首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blueschist and greenschist units on the island of Sifnos, Cyclades were affected by Eocene high‐pressure (HP) metamorphism. Using conventional geothermobarometry, the HP peak metamorphic stage was determined at 550–600 °C and 20 kbar, close to the blueschist and the eclogite facies transition. The retrograde P–T paths are inferred with phase diagrams. Pseudosections based on a quantitative petrogenetic grid in the model system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O reveal coeval decompression and cooling for both the blueschist and the greenschist unit. The conditions of the metamorphic peak and those of the retrograde stages conform to a similar metamorphic gradient of 10–12 °C km?1 for both units. The retrograde overprint can be assigned to low‐pressure blueschist to HP greenschist facies conditions. This result cannot be reconciled with the (prograde) Barrovian‐type event, which affected parts of the Cyclades during the Oligocene to Miocene. Instead, the retrograde overprint is interpreted in terms of exhumation, directly after the HP stage, without a separate metamorphic event. Constraints on the exhumation mechanism are given by decompression‐cooling paths, which can be explained by exhumation in a fore‐arc setting during on‐going subduction and associated crustal shortening. Back‐arc extension is only responsible for the final stage of exhumation of the HP units.  相似文献   

2.
We report U–Pb zircon ages of c. 700–550 Ma, 262–220 Ma, 47–38 Ma and 15–14 Ma from amphibolites on Naxos Island in the Aegean extensional province of Greece. The zircon has complex internal structures. Based on cathodoluminescence response, zoning and crosscutting relationships a minimum of four zircon growth stages are identified: inherited core, magmatic core, inner metamorphic (?) rim and an outer metamorphic rim. Trace element compositions of the amphibolites suggest igneous differentiation and crustal assimilation. Zircon solubility as a function of saturation temperatures, Zr content and melt composition indicates that the zircon did not originally crystallize in the mafic bodies but was inherited from felsic precursor rocks, and subsequently assimilated into the mafic intrusives during emplacement. Zircon inheritance is corroborated by the complex, xenocrystic nature of the zircon in one sample. Ages of c. 700–550 Ma and 262–220 Ma are assigned to inherited zircon. Available geochemical data suggest that the 15–14 Ma metamorphic rims grew in situ in the amphibolites, corresponding to a high‐grade metamorphic event at this time. However, the geochemical data cannot conclusively establish if the c. 40 Ma zircon rims also grew in situ, or whether they were inherited along with the xenocrystic cores. Two scenarios for emplacement of the mafic intrusives are discussed: (i) Intrusion during late‐Triassic to Jurassic ocean basin development of the Aegean realm, in which case the 40 Ma zircon rims would have grown in situ, and (ii) emplacement in the Miocene as a result mafic underplating during large‐scale extension. In this case, only the 15–14 Ma metamorphic outer rims would have formed in situ in the amphibolitic host rocks.  相似文献   

3.
Basic and ultrabasic blocks within ophiolitic mélanges of the Cycladic Blueschist Unit in southern Evia provide a detailed insight into its ocean floor igneous and hydrothermal evolution, as well as the regional poly‐metamorphism occurring during Alpine orogenesis. The upper structural levels (Mt. Ochi exposures) are dominated by metamorphosed wehrlites, gabbros and highly light rare earth element (LREE)‐enriched pillow basalts, whereas the underlying Tsaki mélange consists of basic protoliths with much less fractionated REE patterns as well as mantle harzburgites. Most of the metabasites show Nb anomalies, indicative of derivation from a subduction‐affected mantle. The igneous bodies were juxtaposed and incorporated into the enclosing sedimentary sequences prior to high‐pressure/low‐temperature (HP/LT) metamorphism (M1). Glaucophane, epidote, sodic clinopyroxene and high‐Si phengite constitute the Eocene M1 assemblage, which is estimated to have formed at >11 kbar and 400–450 °C. High δ18O values of M1 minerals in Ochi metagabbros indicate that the formation of the high‐pressure assemblage was controlled by infiltration of fluids from the dehydrating host sediments. Cooling during decompression is indicated by an overprinting (M2, Early Miocene) pumpellyite–actinolite facies assemblage in metabasic rocks, calculated to have developed at P<8 kbar and T <350 °C. Possible mechanisms for such cooling include: exhumation from shallower burial levels relative to the eclogites of the NW Cyclades, accretion of colder rocks from below and extensional unroofing by low‐angle normal faults and detachments. The occurrence of sodic augite in the M2 assemblage of Tsaki metagabbros indicates that rocks at the base of the Blueschist Unit cooled faster or longer than their higher level Ochi counterparts. This suggests that differential cooling of the blueschists was enhanced by the underthrusting of colder rock units.  相似文献   

4.
Abstract Petrological, oxygen isotope and 40Ar/39Ar studies were used to constrain the Tertiary metamorphic evolution of the lower tectonic unit of the Cyclades on Tinos. Polyphase high-pressure metamorphism reached pressures in excess of 15 kbar, based on measurements of the Si content in potassic white mica. Temperatures of 450–500° C at the thermal peak of high-pressure metamorphism were estimated from critical metamorphic assemblages, the validity of which is confirmed by a quartz–magnetite oxygen isotope temperature of 470° C. Some 40Ar/39Ar spectra of white mica give plateau ages of 44–40 Ma that are considered to represent dynamic recrystallization under peak or slightly post-peak high-pressure metamorphic conditions. Early stages in the prograde high-pressure evolution may be documented by older apparent ages in the high-temperature steps of some spectra. Eclogite to epidote blueschist facies mineralogies were partially or totally replaced by retrograde greenschist facies assemblages during exhumation. Oxygen isotope thermometry of four quartz–magnetite pairs from greenschist samples gives temperatures of 440–470° C which cannot be distinguished from those deduced for the high-pressure event. The exhumation and overprint is documented by decreasing ages of 32–28 Ma in some greenschists and late-stage blueschist rocks, and ages of 30–20 Ma in the lower temperature steps of the Ar release patterns of blueschist micas. Almost flat parts of Ar–Ar release spectra of some greenschist micas gave ages of 23–21 Ma which are assumed to represent incomplete resetting caused by a renewed prograde phase of greenschist metamorphism. Oxygen isotope compositions of blueschist and greenschist facies minerals show no evidence for the infiltration of a δ18O-enriched fluid. Rather, the compositions indicate that fluid to rock ratios were very low, the isotopic compositions being primarily controlled by those of the protolith rocks. We assume that the fundamental control catalysing the transformation of blueschists into greenschists and the associated resetting of their isotopic systems was the selective infiltration of metamorphic fluid. A quartz–magnetite sample from a contact metamorphic skarn, taken near the Miocene monzogranite of Tinos, gave an oxygen isotope temperature of 555° C and calculated water composition of 9.1%. The value of δ18O obtained from this water is consistent with a primary magmatic fluid, but is lower than that of fluids associated with the greenschist overprint, which indicates that the latter event cannot be directly related to the monozogranite intrusion.  相似文献   

5.
The magnetic lineation observed in “undeformed” sedimentary units has been interpreted either as an indication of paleoflow direction, or as a result of tectonic overprint which progressively modifies the original sedimentary fabric related to compactional processes. Distinguishing between the two processes is not always easy. In fact, most studies of the Anistropy of Magnetic Susceptibility (AMS) of “undeformed” sequences have been carried out in fine-grained sediments from foredeep sequences, which are characterized by sedimentary flow directions which are almost parallel to the main deformation structures, like thrust faults and folds. In the Alborz Mts., the Upper Triassic–Lower Jurassic Shemshak Group was deposited in a foreland to molassic basin of the Eo-Cimmerian orogen and now outcrops in several folds which are oriented parallel to the curved chain. Paleoflow directions are generally oblique to the main tectonic structures, being directed SSW to SSE and showing negligible changes in their orientation along the Alborz Mountains. We have, therefore, the opportunity to distinguish between tectonic- or sedimentary-related origins of the magnetic lineation. The AMS results show that magnetic lineations of the Shemshak Group are oriented almost parallel to the main fold axes and thrust structures, which follow the Alborz Mts. curved trend, suggesting that magnetic lineation is of tectonic origin in fine to medium grained, mostly massive sandstones, and confirming that AMS is a valuable tool to study deformation processes in sedimentary rocks.  相似文献   

6.
The ophiolitic sequence which crops out along the Aspropotamos Valley, Northern Pindos, Greece is composed from the bottom to the top of cumulates, dolerites, basaltic lavas, upper pillow lavas with basaltic/andesitic composition, and scarce basaltic dykes. The intrusive sequence, which is the subject of the present paper, exhibits magmatic layering more pronounced at the bottom than at the top where isotropic gabbros occur; they grade into the overlying dolerites. Troctolites with rare ultramafites prevail in the lower section and olivine gabbros in the upper section; at the top two-pyroxene gabbros appear. The rocks are mainly adcumulates and mesocumulates with subordinate heteradcumulates. The cumulus phases separated in the order: olivine and Cr-spinel, plagioclase, clinopyroxene, orthopyroxene. Olivine, plagioclase and pyroxenes frequently exhibit adeumulus overgrowth. Intercumulus phases may be plagioclase, clinopyroxene, orthopyroxene, pale brown amphibole and magnetite. Where pore material is present, it is composed of plagioclase, clinopyroxene, orthopyroxene, hornblende and ores. Cr-spinel occurs mainly at the bottom of the sequence (Cr2O3 between 30·5 and 39·8 per cent), while magnetite appears as a very rare phase in the upper section. Olivine, orthopyroxene, clinopyroxene exhibit slight cryptic variation (Mg × 100/(Mg + Fe) in the range 90–79, 90–70, 93–72 respectively). The investigated dolerites are non-cumulus rocks where clinopyroxene may be more magnesian than in the uppermost gabbros. The cumulate sequence and dolerites underwent variable but generally slight spilitization, in contrast to the overlying lavas. The sequence was generated through crystal accumulation probably from periodic pulses of tholeiitic magma; newly injected magma batches mixing with magma fractions already differentiated in the magma chamber. The high fluid pressure evidenced by the fluid inclusions in plagioclase and the whole chemical trend of the cumulate sequence are consistent with a genesis above a subduction zone, as already hypothesized for the overlying lavas.  相似文献   

7.
The Pb-Zn-Ba(-Ag-Au) mineralization in the Triades and Galana mine areas is hosted in 2.5–1.4 Ma pyroclastic rocks, and structurally controlled mostly by NE-SW or N-S trending brittle faults. Proximal pervasive silica and distal pervasive sericite-illite alteration are the two main alteration types present at the surface. The distribution of mineralization-alteration in the district suggests at least two hydrothermal events or that hydrothermal activity lasted longer at Galana. The Sr isotope signature of sphalerite and barite (87Sr/86Sr = 0.709162 to 0.710214) and calculated oxygen isotope composition of a fluid in equilibrium with barite and associated quartz at temperatures of around 230°C are suggestive of a seawater hydrothermal system and fluid/rock interaction. Lead isotope ratios of galena and sphalerite (206Pb/204Pb from 18.8384 to 18.8711; 207Pb/204Pb from 15.6695 to 15.6976; 208Pb/204Pb from 38.9158 to 39.0161) are similar to those of South Aegean Arc volcanic and Aegean Miocene plutonic rocks, and compatible with Pb derived from an igneous source. Galena and sphalerite from Triades-Galana have δ34SVCDT values ranging from +1 to +3.6‰, whereas barite sulfate shows δ34SVCDT values from +22.8 to +24.4‰. The sulfur isotope signatures of these minerals are explained by seawater sulfate reduction processes. The new analytical data are consistent with a seawater-dominated hydrothermal system and interaction of the hydrothermal fluid with the country rocks, which are the source of the ore metals.  相似文献   

8.
《Comptes Rendus Geoscience》2018,350(5):202-211
Although there is rich evidence for human occupation of Paros’ coastline, there is a dearth of data with regards to the evolution of the island's seaboard palaeoenvironments. In this paper, we use sedimentological and palaeontological proxies of late Holocene coastal deposits from lagoonal environment to reconstruct the evolution of coastal landscapes in Paroikia Bay (Paros Island, Greece). A semi-enclosed lagoon existed in the northeastern part of Paroikia from at least 2915–2551 BC, which was gradually infilled after around 780–436 BC. Although it was not possible to chronologically constrain the timing of the infill, it is most likely relatively young, indicating anthropogenic effects. A correlation of our chronostratigraphic data with archaeological remains and tidal notches in the study area suggests that the subsidence observed on Paros Island is linked to long-term subsidence in combination with vertical seismic displacements.  相似文献   

9.
Abstract

The Aegean continental domain is known to be the site of widespread “back-arc” extension since at least 13 Ma, on the basis of seismotectonic, stratigraphic and fault analysis studies. This extension is documented to overprint structures related to the Mesozoic-Cenozoic Hellenic orogeny. Features attributed to early thrusting include the overall ductile deformation within two broad belts that have suffered HP/LT metamorphism across the Aegean. This study presents a structural analysis of the central Aegean area (Cyclades and Evvia Islands), examining in particular the relationship between ductile and brittle deformation, both in the field and on a regional scale. Extension appears to be responsible for most of the ductile deformation within HP rock units that have experienced penetrative greenschist facies and higher grade metamorphic over-printing. On each studied island, progressive extensional deformation has occurred through the development of a major normal-sense detachment zone down to depths of about 18-25 km. Large displacement along the detachment zone accounts for rapid cooling and exhumation of ductile lower crust to form a local metamorphic dome or core complex. Structural and stratigraphic features support a progressive migration of normal faulting away from the dome axis, and a rotation of previously active faults toward low dips, as in kinematic models recently suggested for the development of extensional detachment systems. All the studied domes, except that seen on los Island, show a dominant top-to-the north or north-east sense of shear, while on the southern flank of many of them, an opposite sense of shear is observed, displaying the same progressive evolution from ductile to brittle rock behaviour. This opposite sense of shear is thought not to result from shearing along a major conjugate detachment zone, as in some recent models, but from the accommodation in the ductile crust of upward bending of the brittle upper crust in the footwall of the north-dipping detachment. Available radiometric and stratigraphie data indicate an early minimum age (22-19 Ma) for the onset of extension. The relationship between early metamorphic domes and shallow-dipping detachments, on one hand, and Messinian-Quaternary steep normal faults and grabens, on the other hand, is best explained with the progressive and continuous development of new normal faults away from the domes axes, rather than with a two-stage evolutionary model (core-complex stage, then Basin-and-Range stage) of the type invoked for the North American Cordillera.  相似文献   

10.
Some of the Lower Pleistocene bentonites of Milos and Kimolos islands, Greece, are valued for their white colour and physicochemical properties. They contain opal-CT and, sometimes, zeolite along with smectite, and have been derived from the alteration of rhyolitic volcanic rocks. The Miloan white bentonites contain Tatatilla-type montmorillonite and beidellite. The Kimolian ones have Chambers-type montmorillonite. The alteration process involved removal of alkalis and uptake of Mg, probably from sea water. Si is either redistributed or partially removed. The Kimolian white bentonites have higher brightnesses, L* and whiteness index values, and lower yellowness index and ΔE*ab values compared with the Miloan ones. The variations in white colour are inversely related to the abundance of Fe oxides and anatase, the occurrence of Fe in the smectite structure and its oxidation state. The presence of silica minerals is not an important factor affecting colour, but is undesirable since it imparts high abrasiveness in commercial products. The formation of white bentonites of high quality requires the removal of alkalis and silica during alteration of acid volcanics in order to avoid crystallization of zeolites and opal-CT. Fe needs to be incorporated into the smectite structure. Such conditions are rarely attained. Received: 25 September 1996 / Accepted: 17 January 1997  相似文献   

11.
哀牢山构造带泥质高压麻粒岩主要由石榴石、夕线石、钾长石和斜长石变斑晶及尖晶石、铁假蓝宝石、蓝晶石、石英、金红石和钛铁矿包裹体组成,为确定印支地块和华南地块的边界提供了关键性标志。石榴石-黑云母-斜长石-石英地质温压计(GBPQ)计算结果及标志性高温矿物组合(Spl+Qz)表明泥质高压麻粒岩的形成和演化经历了高压/高温进变质到中温/低压退变质的顺时针P-T演化过程。其中:1)高压/高温进变质阶段的矿物组合为Ky+Sil+Grt1+Kf1+Pl1+Spr+Ter(Kf+Pl)+Bt1+Spl+Qtz+Ilm1+Rut1,形成于850~919℃,≥10.4kbar;2)中温/低压退变质阶段的矿物组合为Grt2+Bt2+Pl2+Ms+Qtz+Ilm2+Rut2,早期和晚期的温压条件分别为664~754℃,4.9~6.5kbar和572~576℃,3.5~3.9kbar。反映陆壳物质在碰撞过程中俯冲到地下深处(≥30km)经高压高温变质后快速折返到中上地壳的动力学演变轨迹。  相似文献   

12.
B. Mocek   《Lithos》2001,57(4):263-289
Blueschists, eclogites, chlorite–actinolite rocks and jadeite-gneisses of the blueschist unit of Siphnos have been investigated for their geochemical composition. Their protolith nature is characterised and a geodynamic model for the pre-metamorphic evolution of these metavolcanic rocks is proposed on the basis of immobile elements, especially trace elements and rare earth elements (REE).

The protoliths of the eclogites are characterised as calc-alkaline basalts, andesites and Fe-rich tholeiites evolving in an island-arc setting. Trace element data indicate that subducted marine sediments were assimilated in the magma chamber, enriching the protoliths in LILE and Pb. Produced in the early stage of back-arc basin opening, a protolith with affinities to both island-arc and MORB formed the precursor of the chlorite–actinolite rocks. They were created by low degrees of partial melting of very primitive magmas, akin to spinel-peridotites and have affinities to boninites, probably through melting of the peridotitic mantle wedge. Tholeiitic basalts and andesites with N-MORB affinity, especially in their REE-patterns, were then produced by partial melting, possibly in an embryonic back-arc basin. These rocks were the protoliths of the blueschists of Siphnos. Their enrichment in some LILE and Pb indicates a N-MORB source contaminated by marine sediments, probably shales or other Pb-rich sediments. Because the jadeite-gneisses show affinities to MOR-granites and volcanic arc granites, intrusion of their protoliths in a back-arc environment is likely. The protoliths of the quartz-jadeite gneisses are rhyodacites/dacites and rhyolites, those of the glaucophane-jadeite gneisses were andesites.

The proposed geodynamic model, solely based on geochemical data, is consistent with geochemical data from neighbouring islands, though those rock units show much higher chemical variability. Consistent with geotectonic models, which are based on structural and geophysical data, the volcanic protoliths of the Siphnos blueschist unit reflect the transition from subduction to spreading environment and record in detail: subduction, formation of an island-arc, and the evolution of a back-arc basin.  相似文献   


13.
The Cycladic blueschist belt in the central Aegean Sea has experienced high‐pressure (HP) metamorphism during collisional processes between the Apulian microplate and Eurasia. The general geological and tectonometamorphic framework is well documented, but one aspect which is yet not sufficiently explored is the importance of HP mélanges which occur within volcano‐sedimentary successions. Unresolved issues concern the range in magmatic and metamorphic ages recorded by mélange blocks and the significance of eventual pre‐Eocene HP metamorphism. These aspects are here addressed in a U‐Pb zircon study focusing on the block–matrix association exposed on the island of Syros. Two gneisses from a tectonic slab of this mélange, consisting of an interlayered felsic gneiss‐glaucophanite sequence, yielded zircon 206Pb/238U ages of 240.1 ± 4.1 and 245.3 ± 4.9 Ma, respectively, similar to Triassic ages determined on zircon in meta‐volcanic rocks from structurally coherent sequences elsewhere in the Cyclades. This strongly suggests that parts of these successions have been incorporated in the mélanges and provides the first geochronological evidence that the provenance of mélange blocks/slabs is neither restricted to a single source nor confined to fragments of oceanic lithosphere. Zircon from a jadeitite and associated alteration zones (omphacitite, glaucophanite and chlorite‐actinolite rock) all yielded identical 206Pb/238U ages of c. 80 Ma. Similar Cretaceous U‐Pb zircon ages previously reported for mélange blocks have been interpreted by different authors to reflect magmatic or metamorphic ages. The present study adds a further argument in favour of the view that zircon formed newly in some rock types at c. 80 Ma, due to hydrothermal or metasomatic processes in a subduction zone environment, and supports the interpretation that the Cycladic blueschist belt records both Cretaceous and Eocene HP episodes and not only a single Tertiary HP event.  相似文献   

14.
Abstract

The Karakorum gneisses outcrop north of the complex suture separating the Indian-Pakistan plate from the Europe-Asia block; they grade to deformed earlier members of the Karakorum batholith ranging in age from Cretaceous to Miocene and are cross-cut by its later members. The main interest of the region lies in the fact that very young high-grade gneisses (Miocene), outline the southern edge of the Europe-Asia Plate. The tectonic and metamorpic evolution of the Braldu-Baltoro region is interpreted here as resulting from a poly phased history. The following structural sequence has been defined : - (1) A Dl isoclinal folding was accompanied by subparallel healed shear zones and by intense boudinage, and cross-cut by a dense net of post-Dl hetero-geneous leucogranitic veins and stocks; - (2) a major phase of EW trending recumbent folds (D2), is followed by (3) large open D3 folds generating EW trending domai structures (Dassu and Panmah domes); and (4) a late set of brittle to locally more ductile structures such as the southern thrust contact of the Karakorum gneisses with the Shyok suture zone. The sequence proposed here differs from other interpretations (Rex et al. 1988). We consider that the Dl event only may be attributed to the main India-Asia collision and that the D2-D3 events, interpreted as having occurred in a continuum, correspond to a late reactivation of the major thrusts and sutures related to continuing continental subduction.

A Dl-related intermediate pressure assemblage is preserved (Grt-St-Ky) in the upper levels of the tectonic pile; the estimated PT conditions determined are 10-4 Kb and 700°--525°C. In the core of the large D3 domes, late granoblastic recrystallization is widespread together with almost complete S1-S2 transposition, incipient melting and development of a low-pressure sillimanite-bearing assemblage where relicts of higher pressure minerals are locally preserved. Corresponding PT conditions are 650°-550°C and a lower pressure (5.5 to 2.5 Kb). As most of the observed structures at the lower levels (mineral lineations, boudinage) are clearly associated with (or reworked by) D2 and accentuated by D3 which was accompagnied by partial melting, D2 and D3 are interpreted as representing a continuum developed in the same PT field. It can be assumed also that the Baltoro granite was emplaced by the end of this combined D2-D3 event. From the Miocene ages published for the Baltoro granite (20 Ma to 8 Ma), the low-pressure evolution of the Karakorum gneisses may represent a very young high-grade assemblage. The age of Dl is less defined but at least older than 36 Ma old leucogranites.

The sharp contact along the Shyok Suture zone, interpreted as a large thrust (Main Karakorum Thrust - MKT) of this young high-grade metamorphic terrene against the older (older than 30-45 Ma from late undeformed intrusives) Kohistan-Ladakh island-arc domain, is interpreted, following Mattauer (1985), as resulting from the interaction between the still-ongoing northward movement of the Indo-Pakistan plate and an opposite southward continental subduction, seismically active, operating in Pamir.  相似文献   

15.
ABSTRACT

The magmatic generation for the Late Triassic–Early Jurassic (~215–200 Ma) and Early Cretaceous–Late Cretaceous (~108–79 Ma) post-collisional granites in the Sanjiang Tethys orogeny remain enigmatic. The Xiuwacu complex, located in the southern Yidun Terrane, consists of biotite granite with a weight mean 206Pb/238U age of 199.8 ± 2.5 Ma, aplite granite of 108.2 ± 2.3 Ma, monzogranite porphyry of 80.8 ± 1.0 Ma, and diorite enclaves of 79.2 ± 0.9 Ma and 77.9 ± 0.8 Ma. The Late Triassic biotite granites show I-type granite affinities, with high SiO2 contents, high Mg# values, high zircon δ18O values, and negative whole-rock ?Nd(t) values, indicating a predominant ancient crustal source with the input of juvenile materials. Their fractionated REE patterns and concave-upward middle-to-heavy REE patterns require garnet-bearing amphibolite as the melt source. The Cretaceous highly fractionated aplite granites and monzogranite porphyries have relatively high SiO2 contents, high (Na2O + K2O)/CaO ratios, high zircon δ18O values, and enriched whole-rock Sr–Nd isotopic signatures, suggesting that their parent magmas were likely originated from the ancient middle- to lower crust. Their significant negative Eu anomalies and obvious depletions in Nb, Sr, and Ti demonstrate that the Cretaceous granitic magmas had experienced more fractionation than the Late Triassic felsic magmas. The Late Cretaceous diorite enclaves show low SiO2 contents, high Mg# values, and high zircon δ18O values, suggesting that they were probably derived from the partial melting of subcontinental lithospheric mantle enriched by the Late Triassic subduction. The Late Triassic–Early Jurassic and Early Cretaceous–Late Cretaceous magmatism witnessed the post-collisional setting and intraplate extensional setting in response to the slab break-off and lithospheric-scale transtensional faulting, respectively. The partial melting of subduction-modified lithospheric mantle or/and residual sulphide cumulates within the lower crust during the origination of Late Cretaceous magmas could have provided metals for the formation of Xiuwacu deposit.  相似文献   

16.
New evidence for high-pressure, eclogite facies metamorphism in the crystalline basement of the Tisza Megaunit (southern Hungary) is reported. The retrogressed mafic eclogite forms a small lens in the orthogneiss and it was found in the borehole near Jánoshalma. The carbonated eclogite contains the peak metamorphic assemblage omphacite + garnet + phengite + kyanite + clinozoizite + rutile + K-feldspar + quartz. Omphacite (Xjd0.40–0.41Xdio0.52–0.53Xhd0.05Xaug1.55–2.85) occurs in the matrix and as inclusions in garnet (Xpy0.37–0.38Xgrs0.21–0.22Xalm0.39–0.40Xsps0–0.01Xadr0–0.01) and kyanite. Thermobarometry based on net-transfer reactions between garnet, omphacite, kyanite and phengite yields PT conditions of 710 ± 10 °C and 2.6 ± 0.75 GPa. Retrogression during decompression is manifested by formation of symplectites; the most typical are diopside + plagioclase after omphacite, corundum + spinel + plagioclase after kyanite and biotite + plagioclase after phengite. Carbonatization along the veins of the retrogressed eclogite was probably coeval with formation of these symplectites. At places where carbonate is absent the rock was completely hydrated and retrogressed down to the greenschist facies with the development of actinolite. Similar eclogites together with abundant orthogneisses occur mainly in the eastern parts of the Tisza Megaunit, suggesting the existence of an ancient (possibly Variscan) subduction/accretionary complex.  相似文献   

17.
The notion that the Yakuno ophiolite and overlying Maizuru Group represents an accretionary prism formed during the Permian evolution of Japan on the Yakuno eruptive sequence, association of hemipelagic mudstone with silicic tuff, exotic fossiliferous limestones derived from previously accreted sea-mounts, upward coarsening of sequences terrigenous sandstone and conglomerate, and mildly deformed Permian and Triassic forearc basin formations. The most important indicator, however, is the seaward imbrication and repetition observed in both the Maizuru Group and the ophiolite itself. D1 deformation structures include axial–planar foliations (pressure-solution cleavage for the Maizuru Group and granulite–amphibolite metamorphic layering in the ophiolite), flattening type strain, symmetric pressure shadows and fringes, and isoclinal folds showing axial–planar foliations and thrust faulting at their overturned limb. The exceptional asymmetry observed indicates seaward-directed shearing near the thrust, while D1 structures in the Maizuru zone are explained by off-scraping, above the basal decollement. The later Jurassic D2 kink fold structure includes a first-order asymmetric kink with a brittle thrust at its overturned limb, more-or-less coeval with M2 retrograde metamorphism. Medium-pressure M1 prograde metamorphism in the Yakuno ophiolite produced layering of granulite and amphibolite, and in the Maizuru Group, formation of illite along pressure-solution cleavage of mudstones. The metamorphic grade is controlled by the stratigraphic relationships and appears typical of that in ocean floor regions. However, there was only one episode of M1 prograde metamorphism which occurred contemporaneously with D1 off-scraping. Given that subduction zones are normally characterized by high P/T metamorphic regimes, the observed P/T history appears to reflect relatively unusual conditions. Such high thermal gradients may plausibly reflect the approach of a young, hot oceanic plate which continued subducting beneath the Japanese arc. Accordingly, the Yakuno ophiolite was probably formed at the trench–trench–ridge triple junction.  相似文献   

18.
We present new geochemical analyses of minerals and whole rocks for a suite of mafic rocks from the crustal section of the Othris Ophiolite in central Greece. The mafic rocks form three chemically distinct groups. Group 1 is characterized by N-MORB-type basalt and basaltic andesite with Na- and Ti-rich clinopyroxenes. These rocks show mild LREE depletion and no HFSE anomalies, consistent with moderate degrees (~15%) of anhydrous partial melting of depleted mantle followed by 30–50% crystal fractionation. Group 2 is represented by E-MORB-type basalt with clinopyroxenes with higher Ti contents than Group 1 basalts. Group 2 basalts also have higher concentrations of incompatible trace elements with slightly lower HREE contents than Group 1 basalts. These chemical features can be explained by ~10% partial melting of an enriched mantle source. Group 3 includes high MgO cumulates with Na- and Ti-poor clinopyroxene, forsteritic olivine, and Cr-rich spinel. The cumulates show strong depletion of HFSE, low HREE contents, and LREE enrichments. These rocks may have formed by olivine accumulation from boninitic magmas. The petrogenesis of the N-MORB-type basalts and basaltic andesites is in excellent agreement with the melting conditions inferred from the MOR-type peridotites in Othris. The occurrence of both N- and E-MORB-type lavas suggests that the mantle generating the lavas of the Othris Ophiolite must have been heterogeneous on a comparatively fine scale. Furthermore, the inferred parental magmas of the SSZ-type cumulates are broadly complementary to the SSZ-type peridotites found in Othris. These results suggest that the crustal section may be genetically related to the mantle section. In the Othris Ophiolite mafic rocks recording magmatic processes characteristic both of mid-ocean ridges and subduction zones occur within close spatial association. These observations are consistent with the formation of the Othris Ophiolite in the upper plate of a newly created intra-oceanic subduction zone. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
A metasomatic episode in the Samothraki ophiolite involved the formation of rodingites hosted in a diorite, which evolved by the interaction of an H2O‐rich fluid phase. A pair of samples, which are in close spatial association, was used as an example to investigate this event. It is suggested that this process is characterized by the addition of Ca and the removal of Si and some large ion lithophile elements, under relatively oxidizing conditions where rare earth elements were fairly immobile. The Samothraki rodingites show common geochemical characteristics with similar lithologies elsewhere. A suggested T–XCO2 path involves a prograde reaction series, which occurred below 550°C and slightly enriched the fluid phase in CO2. A late infiltration of a highly hydrous fluid drove the fluid phase composition towards low CO2 potential and led to the formation of late‐stage diopside and vesuvianite. Alternatively, if the fluid had been continuously controlled by an external source, only heating at temperatures below 500°C could have developed the whole process. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
The mantle section of the Tethyan-type Othris Ophiolite, Greece, records tectono-magmatic processes characteristic of both mid-ocean ridges and supra-subduction zones. The Othris Ophiolite is a remnant of the Jurassic Neotethys Ocean, which existed between Eurasia and Gondwanaland. Othris peridotites range from fertile plagioclase lherzolites to depleted harzburgites. Abundances of Al2O3 and CaO show well-defined inverse linear correlations with MgO, suggesting that the Othris peridotites formed as residua from variable degrees of partial melting.

Peridotites from the Fournos Kaïtsa and western Katáchloron sub-massifs are similar to abyssal peridotites and can be explained by a multistage model with some melting in the garnet stability field followed by moderate degrees of anhydrous near-fractional melting in the spinel stability field. In contrast, the peridotites from the Metalleio, Eretria, and eastern Katáchloron sub-massifs, and the Vourinos ophiolite are highly depleted and have extremely low concentrations of Al2O3 and heavy rare earth elements. These peridotites have enriched light REE contents compared to the middle REE. These residua are best modelled by hydrous melting due to a flux of slab-derived fluid to the mantle wedge during melting.

The occurrence of both styles of melting regimes within close spatial and temporal association in the same ophiolite is explained by intra-oceanic thrusting and forced subduction initiation at (or near) a mid-ocean ridge. Thus, the Othris Ophiolite, and probably Tethyan-type ophiolites in general, represent a transient phase of plate tectonic reorganisation rather than quasi-steady state plate tectonics.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号