首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
天然锁固段主控锁固型斜坡稳定性和构造地震演化过程,其按照承载力从低到高的次序依次断裂(宏观破坏)。因此,研究某一锁固段断裂时下一个锁固段的力学响应机制,对预测后者的断裂行为具有重要意义。研究表明,锁固段在体积膨胀点处产生的高能级特征破裂事件(标志性事件)可作为该点的判识标志,亦为锁固段的断裂前兆。我们构建了剪切作用下断层中包含两个锁固段的力学模型,基于理论分析和数值模拟讨论了具有不同承载力的锁固段组合导致的力学行为,指出天然锁固段之间的力学作用遵循强作用模式,即当前锁固段被加载至峰值强度点时,再经历一个可忽略的剪切位移增量或应变增量,伴随的荷载转移可使下一个锁固段演化至其体积膨胀点。该模式能够合理解释多种地震观测现象和实验结果。  相似文献   

2.
可靠地划分地震区可奠定地震预测与地震危险性评价的地质基础,具有十分重要的意义。笔者等通过研究分析指出板内孕震构造块体侧向边界可由区域性大断层或由区域性大断层与板块边界界定,底边界为康拉德面或低速高导层;板间孕震构造块体为俯冲板块,可由区域性大断层和(或)板块边界约束;在同一个孕震构造块体和同一轮地震周期的地震具有内在联系。因此,地震区可定义为代表相应孕震构造块体地震活动的区域,其可表征该块体内源自锁固段破裂的地震活动。基于笔者等提出的孕震构造块体和相应地震区边界确定原则,把全球两大地震带(环太平洋地震带和欧亚地震带)划分为62个地震区;每个地震区的分区方案均通过了多锁固段脆性破裂理论的检验,这说明方案可靠。进而,笔者等归纳总结了地震区划分方法。  相似文献   

3.
可可西里——东昆仑活动构造带强震活动研究   总被引:13,自引:0,他引:13  
青海昆仑山口西 8.1级地震发生在具有新生性特征的可可西里—东昆仑活动断裂带上。该断裂带在 190 0年以来的 10 0多年中经历了一个强震活动过程。在该强震活动过程中 ,地震沿整个可可西里—东昆仑活动构造带分段破裂 ,强震的破裂长度和震级之间大致满足对数线性的统计关系 ,强震活动呈现指数型时间分布的加速特征。这种强震加速活动特征可以用含多个震源体的孕震系统的强震成组活动模型给予解释。  相似文献   

4.
汶川地震和科学钻探   总被引:36,自引:2,他引:34  
许志琴  李海兵  吴忠良 《地质学报》2008,82(12):1613-1622
2008年5月12日,在我国四川省发生了震撼世界的汶川特大地震,给人民的生命财产造成了巨大的损失。在汶川特大地震发生及其余震尚在继续的特殊时期,快速实施汶川地震断裂带的科学钻探(WFSD),是认识地震发生的机制、继续对余震进行有效监控以及提高地震监视和预警的能力的极佳机遇。2008年11月6日,汶川地震断裂带科学钻探工程开工典礼在四川省都江堰市虹口乡举行,标志着地震机制的研究跨上了新的台阶。通过对科学钻孔的直接取样,多学科观测和测试,揭示地震断裂带的深部组分、结构和构造属性,重塑地震断裂带的物理和化学过程,为提高未来地震的监测、预报或预警能力提供重要信息。  相似文献   

5.
白龙江引水工程是我国拟建的一项重大战略工程,而代古寺水库是该工程的水源枢纽。代古寺水库及其周围地区(本文研究区)活动断层发育、大地震频发,故亟需开展可靠的地震危险性评估,为该研究区内的工程建设和运营保驾护航。由于传统评估方法物理依据不足,难以正确评估研究区的地震危险性,故本文采用了基于地震物理预测的地震危险性评估新方法。研究结果表明,该研究区位于海原地震区,未来100年内该研究区的地震危险性主要源于海原地震区的下一次MS8.5标志性地震。根据断层地震活动、发震潜力与展布特征,我们预判了该标志性地震的可能发震断层和震中位置;应用地震烈度衰减关系,考虑不同震中位置,分别计算了其产生的地震烈度。为确保“百年大计”的白龙江引水工程代古寺水库水资源枢纽安全,我们建议该研究区的抗震设防烈度不宜低于8度。  相似文献   

6.
针对强震能否预测以及如何预测的科学难题,建立孕震断层多锁固段脆性破裂理论,发现强震孕育过程的指数规律:sf(k)=1.48ksc,其中sf(k)和sc分别为第k个锁固体断裂点与第一个锁固段膨胀起点对应的累加Be-nioff应变,可以利用锁固段在其变形膨胀点处开始发生的震群事件(加速性地震活动前兆)预测未来大震,并给出了强震四要素相关预测方法。通过对诸多历史强震(如邢台地震、海城地震、汶川地震、玉树地震等)的回溯性检验分析表明:强震可以预测,且其孕震过程都遵循着上述简单的共性力学规律。在此基础上,归纳出4种典型强震的孕震模式,即大震震级呈"大—小—大"型,大震震级呈连续上升型,锁固段快速连续破裂型与标准型。此外,根据相关强震预测理论方法,对有关抗震救灾未来研究的方向提出如下建议:建议加强活动断裂位置精确定位、性质判定的地震地质研究,并开展孕震区锁固段(闭锁区域)判识的地质与地球物理研究等。  相似文献   

7.
The Vienna Basin Transfer Fault (VBTF) is a slow active fault with moderate seismicity (I max~8–9, M max~5.7) passing through the most vulnerable regions of Austria and Slovakia. We use different data to constrain the seismic potential of the VBTF including slip values computed from the seismic energy release during the 20th century, geological data on fault segmentation and a depth-extrapolated 3-D model of a generalized fault surface, which is used to define potential rupture zones. The seismic slip of the VBTF as a whole is in the range of 0.22–0.31 mm/year for a seismogenic fault thickness of 8 km. Seismic slip rates for individual segments vary from 0.00 to 0.77 mm/year. Comparing these data to geologically and GPS-derived slip velocities (>1 mm/year) proofs that the fault yields a significant seismic slip deficit. Segments of the fault with high seismic slip contrast from segments with no slip representing locked segments. Fault surfaces of segments within the seismogenic zone (4–14 km depth) vary from 55 to 400 km2. Empirical scaling relations show that these segments are sufficiently large to explain both, earthquakes observed in the last centuries, and the 4th century Carnuntum earthquake, for which archeo-seismological data suggest a magnitude of M ≥ 6. Based on the combination of all data (incomplete earthquake catalog, seismic slip deficits, locked segments, potential rupture areas, indications of strong pre-catalog earthquakes) we argue, that the maximum credible earthquake for the VBTF is in the range M max = 6.0–6.8, significantly larger than the magnitude of the strongest recorded events (M = 5.7).  相似文献   

8.
花东纵谷断层是中国台湾动力作用和地壳运动变形最强烈的断层之一,其断层运动特征和强震危险程度一直备受学者的关注。文中分别以同震地表位移、1992-1999年震间形变数据为约束,反演2003年成功MW 6.8地震同震位错分布和花东纵谷断层震间运动特征。结果表明:花东纵谷断层北段处于强闭锁状态(闭锁率高达0.9),闭锁深度深(约27 km);南段闭锁程度较弱(闭锁率约0.5),闭锁深度较浅(约12 km);中段闭锁程度与闭锁深度介于南北段之间。另一方面,2003年成功MW 6.8地震微观震中位于震间无震滑移区与闭锁区的过渡带附近。依据同震位错、震间断层运动反演结果,以及历史强震破裂分布特征,分析认为,花东纵谷断层南北段运动方式存在差异性,北段主要以强震形式运动,南段以蠕滑和地震两种形式运动。自1951年花莲-台东ML 7.3地震序列后,花东纵谷断层南段、中段和北段至2016年所累积的矩能量分别等价MW 6.4、MW 7.0、MW 7.4地震;若发生级联破裂,整个断层至2016年所累积的矩能量等价MW 7.5地震。  相似文献   

9.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

10.
Large to great earthquakes and related tsunamis generated on the Aleutian megathrust produce major hazards for both the area of rupture and heavily populated coastlines around much of the Pacific Ocean. Here we use paleoseismic records preserved in coastal sediments to investigate whether segment boundaries control the largest ruptures or whether in some seismic cycles segments combine to produce earthquakes greater than any observed since instrumented records began. Virtually the entire megathrust has ruptured since AD1900, with four different segments generating earthquakes >M8.0. The largest was the M9.2 great Alaska earthquake of March 1964 that ruptured ~800 km of the eastern segment of the megathrust. The tsunami generated caused fatalities in Alaska and along the coast as far south as California. East of the 1964 zone of deformation, the Yakutat microplate experienced two >M8.0 earthquakes, separated by a week, in September 1899. For the first time, we present evidence that earthquakes ~900 and ~1500 years ago simultaneously ruptured adjacent segments of the Aleutian megathrust and the Yakutat microplate, with a combined area ~15% greater than 1964, giving an earthquake of greater magnitude and increased tsunamigenic potential.  相似文献   

11.
The Himalayas has experienced varying rates of earthquake occurrence in the past in its seismo-tectonically distinguished segments which may be attributed to different physical processes of accumulation of stress and its release, and due diligence is required for its inclusion for working out the seismic hazard. The present paper intends to revisit the various earthquake occurrence models applied to Himalayas and examines it in the light of recent damaging earthquakes in Himalayan belt. Due to discordant seismicity of Himalayas, three types of regions have been considered to estimate larger return period events. The regions selected are (1) the North-West Himalayan Fold and Thrust Belt which is seismically very active, (2) the Garhwal Himalaya which has never experienced large earthquake although sufficient stress exists and (3) the Nepal region which is very seismically active region due to unlocked rupture and frequently experienced large earthquake events. The seismicity parameters have been revisited using two earthquake recurrence models namely constant seismicity and constant moment release. For constant moment release model, the strain rates have been derived from global strain rate model and are converted into seismic moment of earthquake events considering the geometry of the finite source and the rates being consumed fully by the contemporary seismicity. Probability of earthquake occurrence with time has been estimated for each region using both models and compared assuming Poissonian distribution. The results show that seismicity for North-West region is observed to be relatively less when estimated using constant seismicity model which implies that either the occupied accumulated stress is not being unconfined in the form of earthquakes or the compiled earthquake catalogue is insufficient. Similar trend has been observed for seismic gap area but with lesser difference reported from both methods. However, for the Nepal region, the estimated seismicity by the two methods has been found to be relatively less when estimated using constant moment release model which implies that in the Nepal region, accumulated strain is releasing in the form of large earthquake occurrence event. The partial release in second event of May 2015 of similar size shows that the physical process is trying to release the energy with large earthquake event. If it would have been in other regions like that of seismic gap region, the fault may not have released the energy and may be inviting even bigger event in future. It is, therefore, necessary to look into the seismicity from strain rates also for its due interpretation in terms of predicting the seismic hazard in various segments of Himalayas.  相似文献   

12.
地震时活动断裂会对隧道产生巨大破坏,如何减轻地震对隧道的破坏,成为设计人员关注的热点问题。本文在研究大量关于震级与断层破裂参数及其位移量之间关系的基础上,利用 512 汶川地震的破裂参数进一步验证了Donald L.Wells等人关于震级与断层破裂参数和地表位移之间的经验关系式。结果显示,根据震级与地表破裂长度、地下破裂长度、破裂宽度以及平均位移的关系式得出的验证值与汶川地震的实际破裂参数相近,说明这些关系式可以在地震时估算破裂参数,并为地震区穿越潜在断层的隧道设计以及隧道安全性评价提供参考依据。  相似文献   

13.
郯庐断裂带是中国东部板内一条规模最大的强构造变形带与地震活动断裂带,其断裂结构与历史地震活动性具明显的分段活动性。文中通过沿郯庐断裂带中南段的历史地震活动性、精定位背景地震活动性与震源机制解分析,讨论了断裂带的深部几何结构与现今活动习性。现今地震活动在中段主要沿1668年郯城MS 8地震破裂带线性分布,线性条带在泗洪-诸城间延伸约340 km长,为1668年地震长期缓慢衰减的余震序列活动。大震地表破裂遗迹与精定位地震分布都揭示出郯庐断裂带中段的两条全新世活动断裂昌邑-大店断裂与安丘-莒县断裂以右阶斜列的形式共同参与了1668年郯城MS 8地震破裂。精定位震源剖面刻画出两条断裂结构面呈高角度相背而倾,其中昌邑-大店断裂倾向SE,安丘-莒县断裂倾向NW,两条断裂在深部没有合并汇聚。余震活动所代表的1668年地震震源破裂带是郯庐断裂带中现今尚未闭锁的安全段落,对应于高b值段。而未发生破裂的安丘以北段,小震活动不活跃,b值低,现今可能已成为应力积累的闭锁段。震源机制解揭示的断裂应力状态在中段以NE向主压应力为主,表现为右旋走滑活动性质,且存在少量正断分量,南段转为以NEE至近EW向为主,存在少量的逆冲分量。在中段与南段的转折处宿迁-嘉山段,主压应力方向垂直断裂带走向呈NWW向,反映出局部以挤压为主的应力特征,其中泗洪-嘉山段也是历史地震未破裂段,现今小震活动不活跃,因此该段可能更易于应力积累。精定位小震活动在郯庐断裂与北西向断裂相交汇处聚集,反映出北西向断裂的新活动性,以及郯庐断裂带现今的逆冲作用。在断裂带南端,精定位背景地震活动沿与其相交汇的襄樊-广济断裂带东段呈北西向线性分布,表明了该段的现今活动性。  相似文献   

14.
鲜水河断裂带是中国西南地区一条活动强烈的大型左旋走滑断裂带,具有规模大、活动性强、地震频度高、潜在次生地震地质灾害严重等特点,其地震活动具有特征地震的典型特征,且活断层分段特征明显。本文建立活断层分段上的特征地震模型进行未来地震动预测研究,依据各分段的特征震级、特征破裂断面的几何尺寸、应力降和地震矩等重要震源参数,建立各分段上的随机有限断层震源模型,合成得到各分段观测点的地震动时程与峰值,最终得到整个断裂带的特征地震下的地震动场预测图。研究成果对中国的防震减灾工作具有重要的意义,技术方法可作为中国地震区划技术发展的有益探索。  相似文献   

15.
Yong—gangLI 《地学前缘》2003,10(4):479-505
美国加利福尼亚州兰德斯和海克特曼恩地区于1992年和1999年先后发生7.4级和7.1级地震,分别在地面产生80km和40km长的断裂带。震后在断裂带布置的密集地震站台记录到明显的断层导波(fault-zone guided waves)。这些导波由断层带内的余震和人工震源激发产生,走时在S波之后,但具有比体波更强的振幅和更长的波列,并具有频散特征。通过对2~7 Hz断层导波的定量分析和三维有限差分数字模拟,获得了震深区断裂带的高分辨内部构造图像以及岩石的物理特性。数字模拟结果表明这些断裂带上存在被严重破碎了的核心层,形成低速、低Q值地震波导。核心破碎带宽约100~200 m,其内地震波波速降为周围岩石的40%~50%,Q值约为10~50。根据岩石断裂力学观点,这一低速、低Q值带可被解释为地震过程中处于断层动态断裂前端的非弹性区(或称之为破碎区,相干过程区)。在兰德斯和海克特曼恩断裂带测得的破碎区宽度与断裂带长度之比约为0.005,基本上符合岩石断裂力学预期的结果。观察到的断层导波还显示兰德斯和海克特曼恩地震中多条断层发生滑移和破碎。兰德斯地震时多条阶梯形断层相继断裂;而在海克特曼恩地震中,断裂带南北两端均出现分枝断裂,深处的分枝断裂较地表出现的破裂状况更为复杂。由三维有限元模拟的动态断裂过程表明,?  相似文献   

16.
The first tectonophysical model of the Baikal seismic zone represents a separate complex region of the lithosphere. It has a pinnate structure with a backbone belt of current deformation, which is a concentrator of largest earthquakes, and branching, repeatedly reactivated large and small faults. In its vertical section, the seismic zone is tree-like, the stem and the branches being faults of different size ranks which can generate earthquakes when reactivated. The real-time short-period fault motions and the respective seismicity occurring at a certain time and in certain places are triggered by strain waves, which disturb the metastable state of the faulted lithosphere subject to regional stress. The modeling work includes developing general requirements for tectonophysical models of continental rifts and special methods for identifying the faults that become active within short historic time spans, as well as techniques for locating potential events in space and time in specific active faults. The methods and model testing for medium-term earthquake prediction are described by the example of the well-documented Baikal seismic zone, which is the most active part of the Baikal rift system. The tectonophysical model for the Baikal zone is statistically supported by field data, and this allows estimating the velocities and periods of strain waves for different zone segments and faults, with implications for nearest-future earthquake prediction.  相似文献   

17.
The 1515 M7? Yongsheng earthquake is the strongest earthquake historically in northwest Yunnan. However, its time, magnitude and the seismogenic fault have long been a topic of dispute. In order to accurately define those problems, a 1:50000 active tectonic mapping was carried out along the northern segment of the Chenghai–Binchuan fault zone. The result shows that there is an at least 25 km–long surface rupture and a series of seismic landslides distributed along the Jinguan fault and the Chenghai fault. Radiocarbon dating of the ~(14) C samples indicates that the surface rupture should be a part of the deformation zone caused by the Yongsheng earthquake in the year 1515. The distribution characteristics of this surface rupture indicate that the macroscopic epicenter of the 1515 Yongsheng earthquake may be located near Hongshiya, and the seismogenic fault of this earthquake is the Jinguan–Chenghai fault, the northern part of the Chenghai–Binchuan fault zone. Striations on the surface rupture show that the latest motion of the fault is normal faulting. The maximum co–seismic vertical displacement can be 3.8 m, according to the empirical formula for the fault displacement and moment magnitude relationship, the moment magnitude of the Yongsheng earthquake was Mw 7.3–7.4. Furthermore, combining published age data with the ~(14) C data in this paper reveals that at least four large earthquakes of similar size to the 1515 Yongsheng earthquake, have taken place across the northern segment of the Chenghai–Binchuan fault zone since 17190±50 yr. BP. The in–situ recurrence interval of Mw 7.3–7.4 characteristic earthquakes in Yongsheng along this fault zone is possibly on the order of 6 ka.  相似文献   

18.
The Longmen Shan fault zone is located at the particular boundary between the Triassic Songpan-Ganzi orogen of the Qinghai-Tibetan Plateau and the stable Sichuan basin of the Yangtze platform. There are four major active faults and three tectonic nappes in this region. According to an analysis of neotectonics and historical earthquakes, the Longmen Shan fault zone presents a high level of seismic hazard. The rupture system that hosted the Wenchuan earthquake is characterized by thrust and dextral strike-slip movement.  相似文献   

19.
We perform a broadband frequency bedrock strong ground motion simulation in the Marmara Sea region (Turkey), based on several fault rupture scenarios and a source asperity model. The technique combines a deterministic simulation of seismic wave propagation at low frequencies with a semi-stochastic procedure for the high frequencies. To model the high frequencies, we applied a frequency-dependent radiation pattern model, which efficiently removes the effective dependence of the pattern coefficient on the azimuth and take-off angle as the frequency increases. The earthquake scenarios considered consist of the rupture of the closest segments of the North Anatolian Fault System to the city of Istanbul. Our scenario earthquakes involve the rupture of the entire North Anatolian Fault beneath the Sea of Marmara, namely the combined rupture of the Central Marmara Fault and North Boundary Fault segments. We defined three fault rupture scenarios based on the location of the hypocenter, selecting a preferred hypocentral location near a fault bend for each case. We analysed the effect of location of the asperity, within the Central Marmara Fault, on the subsequent ground motion, as well as the influence of anelasticity on the high-frequency attenuation characteristics. The fault and asperity parameters for each scenario were determined from empirical scalings and from results of kinematic and dynamic models of fault rupture. We calculated the resulting time series and spectra for ground motion at Istanbul and evaluated the sensitivity of the predictions to choice of model parameters. The location of the hypocenter is thus shown to be a critical parameter for determining the worst scenario earthquake at Istanbul. We also found that anelasticity has a significant effect on the regional attenuation of peak ground accelerations. Our simulated ground motions result in large values of acceleration response spectra at long periods, which could be critical for building damage at Istanbul during an actual earthquake.  相似文献   

20.
玉树地震序列重新定位及其地震构造研究   总被引:3,自引:0,他引:3  
对玉树地震序列自2010年4月11日至9月15日由台网记录到的1 832个地震采用双差地震定位法进行重新定位,获得了1 670个地震重新定位的震源参数。重新定位后的震源深度主要分布在15 km以内。重新定位后的Ms 7.1级主震发生在无地表破裂段,余震活动向两侧破裂扩展。余震沿地表破裂带基本呈线性分布,剖面上显示为近垂直的结构面,在北西端无地表破裂出露处,出现近垂直于断裂方向较宽的北东向地震密集带。震源机制解显示的主压应力方向斜交地表破裂带,地表破裂与震源破裂都表现为纯左旋走滑的错动性质,而在北西端主压应力方向偏转为近垂直于断裂带的方向,此处较宽的北东向地震密集带可能由近东西与南北两个方向的共轭破裂所组成。余震的后期活动与发展并不局限于主震形成的破裂带内,更多的受局部应力调整被触发而产生新的破裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号