or fine-grained basaltic inclusions. They are most likely products of mixing of a primitive alkali basalt magma containing olivine phenocrysts with a dacite magma containing quartz, sodic plagioclase and hornblende phenocrysts. Petrographic variation as well as chemical variation from basalt to dacite of the Si-type trend is accounted for by various mixing ratios of basalt and dacite magmas. Pargasitic hornblende and clinopyroxene phenocrysts in andesite and dacite may have crystallized from basaltic magma during magma mixing. Olivine and spinel, and quartz, sodic plagioclase and common hornblende had crystallized in basaltic and dacitic magmas, respectively, before the mixing. Within a lava flow, the abundance of basaltic inclusions decreases from the area near the eruptive vent towards the perimeter of the flow, and the number of resorbed phenocrysts varies inversely, suggesting zonation in the magma chamber.The mode of mixing changes depending on the mixing ratio. In the mafic mixture, basalt and dacite magmas can mix in the liquid state (liquid-liquid mixing). In the silicic mixture, on the other hand, the basalt magma was quenched and formed inclusions (liquid-solid mixing). During mixing, the disaggregated basalt magma and the host dacite magma soon reached thermal equilibrium. Compositional homogenization of the mixed magma can occur only when the equilibrium temperature is sufficiently above the solidus of the basalt magma. The Si-type trend is chemically and petrographically similar to the calc-alkalic trend. Therefore, a calc-alkalic trend which is distinguished from a fractional crystallization trend (e.g. Fe-type trend) may be a product of magma mixing.  相似文献   

7.
The Lonquimay volcanic complex (LVC) in the high Southern Andes comprises a stratocone and NE-trending flank-cone alignments. Numerous effusive and explosive volcanic eruptions characterize its post-glacial magmatic activity. Our tephrostratigraphic record, pre-dating the four historically documented eruptions, comprises 22 dated pyroclastic deposits that are used to constrain repose time distribution and eruption probability of the LVC magmatic system. Statistical examination of the stratigraphy-based eruption time series yields probabilities of 20–50 % for at least one explosive (VEI ≥ 3) eruption within the next 100 years as of 2011. The tephra deposits are subdivided into three petrographic groups: a felsic group (Lonquimay colored-pumice tephra, LCPT), an intermediate population (Lonquimay gray pumice tephra, LGPT), and a mafic member (Lonquimay dark scoria tephra, LDST). The distribution of these petrographic groups through the LVC tephrostratigraphy is linked to the observed changes in repose times. LDST-deposits as well as deposits compositionally zoned from LCPT to LGPT dominate the lower part of the stratigraphy for which recurrence times are short (RTmean = 417 ± 169a). Deposits younger than 6,000 b2k (years before 2000 AD) have dominantly LCPT and minor LDST compositions, no longer contain LGPT, and repose times are significantly longer (RTmean = 1,350 ± 310a). We interpret the change in eruption regime to result from a rearrangement in the magma storage and plumbing system. Thermobarometric calculations based on cpx–liquid equilibria and amphibole compositions reveal three distinct magma storage levels: the mafic LDST derive from mid crustal storage (P mean = 476 ± 95 MPa, T mean = 1,073 ± 24 °C), felsic LCPT mainly erupted from upper-crustal level (P mean = 86 ± 49 MPa, T mean = 936 ± 24 °C), whereas LGPT samples yield intermediate storage depths (P mean = 239 ± 100 MPa, T mean = 1,013 ± 17 °C). Magma contributions from this intermediate reservoir are restricted to >6,000 b2k when the Lonquimay plumbing system was in a regime of short repose times; disappearance of the intermediate reservoir coincides with the change to longer repose times between eruptions.  相似文献   

8.
The Gouldsboro Granite forms part of the Coastal Maine Magmatic Province, a region characterized by granitic plutons that are intimately linked temporally and petrogenetically with abundant co-existing mafic magmas. The pluton is complex and preserves a felsic magma chamber underlain by contemporaneous mafic magmas; the transition between the two now preserved as a zone of chilled mafic sheets and pillows in granite. Mafic components have highly variably isotopic compositions as a result of contamination either at depth or following injection into the magma chamber. Intermediate dikes with identical isotopic compositions to more mafic dikes suggest that closed system fractionation may be occurring in deeper level chambers prior to injection to shallower levels. The granitic portion of the pluton has the highest Nd isotopic composition (εNd = + 3.0) of plutons in the region whereas the mafic lithologies have Nd isotopic compositions (εNd = + 3.5) that are the lowest in the region and similar to the granite and suggestive of prolonged interactions and homogenization of the two components. Sr and Nd isotopic data for felsic enclaves are inconsistent with previously suggested models of diffusional exchange between the contemporaneous mafic magmas and the host granite to explain highly variable alkali contents. The felsic enclaves have relatively low Nd isotopic compositions (εNd = + 2 – + 1) indicative of the involvement of a third, lower εNd melt during granite petrogenesis, perhaps represented by pristine granitic dikes contemporaneous with the nearby Pleasant Bay Layered Intrusion. The dikes at Pleasant Bay and the felsic enclaves at Gouldsboro likely represent remnants of the silicic magmas that originally fed and replenished the overlying granitic magma chambers. The large isotopic (and chemical) contrasts between the enclaves and granitic dikes and granitic magmas may be in part a consequence of extended interactions between the granitic magmas and co-existing mafic magmas by mixing, mingling and diffusion. Alternatively, the granitic magmas may represent an additional crustal source. Using granitic rocks such as these with abundant evidence for interactions with mafic magmas complicate their use in constraining crustal sources and tectonic settings. Fine-grained dike rocks may provide more meaningful information, but must be used with caution as these may also have experienced compositional changes during mafic–felsic interactions.  相似文献   

9.
In this study, we present Th–U disequilibria as well as radiogenic and trace element data for recent volcanic rocks from the Nevados de Payachata volcano which erupted through ∼70 km of continental crust in the Central Volcanic Zone of the Andes (18°S, 69°W). Both lavas and mineral separates were analyzed by mass spectrometry for 238U–230Th disequilibria. The lavas are characterized either by 230Th enrichment or depletion relative to its parent nuclide 238U. Mineral separates are used to derive U–Th isochron ages and these ages compare favorably with inferred stratigraphic ages or K–Ar ages, although in one case the U–Th age is significantly older than the stratigraphic age. Despite relatively constant Sr, Nd, and Pb isotope ratios, the lavas display inverse trends in 230Th/238U versus Ce/Yb or Ba/Hf diagrams. These trends cannot be interpreted by simple two-component mixing. Rather, there must be three (and perhaps four components) involved in the genesis of the Parinacota lavas. A mantle wedge, a slab fluid, and a lower crustal component can be identified. A sediment component is more difficult to detect as it is difficult to decipher its signature because of the strong crustal influence. The existence of binary arrays can be explained by variable amounts of crustal material. The process of crust–mantle interaction must have been short enough to preserve U–Th disequilibrium (<300 ka). Received: 21 April 1999 / Accepted: 11 March 2000  相似文献   

10.
Photographs of the vegetated North and East Forelands of Anak Krakatau, which emerged from the sea in 1930 and was totally devastated by volcanic activity in 1952/53 provide some evidence of rate of change of plant cover from grassland to woodland between 1971 and 1991. The series of photographs demostrate that vegetational stages of the two forelands have not been synchronous and suggest that the North Foreland is lagging the East Foreland by about 12 years.A recent hypothesis that Anak Krakatau's vegetation was destroyed, totally or almost so, by eruptions in 1972/73 and the island's vegetation has regenerated since that time is not easily accommodated by the photographic evidence, nor by the relative rates of change on Rakata (Krakatau's post-1883 remnant) and Anak Krakatau. The photographic evidence accords more closely with a hypothesis that the 1972/73 eruptions affected the North Foreland's vegetation only, or affected it to a much greater degree than that of the East Foreland, allowing the latter's post-1952/53 succession to proceed relatively unhampered.  相似文献   

11.
12.
Evidence for a Picritic, Volatile-rich Magma beneath Mt. Shasta, California   总被引:2,自引:1,他引:2  
Large, magnesium-rich olivines are plentiful in several Holocenecinder cones within 20 km of Mt. Shasta Summit. Glasses (formerlysilicate melts) included in the olivines are high alumina basalts(tholeiites and olivine tholeiites). In the most magnesian olivinesthe glass inclusions have large vapor bubbles. Surrounding someof the glass inclusions are broad Fe-rich zones and ghost outlines.These facts indicate crystallization of major proportions ofolivine from the initial trapped melts. The initial melts containedan inferred 24 per cent of MgO and were rich in volatiles. Theinferred entrapment temperature of the initial melt is 1410°C. The initial liquid is a possible mantle derived parentof Mt. Shasta basalts and andesites and of some hidden alpineperidotite.  相似文献   

13.
In the Karakoram Shear Zone, Ladakh, NW India, Miocene leucogranitic dykes form an extensive, varied and complex network, linking an anatectic terrane exposed in the Pangong Range, with leucogranites of the Karakoram Batholith. Mineral paragenesis of the heterogeneous anatectic source rocks suggests melting has resulted from water influx into rocks at upper amphibolite facies conditions, and microstructures suggest anatexis was contemporaneous with shearing. The network is characterized by continuous and interconnected dykes, with only rare cross‐cutting relationships, forming swarms and chaotic injection complexes where magmatic rocks cover up to 50% of the outcrop area. Despite this volume of magma, the system did not lose continuity, suggesting that it did not flow en masse and that the magma network was not all liquid simultaneously. Leucogranites in this network, including leucosomes in migmatites, carry an isotopic signature intermediate between the two main anatectic rocks in the source, suggesting efficient homogenization of the magmatic products. Here, we describe a number of microscopic features of these magmatic rocks which suggests that several pulses of magma used the same pathways giving rise to textural and chemical disequilibrium features. These include: (i) narrow, tortuous corridors of fine‐grained minerals cutting across or lining the boundaries of larger grains, interpreted to be remnants of magma‐filled cracks cutting across a pre‐existing magmatic rock; (ii) corrosion of early formed grains at the contact with fine‐grained material; (iii) compositional zoning of early formed plagioclase and K‐feldspar grains and quartz overgrowths documented by cathodoluminescence imaging; (iv) incipient development of rapakivi and anti‐rapakivi textures, and (iv) different crystallographic preferred orientation of early formed quartz and fine‐grained quartz. Mapping of the fine‐grained corridors interpreted to represent late melt channels reveal an interlinked network broadly following the S‐C fabric defined by pre‐existing magmatic grains. We conclude that early formed dykes provided a pathway exploited intermittently or continuously by new magma batches. New influxes of magma opened narrow channels and migrated through a microscopic network following predominantly grain boundaries along an S‐C fabric related to syn‐magmatic shearing. A mixed isotopic signature resulted not from the mixing of magmas, but from the micro‐scale interaction between new magma batches and previously crystallized magmatic rocks, through local equilibration.  相似文献   

14.
Merapi is Indonesia's most dangerous volcano with a history of deadly eruptions. Over the past two centuries, the volcanic activity has been dominated by prolonged periods of lava dome growth and intermittent gravitational or explosive dome failures to produce pyroclastic flows every few years. Explosive eruptions, such as in 2010, have occurred occasionally during this period, but were more common in pre‐historical time, during which a collapse of the western sector of the volcano occurred at least once. Variations in magma supply from depth, magma ascent rates and the degassing behaviour during ascent are thought to be important factors that control whether Merapi erupts effusively or explosively. A combination of sub‐surface processes operating at relatively shallow depth inside the volcano, including complex conduit processes and the release of carbon dioxide into the magmatic system through assimilation of carbonate crustal rocks, may result in unpredictable explosive behaviour during periods of dome growth. Pyroclastic flows generated by gravitational or explosive lava dome collapses and subsequent lahars remain the most likely immediate hazards near the volcano, although the possibility of more violent eruptions that affect areas farther away from the volcano cannot be fully discounted. In order to improve hazard assessment during future volcanic crises at Merapi, we consider it crucial to improve our understanding of the processes operating in the volcano's plumbing system and their surface manifestations, to generate accurate hazard zonation maps that make use of numerical mass flow models on a realistic digital terrain model, and to utilize probabilistic information on eruption recurrence and inundation areas.  相似文献   

15.
The 1.3 Ma Purico complex is part of an extensive Neogene-Pleistocene ignimbrite province in the central Andes. Like most other silicic complexes in the province, Purico is dominated by monotonous intermediate ash-flow sheets and has volumetrically minor lava domes. The Purico ignimbrites (total volume 80-100 km3) are divided into a Lower Purico Ignimbrite (LPI) with two extensive flow units, LPI I and LPI II; and a smaller Upper Purico Ignimbrite (UPI) unit. Crystal-rich dacite is the dominant lithology in all the Purico ignimbrites and in the lava domes. It is essentially the only lithology present in the first LPI flow unit (LPI I) and in the Upper Purico Ignimbrite, but the LPI II flow unit is unusual for its compositional diversity. It constitutes a stratigraphic sequence with a basal fall-out deposit containing rhyolitic pumice (68-74 wt% SiO2) overlain by ignimbrite with dominant crystal-rich dacitic pumice (64-66 wt% SiO2). Rare andesitic and banded pumice (60-61 wt% SiO2) are also present in the uppermost part of the flow unit. The different compositional groups of pumice in LPI II flow unit (rhyolite, andesite, dacite) have initial Nd and Sr isotopic compositions that are indistinguishable from each other and from the dominant dacitic pumice ()Nd=-6.7 to -7.2 and 87Sr/86Sr=0.7085-0.7090). However, two lines of evidence show that the andesite, dacite and rhyolite pumices do not represent a simple fractionation series. First, melt inclusions trapped in sequential growth zones of zoned plagioclase grains in the rhyolite record fractionation trends in the melt that diverge from those shown by dacite samples. Second, mineral equilibrium geothermometry reveals that dacites from all ignimbrite flow units and from the domes had relatively uniform and moderate pre-eruptive temperatures (780-800 °C), whereas the rhyolites and andesites yield consistently higher temperatures (850-950 °C). Hornblende geobarometry and pressure constraints from H2O and CO2 contents in melt inclusions indicate upper crustal (4-8 km) magma storage conditions. The petrologic evidence from the LPI II system thus indicates an anomalously zoned magma chamber with a rhyolitic cap that was hotter than, and chemically unrelated to, the underlying dacite. We suggest that the hotter rhyolite and andesite magmas are both related to an episode of replenishment in the dacitic Purico magma chamber. Rapid and effective crystal fractionation of the fresh andesite produced a hot rhyolitic melt whose low density and viscosity permitted ascent through the chamber without significant thermal and chemical equilibration with the resident dacite. Isotopic and compositional variations in the Purico system are typical of those seen throughout the Neogene ignimbrite complexes of the Central Andes. These characteristics were generated at moderate crustal depths (<30 km) by crustal melting, mixing and homogenization involving mantle-derived basalts. For the Purico system, assimilation of at least 30% mantle-derived material is required.  相似文献   

16.
The Topsails igneous terrane of Western Newfoundland contains a diverse suite of igneous rocks, but consists mainly of Silurian alkaline to peralkaline granites and rhyolites. The terrane exhibits evidence for the coexistence of mafic and salic magmas in the form of composite dykes and flows, sinuous, boudined mafic dykes cutting granites and net vein complexes. Field data and major and trace element chemical data suggest that these magmas mixed to produce limited volumes of more or less homogeneous hydrids.Magma mixing, a process which has received recent prominence in petrogenetic models for calc-alkaline volcanic suites, has elicited less attention than restite separation and fractional crystallization as a cause of chemical dispersion in granites. Evidence from the Topsails igneous terrane suggests the possible importance of magma mixing to granite petrogenesis and a major role for transcurrent faulting in the origin and evolution of peralkaline magmas.  相似文献   

17.
New experimental results show that when magma interacts with carbonate‐rich crustal rock, such as limestone, it rapidly liberates crustal CO2, with potentially devastating repercussions for explosive volcanic behaviour.  相似文献   

18.
Ciomadul is the youngest volcano in the Carpathian–Pannonian region produced crystal-rich high-K dacites that contain abundant amphibole phenocrysts. The amphiboles in the studied dacites are characterized by large variety of zoning patterns, textures, and a wide range of compositions (e.g., 6.4–15 wt% Al2O3, 79–821 ppm Sr) often in thin-section scale and even in single crystals. Two amphibole populations were observed in the dacite: low-Al hornblendes represent a cold (<800 °C) silicic crystal mush, whereas the high-Al pargasites crystallized in a hot (>900 °C) mafic magma. Amphibole thermobarometry suggests that the silicic crystal mush was stored in an upper crustal storage (~8–12 km). This was also the place where the erupted dacitic magma was formed during the remobilization of upper crustal silicic crystal mush body by hot mafic magma indicated by simple-zoned and composite amphiboles. This includes reheating (by ~200 °C) and partial remelting of different parts of the crystal mush followed by intensive crystallization of the second mineral population (including pargasites). Breakdown textures of amphiboles imply that they were formed by reheating in case of hornblendes, suggesting that pre-eruptive heating and mixing could take place within days or weeks before the eruption. The decompression rim of pargasites suggests around 12 days of magma ascent in the conduit. Several arc volcanoes produce mixed intermediate magmas with similar bimodal amphibole cargo as the Ciomadul, but in our dacite the two amphibole population can be found even in a single crystal (composite amphiboles). Our study indicates that high-Al pargasites form as a second generation in these magmas after the mafic replenishment into a silicic capture zone; thus, they cannot unambiguously indicate a deeper mafic storage zone beneath these volcanoes. The simple-zoned and composite amphiboles provide direct evidence that significant compositional variations of amphiboles do not necessarily mean variation in the pressure of crystallization even if the Al-tschermak substitution can be recognized, suggesting that amphibole barometers that consider only amphibole composition may often yield unrealistic pressure variation.  相似文献   

19.
20.
Textural and compositional zoning in plagioclase phenocrysts in a sample from Parinacota volcano (Chile) was investigated using backscattered electron images and electron microprobe analysis of major and trace elements. Large (2 mm) oscillatory zoned crystals (type I) with resorption surfaces of moderate An discontinuities (Ⲓ% An) and decreasing trace-element contents (Sr, Mg, Ti) towards the rim reflect melt differentiation and turbulent convection in the main magma body. Early recharge with a low-Sr mafic magma is seen in the core. Small-scale Sr variations in the core indicate limited diffusion and thus residence and differentiation times of the magma shorter than a few thousand years. Smaller crystals (type II) with low trace-element/An ratio reflect the influence of an H2O-rich melt probably from a differentiated boundary layer. Closed-system in-situ crystallisation, mafic magma recharge and the role of a water-rich differentiated boundary layer can be distinguished from the An-trace element relationships. Crystals apparently move relatively freely between different parts and regimes in the magma chamber, evidence for "convective crystal dispersion". High-Sr type II crystals indicate an earlier input of Sr-rich mafic magma. Recharge of two distinct mafic magma types is thus identified (high-Sr and low-Sr), which must have been present - at increasing recharge rates with time - in the plumbing system throughout the volcano's history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号