首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
东亚地区冬季地面气温延伸期概率预报研究   总被引:1,自引:4,他引:1       下载免费PDF全文
利用TIGGE资料中的ECMWF、NCEP、UKMO三个中心集合预报系统以及由此构成的多中心集合预报系统所提供的地面2 m气温10~15 d延伸期集合预报产品,建立贝叶斯模式平均(Bayesian Model Averaging,BMA)概率预报模型,对东亚地区冬季地面气温进行延伸期概率预报研究。采用距平相关系数、均方根误差、布莱尔评分、等级概率评分等指标分别对BMA确定性结果与概率预报进行评估。结果表明,BMA方法明显地改进了原始集合预报结果,预报技巧优于原始集合预报,且多中心BMA预报优于单中心BMA预报,最佳滑动训练期取35 d。BMA预报为气温的延伸期概率预报提供了更合理的概率分布,定量描述了预报的不确定性。  相似文献   

2.
Air temperature variations in Europe and northern Asia are strongly affected by atmospheric circulation. A large-scale study of temperature signals is presented, using a newly available global gridded daily temperature dataset. Major types of European Grosswetterlagen (large-scale weather patterns) and the Russian Vangengeim–Girs classification are compared in their spatial applicability to air temperatures within the past 110 years (1901–2010). The consistency of spatial patterns in the three most recent decades (1981–2010) is investigated, and temperature changes are interpreted against the backdrop of changes in character and frequency of circulation patterns. Both classifications largely explain the observed temperature variability. Spatial patterns are large-scale and strong in both regions, especially in winter. Both spatial extent and signal magnitude show a distinct seasonality with maximum values in winter and minimum ones in summer. Spatial patterns show little changes in Europe; yet the ability to explain temperature variability in northern Asia decreased within 1981–2010. European winter warming corresponds to increased maritime and to decreased continental air mass inflow, superimposed on the general warming trend. Northern Asian winter warming is partly explainable by circulation changes in January and February, but to a lesser extend in December. These results may be used to advance input variables of global climate models and to improve their performance in the European–Northern Asian area.  相似文献   

3.
This study investigates the interannual variation of summer surface air temperature over Northeast Asia(NEA) and its associated circulation anomalies.Two leading modes for the temperature variability over NEA are obtained by EOF analysis.The first EOF mode is characterized by a homogeneous temperature anomaly over NEA and therefore is called the NEA mode.This anomaly extends from southeast of Lake Baikal to Japan,with a central area in Northeast China.The second EOF mode is characterized by a seesaw pattern,showing a contrasting distribution between East Asia(specifically including the Changbai Mountains in Northeast China,Korea,and Japan) and north of this region.This mode is named the East Asia(EA) mode.Both modes contribute equivalently to the temperature variability in EA.The two leading modes are associated with different circulation anomalies.A warm NEA mode is associated with a positive geopotential height anomaly over NEA and thus a weakened upper-tropospheric westerly jet.On the other hand,a warm EA mode is related to a positive height anomaly over EA and a northward displaced jet.In addition,the NEA mode tends to be related to the Eurasian teleconnection pattern,while the EA mode is associated with the East Asia-Pacific/PacificJapan pattern.  相似文献   

4.
An analysis of Italian seasonal temperatures from 1961 to 2006 was carried out, using homogenized data from 49 synoptic stations well distributed throughout Italy. The results show remarkable differences among seasons. Stationarity characterizes winter series, except for Northern Italy (where a warming trend from 1961 is identified); a positive trend over the entire period is recognized for spring series. Summer series are marked by a negative trend until 1981 and by a positive trend afterwards; finally, autumn series show a warming starting from 1970. The relationship between seasonal temperatures and four teleconnection patterns (North Atlantic Oscillation, East Atlantic Pattern, Scandinavian Pattern and Arctic Oscillation) influencing European climate was investigated through Spearman rank correlation and composites. Among the results, the strong linear correlation with the East Atlantic Pattern in all seasons but autumn is remarkable; moreover, the explained variance varies between 31.9% and 50.4% (leaving out autumn). Besides these four atmospheric patterns the role of other factors (e.g. soil moisture) is not dealt with, but their importance and the need for more investigation is pointed out.  相似文献   

5.
Based on NCEP/NCAR reanalysis data, the interdecadal variability of Hadley circulation (HC) and its association with East Asian temperature in winter are investigated. Results indicate that the Northern Hemisphere winter HC underwent apparent change in the 1970s, with transition occurring around 1976/77. Along with interdecadal variability of HC, its linkage to surface air temperature (SAT) in East Asia also varied decadally, from weak relations to strong relations. Such a change may be related to the interaction between HC and the atmospheric circulation system over the Philippines, which is associated with the East Asian winter monsoon (EAWM). Before the 1970s, the connection between HC and the anticyclonic circulation around the Philippines was insignificant, but after the late 1970s their linkage entered a strong regime. The intensification of this connection may therefore be responsible for the strong relations between HC and East Asian winter temperatures after the late 1970s.  相似文献   

6.
中国冬季气温月际变化特征及其对大气环流异常的响应   总被引:3,自引:0,他引:3  
孙健  李栋梁  邵鹏程  高娜 《气象学报》2019,77(5):885-897
基于1951—2014年中国160站月气温和NCEP/NCAR再分析资料,利用季节的经验正交函数分解(S-EOF)等方法,研究了中国冬季气温月际变化的时、空演变特征及其对大气环流异常的响应。结果表明,中国冬季气温在月尺度上常常出现前、后冬相反甚至冷暖交替的现象。中国冬季气温月际变化存在3个主模态:全冬一致型、前后反相型和冷暖交替型。当西伯利亚高压冬季一致偏强(偏弱)时,冬季一致冷(暖);当海陆热力差异由强变弱、西伯利亚高压强度由强变弱,东亚西风急流比较稳定,强度偏强,位置由南向北移动时,冬季前冷后暖;当大气环流发生突变,尤其是海平面气压场和500 hPa位势高度场上大气活动中心的频繁调整,西伯利亚高压强度在月时间尺度上强弱交替时,冬季气温呈冷—暖—冷交替变化。   相似文献   

7.
冬季北太平洋风暴轴异常及其与东亚大气环流的关系   总被引:4,自引:5,他引:4  
利用NCEP/NCAR逐日再分析资料,应用滤波方差、相关分析、合成分析等研究了1963年冬季至2011年冬季北太平洋风暴轴的时空演变特征,并探讨了风暴轴活动强弱与东亚—北太平洋大气环流的关系。结果表明:与1980s后期风暴轴活动显著增强相比,近10 a来风暴轴活动又进入较气候平均水平偏低的阶段,且风暴轴主体位置有着向东北、西南两侧的振荡现象。风暴轴活动强(弱)年,东亚地区近地面温度偏高(低)、对流层低层阿留申低压和西伯利亚高压偏弱(强)、中国东部及日本上空850 hPa北风减弱(加强);对流层中层东亚大槽减弱北缩(加深南进)、对流层高层西风急流减弱(加强)。风暴轴活动与冬季影响中国的冷空气活动次数相关关系显著。  相似文献   

8.
9.
The interannual and decadal variability of summer (June to September) air temperature in the northeastern Mediterranean is analysed for the period 1950 to 1999. Extremely hot and cool summers are illustrated by means of composite analysis. The combined influence of the large-scale atmospheric circulation and thermic predictors on local temperature is assessed by means of an objective approach based on empirical orthogonal functions and canonical correlation analysis. Monthly values of sea level pressure, geopotential heights, atmospheric thickness and Mediterranean sea surface temperatures are used as predictor fields and air temperature from 24 observational sites spread over Greece and western Turkey constitute the predictand variable. Results indicate that more than 50% of the total summer temperature variability can be explained linearly by the combination of eight large-scale predictor fields on two canonical correlation modes. The first canonical mode is related to a more meridional circulation at the upper tropospheric levels, which favours local land-sea contrasts in the associated local temperature pattern. Variations of this mode are found to be responsible for the occurrence of extreme events and decadal trends in regional temperature, the latter being characterized by a cooling in the early 1960s and a warming in the early 1990s. The second canonical mode pictures variations in the intensity of the zonal circulation over the Atlantic area that drive temperature anomalies affecting mainly the Aegean Sea and the west of Greece. Our results suggest the potential of statistical downscaling for Greek summer temperature with reliable climate forecasts for planetary-scale anomalies.  相似文献   

10.
The precipitation climate in the larger Tian Shan region of Central Asia is described in terms of the climatological seasonal moisture fluxes and background circulation based on the ERA-40 reanalysis data and a precipitation reanalysis. The study area is partitioned into (1) the Tarim river basin, (2) bordering regions of China, Kyrgyzstan and Kazakhstan, and (3) Northwestern China. Moisture supply to these areas is primarily due to the midlatitude westerlies with contributions from higher latitudes. In addition, moisture from the Indian Ocean is notably imported into the Tarim drainage area. Monthly interannual precipitation variability relates to the variability of hemispheric circulation patterns. Extreme precipitation above and below normal in Western China and Central Asia is analyzed using the standardized precipitation index. Related circulation composites show that, despite regional and seasonal differences, episodes of extreme and severe dryness are dominated by various upstream standing wave patterns from the North Atlantic to Central Asia. These features extend further downstream to the North Pacific. Non-symmetry between wet and dry composites is noted upstream and in regional moisture flux composites.  相似文献   

11.
Soil moisture influence on surface air temperature in summer is statistically quantified across East Asia using the Global Land Data Assimilation System soil moisture and observational temperature. The analysis uses a soil moisture feedback parameter computed based on lagged covariance ratios. It is found that significant negative soil moisture feedbacks on temperature mainly appear over the transition zones between dry and wet climates of northern China and Mongolia. Over these areas, the feedbacks account for typically 5–20% of the total temperature variance, with the feedback parameter of ?0.2°C to ?0.5°C (standardized soil moisture)?1. Meanwhile, positive feedbacks may exist over some areas of Northeast Asia but are much less significant. These findings emphasize the importance of soil moisture-temperature feedbacks in influencing summer climate variability and have implications for seasonal temperature forecasting.  相似文献   

12.
中国东部冬季气温异常的主模态与大气环流的关系   总被引:1,自引:3,他引:1  
利用中国东部季风区375个测站,1961-2006年历年平均地面气温资料,采用EOF、SVD、相关分析等方法,分析了中国东部季风区冬季气温与500hPa高度场异常变化的关系。结果表明:影响冬季气温的关键区有两个,皆为显著正相关;SVD分析表明:乌山脊弱,东亚槽浅,纬向环流偏强,经向环流偏弱,极涡面积偏小,使南下冷空气偏少,冬季气温易偏高。上年7月北大西洋高压异常偏强(偏弱),次年冬季气温将会异常偏暖(偏冷),北大西洋前期高度场与气温普遍有密切的关系,主要影响长江流域及其以北的季风中北部区;建立了气温距平与北大西洋关键区上年7月高度距平的关系,并建立了均生函数模型,预测了未来20 a的气温变化趋势。  相似文献   

13.
利用1961—2010年中国东北122站逐日降水资料、NCEP/NCAR再分析资料及中国国家气候中心整理的160站月平均温度资料,对东北6月、7月、8月的降水进行分型,在此基础上分析各类降水型对应的环流形势。结果表明:东北6月、7月、8月降水均可划分为两大类四小类,6月与8月的分型结果相同,为全区一致型(同多型、同少型)和南北反位相型(南部型、北部型),7月可分为全区一致型(同多型、同少型)和东西反位相型(东部型、西部型)。6月东北降水主要受东北冷涡影响,冷涡越强,降水越多,且当鄂霍次克海阻塞高压出现明显异常时,6月东北降水将呈现南北反位相特征;7月、8月降水主要受东亚夏季风影响,其中东北降水全区一致型与西太平洋副热带高压的位置以及沿亚洲西风急流东传的波列有关,而降水南北(东西)反位相型则与西太平洋副热带高压的强度有关。  相似文献   

14.
15.
The author investigates the prediction of Northeast China’s winter surface air temperature (SAT),and first forecast the year to year increment in the predic-tand and then predict the predictand.Thus,in the first step,we determined the predictors for an increment in winter SAT by analyzing the atmospheric variability associated with an increment in winter SAT.Then,multi-linear re-gression was applied to establish a prediction model for an increment in winter SAT in Northeast China.The pre-diction model shows a high correlation coefficient (0.73) between the simulated and observed annual increments in winter SAT in Northeast China throughout the period 1965-2002,with a relative root mean square error of -7.9%.The prediction model makes a reasonable hindcast for 2003-08,with an average relative root mean square error of -7.2%.The prediction model can capture the in-creasing trend of winter SAT in Northeast China from 1965-2008.The results suggest that this approach to forecasting an annual increment in winter SAT in North-east China would be relevant in operational seasonal forecasts.  相似文献   

16.
利用NCEP/NCAR再分析资料,运用31点带通数字滤波、线性相关和合成分析方法,研究了1961/1962—2010/2011年冬季北太平洋风暴轴西部、东部区域强度指数的年际演变特征,划分了风暴轴的典型型态,并进一步探讨了与同期北半球500 hPa位势高度场和SLP的关系。结果表明:风暴轴气候态的极大值区域位于中纬度北太平洋中西部,最大值点的频数集中区域和均方差分布的异常中心都有两个。风暴轴西部和东部区域强度指数(WI和EI)的年际演变具有独立性,典型型态可分为单、双中心型两类。WI(EI)指数与北半球500 hPa位势高度场的相关分布类似于WP(PNA)遥相关型;单中心型风暴轴偏强时,极涡南扩,平均槽加深;呈双中心型时,极涡明显偏西。WI(EI)指数与SLP的相关分布类似于NPO(NAO)遥相关型;单中心型风暴轴偏强(弱)时,SLP距平场呈AO遥相关型的正(负)异常位相。  相似文献   

17.
This study examines the sensitivity of a mid-size basin’s temperature and precipitation response to different global and regional climate circulation patterns. The implication of the North Atlantic Oscillation (NAO), El Ni?o Southern Oscillation (ENSO), Indian Monsoon and ten other teleconnection patterns of the Northern Hemisphere are investigated. A methodology to generate a basin-scale, long-term monthly surface temperature and precipitation time series has been established using different statistical tests. The Litani River Basin is the focus of this study. It is located in Lebanon, east of the Mediterranean Basin, which is known to have diverse geophysical and environmental characteristics. It was selected to explore the influence of the diverse physical and topographical features on its hydroclimatological response to global and regional climate patterns. We also examine the opportunity of conducting related studies in areas with limited long-term measured climate and/or hydrological data. Litani's monthly precipitation and temperature data have been collected and statistically extrapolated using remotely sensed data products from satellites and as well as in situ gauges. Correlations between 13 different teleconnection indices and the basin’s precipitation and temperature series are investigated. The study shows that some of the annual and seasonal temperature and precipitation variance can be partially associated with many atmospheric circulation patterns. This would give the opportunity to relate the natural climate variability with the watershed’s hydroclimatology performance and thus differentiate it from other anthropogenic induced climate change outcomes.  相似文献   

18.
Theoretical and Applied Climatology - In recent times, Ibadan has been experiencing an increase in mean temperature which appears to be linked to anthropogenic global warming. Previous studies have...  相似文献   

19.
The study examines simulation of atmospheric circulation, represented by circulation indices (flow direction, strength and vorticity), and links between circulation and daily surface air temperatures in regional climate models (RCMs) over Central Europe. We explore control simulations of five high-resolution RCMs from the ENSEMBLES project driven by re-analysis (ERA-40) and the same global climate model (ECHAM5 GCM) plus of one RCM (RCA) driven by different GCMs. The aims are to (1) identify errors in RCM-simulated distributions of circulation indices in individual seasons, (2) identify errors in simulated temperatures under particular circulation indices, and (3) compare performance of individual RCMs with respect to the driving data. Although most of the RCMs qualitatively reflect observed distributions of the airflow indices, each produces distributions significantly different from the observations. General biases include overestimation of the frequency of strong flow days and of strong cyclonic vorticity. Some circulation biases obviously propagate from the driving data. ECHAM5 and all simulations driven by ECHAM5 underestimate frequency of easterly flow, mainly in summer. Except for HIRHAM, however, all RCMs driven by ECHAM5 improve on the driving GCM in simulating atmospheric circulation. The influence on circulation characteristics in the nested RCM differs between GCMs, as demonstrated in a set of RCA simulations with different driving data. The driving data control on circulation in RCA is particularly weak for the BCM GCM, in which case RCA substantially modifies (but does not improve) the circulation from the driving data in both winter and summer. Those RCMs with the most distorted atmospheric circulation are HIRHAM driven by ECHAM5 and RCA driven by BCM. Relatively strong relationships between circulation indices and surface air temperatures were found in the observed data for Central Europe. The links differ by season and are usually stronger for daily maxima than minima. RCMs qualitatively reproduce these relationships. Effects of the driving model biases were found on RCMs’ performance in reproducing not only atmospheric circulation but also the links to surface temperature. However, the RCM formulation appears to be more important than the driving data in representing the latter. Differences of the circulation-to-temperature links among the RCA simulations are smaller and the links tend to be more realistic compared to the driving GCMs.  相似文献   

20.
The occurrence of daily air temperature extremes in winter in Central Spitsbergen in the period 1975–2008 was analysed. The mean winter temperature was found to be increasing by approximately 1.65°C per decade. Negative extremes were becoming less frequent, decreasing at a rate of approximately 5 days per decade, whereas the frequency of positive extremes showed a small (2 days per decade) but insignificant positive trend. Furthermore, circulation patterns responsible for positive and negative temperature extremes were analysed. Composite maps of the sea level pressure (SLP) and 500-hPa geopotential heights (z500 hPa) means and anomalies were constructed for the days with positive and negative extremes. Circulation patterns causing extremely warm winter days are characterised by a cyclonic centre or a low pressure trough over the Fram Strait. Cyclones located west of Spitsbergen with a warm sector over the archipelago bring warm air masses from the southern quadrant. On extremely cold days, the cyclone centres are usually located over the Barents Sea. This SLP pattern implies airflow from the north and northeast that brings cold Arctic air to the North Atlantic. Another factor in the occurrence of the temperature extremes in Central Spitsbergen is the sea-ice cover. Negative temperature extremes usually occur together with a high concentration of sea ice, particularly in the middle and end of winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号