首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several thousand clinopyroxene, garnet, and phlogopite inclusions of mantle rocks from Jurassic and Triassic kimberlites in the northeastern Siberian craton have been analyzed and compared with their counterparts from Paleozoic kimberlites, including those rich in diamond. The new and published mineral chemistry data make a basis for an updated classification of kimberlite-hosted clinopyroxenes according to peridotitic and mafic (eclogite and pyroxenite) parageneses. The obtained results place constraints on the stability field of high-Na lherzolitic clinopyroxenes, which affect the coexisting garnet and decrease its Ca contents. As follows from analyses of the mantle minerals from Mesozoic kimberlites, the cratonic lithosphere contained more pyroxenite and eclogite in the Mesozoic than in the Paleozoic. It virtually lacked ultradepleted harzburgite-dunite lithologies and contained scarce eclogitic diamonds. On the other hand, both inclusions in diamond and individual eclogitic minerals from Mesozoic kimberlites differ from eclogitic inclusions in diamond from Triassic sediments in the northeastern Siberian craton. Xenocrystic phlogopites from the D’yanga pipe have 40Ar/39Ar ages of 384.6, 432.4, and 563.4 Ma, which record several stages of metasomatic impact on the lithosphere. These phlogopites are younger than most of Paleozoic phlogopites from the central part of the craton (Udachnaya kimberlite). Therefore, hydrous mantle metasomatism acted much later on the craton periphery than in the center. Monomineral clinopyroxene thermobarometry shows that Jurassic kimberlites from the northeastern craton part trapped lithospheric material from different maximum depths (170 km in the D’yanga pipe and mostly < 130 km in other pipes). The inferred thermal thickness of cratonic lithosphere decreased progressively from ~ 260 km in the Devonian-Carboniferous to ~ 225 km in the Triassic and to ~ 200 km in the Jurassic, while the heat flux (Hasterok-Chapman model) was 34.9, 36.7, and 39.0 mW/m2, respectively. Dissimilar PT patterns of samples from closely spaced coeval kimberlites suggest different emplacement scenarios, which influenced both the PT variations across the lithosphere and the diamond potential of kimberlites.  相似文献   

2.
We provide petrographic, major and trace element data for over 30 spinel peridotite xenoliths from the Tokinsky Stanovik (Tok) volcanic field on the Aldan shield to characterize the lithospheric mantle beneath the south-eastern margin of the Siberian craton, which formed in the Mesoproterozoic. High equilibration temperatures (870–1,010°C) of the xenoliths and the absence of garnet-bearing peridotites indicate a much thinner lithosphere than in the central craton. Most common among the xenoliths are clinopyroxene-poor lherzolites and harzburgites with Al2O3 and CaO contents nearly as low as in refractory xenoliths from kimberlite pipes (Mir, Udachnaya) in the central and northern Siberian craton. By contrast, the Tok peridotites have higher FeO, lower Mg-numbers and lower modal orthopyroxene and are apparently formed by shallow partial melting (3 GPa). Nearly all Tok xenoliths yield petrographic and chemical evidence for metasomatism: accessory phlogopite, amphibole, phosphates, feldspar and Ti-rich oxides, very high Na2O (2–3.1%) in clinopyroxene, LREE enrichments in whole-rocks.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

4.
S. S. Schmidberger  D. Francis 《Lithos》1999,48(1-4):195-216
The recently discovered Nikos kimberlite on Somerset Island, in the Canadian Arctic, hosts an unusually well preserved suite of mantle xenoliths dominated by garnet–peridotite (lherzolite, harzburgite, dunite) showing coarse and porphyroclastic textures, with minor garnet–pyroxenite. The whole rock and mineral data for 54 Nikos xenoliths indicate a highly refractory underlying mantle with high olivine forsterite contents (ave. Fo=92.3) and moderate to high olivine abundances (ave. 80 wt.%). These characteristics are similar to those reported for peridotites from the Archean Kaapvaal and Siberian cratons (ave. olivine Fo=92.5), but are clearly distinct from the trend defined by oceanic peridotites and mantle xenoliths in alkaline basalts and kimberlites from post-Archean continental terranes (ave. olivine Fo=91.0). The Nikos xenoliths yield pressures and temperatures of last equilibration between 20 and 55 kb and 650 and 1300°C, and a number of the peridotite nodules appear to have equilibrated in the diamond stability field. The pressure and temperature data define a conductive paleogeotherm corresponding to a surface heat flow of 44 mW/m2. Paleogeotherms based on xenolith data from the central Slave province of the Canadian craton require a lower surface heat flow (40 mW/m2) indicating a cooler geothermal regime than that beneath the Canadian Arctic. A large number of kimberlite-hosted peridotites from the Kaapvaal craton in South Africa and parts of the Siberian craton are characterized by high orthopyroxene contents (ave. Kaapvaal 32 wt.%, Siberia 20 wt.%). The calculated modal mineral assemblages for the Nikos peridotites show moderate to low contents of orthopyroxene (ave. 12 wt.%), indicating that the orthopyroxene-rich mineralogy characteristic of the Kaapvaal and Siberian cratons is not a feature of the cratonic upper mantle beneath Somerset Island.  相似文献   

5.
We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths(garnet peridotite,eclogite and clinopyroxene-phlogopite rocks)and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle(SCLM)and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation(Phil)occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation(Phl2)occurs as rims and outer zones that surround the Phil grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phil,within the garnet peridotite and clinopyroxene-phlogopite xenoliths,is characterised by low Ti and Cr contents(TiO_21 wt.%,Cr_2 O_31 wt.% and Mg# = 100 × Mg/(Mg+ Fe)92)typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H_2O.Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma.Compared with peridotite xenoliths,eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr_2O_3 despite a wider range of TiO_2 concentrations.The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite.Phl2 has high Ti and Cr concentrations(TiO_22 wt.%,Cr_2O_31 wt.% and Mg# = 100× Mg/(Mg + Fe)92)and compositionally overlaps with phlogopite from polymict brecc:ia xenoliths that occur in global kimberlite formations.These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phil grains or crystallized directly from stalled batches of kimberlitic magmas.Megacrysts,most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths.Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts.Based on the results of this study,we propose a schematic model of SCLM metasomatism involving phlogopite crystallization,megacryst formation,and genesis of kimberlite magmas as recorded by the Grib pipe.  相似文献   

6.
Oxygen fugacity (fO2) conditions were determined for 29 peridotite xenoliths from the A154-North and A154-South kimberlites of the Diavik diamond mine using the newly developed flank method modified specifically for measuring Fe3+ in mantle-derived pyropic garnets. The results indicate that the garnet-bearing lithospheric mantle beneath the central Slave craton is vertically layered with respect to oxidation state. The shallow (<140 km), “ultra-depleted” layer is the most oxidized section of garnet-bearing subcratonic mantle thus far measured, up to one log unit more oxidizing relative to the FMQ buffer [Δlog fO2 (FMQ) + 1]. The lower, more fertile layer has fO2 conditions that extend down to Δlog fO2 (FMQ) − 3.8, consistent with xenolith suites from other localities worldwide. Based on trace element concentrations in garnets, two distinct metasomatic events affected the mantle lithosphere at Diavik. An oxidized fluid imparted sinusoidal chondrite-normalized REE patterns on garnets throughout the entire depth range sampled. In contrast, a reducing melt metasomatic event affected only the lower portion of the lithospheric mantle. The fO2 state of the Diavik mantle sample suggests that diamond formation occurred by reduction of carbonate by fluids arising from beneath the lithosphere.  相似文献   

7.
Mafic dikes, which transect the Mesoarchaean Singhbhum Granitoid Complex, are the most abundant members of the Newer Dolerite dikes of the Singhbhum Orissa craton. These dikes are subalkaline and exhibit a tholeiitic differentiation trend. Studied dikes underwent fractional crystallization of clinopyroxene and plagioclase. They show enriched patterns for the light rare earth elements (LREE) and large ion lithophile elements (LILE). On primitive mantle-normalized multi-element patterns, they possess Ba, Nb, Sr, P, and Ti depletions similar to subduction-related basaltic rocks. The high (La/Yb) n and (Gd/Yb) n ratios suggest that the studied mafic dikes were derived by low degrees of partial melting of a garnet-bearing source. Judging by trace elemental ratios (e.g. Ba/Y, Nb/Y, Ba/Th and Th/Nb), the studied dikes were derived from a mantle source metasomatized by a subduction component (e.g. fluids derived by dehydration of the subducting slab). We conclude that interaction between these fluids and the overlying mantle was the main cause of (LREE and LILE) enrichment and Nb (high field strength elements) depletion in the mafic dikes.  相似文献   

8.
We discuss historical evidence for seismicity on the southern margin of the Siberian craton collected from old local newspapers. The reported earthquakes vary in magnitude from M = 2.5 to 4.5, and their macroseismic locations agree well with the regional tectonic framework. The new data prove seismic activity in the area and can be used in seismic risk assessment.  相似文献   

9.
A comprehensive study of 26 mafic mantle xenoliths from the Udachnaya kimberlite pipe was carried out. The contents of major and trace elements, equilibrium temperature parameters, and water content in the rock-forming minerals were determined. The temperatures of formation of the studied rocks are estimated at 800–1300 °C. According to IR spectroscopy data, the water content in clinopyroxenes from the studied eclogites varies from values below the detection limit to 99 ppm. The IR spectra of garnets lack bands of water. The water content in clinopyroxene and orthopyroxene from garnet websterite is 72 and 8 ppm, respectively. The water content in the average rock, calculated from the ratio of the rock-forming minerals, varies from a few to 55 ppm. No relationship among the water content, equilibrium temperatures, and rock composition is established. The low water contents in the eclogites are close to the earlier determined water contents in peridotites from the same pipe and are, most likely, due to the re-equilibration of the eclogites with the rocks of the peridotitic lithospheric mantle. The dehydration of the protolith during its subduction and the partial melting of eclogites before their removal by kimberlitic magma to the surface might be an additional cause of the low water contents in the mantle eclogite xenoliths.  相似文献   

10.
The Mesozoic lithospheric mantle beneath the North China craton remains poorly constrained relative to its Palaeozoic and Cenozoic counterparts due to a lack of mantle xenoliths in volcanic rocks. Available data show that the Mesozoic lithospheric mantle was distinctive in terms of its major, trace element, and isotopic compositions. The recent discovery of mantle peridotitic xenoliths in Late Cretaceous mafic rocks in the Jiaodong region provides an opportunity to further quantify the nature and secular evolution of the Mesozoic lithospheric mantle beneath the region. These peridotitic xenoliths are all spinel-facies nodules and two groups, high-Mg# and low-Mg# types, can be distinguished based on textural and mineralogical features. High-Mg# peridotites have inequigranular textures, high Mg# (up to 92.2) in olivines, and high Cr# (up to 55) in spinels. Clinopyroxenes in the high-Mg# peridotites are generally LREE-enriched ((La/Yb)N>1) with variable REE concentrations, and have enriched Sr–Nd isotopic compositions (87Sr/86Sr = 0.7046–0.7087; 143Nd/144Nd = 0.5121–0.5126). We suggest that the high-Mg# peridotites are fragments of the Archaean and/or Proterozoic lithospheric mantle that underwent extensive interaction with both carbonatitic and silicate melts prior to or during Mesozoic time. The low-Mg# peridotites are equigranular, are typified by low Mg# ( < 90) in olivines, and by low Cr# ( < 12) in spinels. Clinopyroxenes from low-Mg# peridotites have low REE abundances (ΣREE = 12 ppm), LREE-depleted REE patterns ((La/Yb)N < 1), and depleted Sr–Nd isotopic features, in contrast to the high-Mg# peridotites. These geochemical characteristics suggest that the low-Mg# peridotites represent samples from the newly accreted lithospheric mantle. Combined with the data of mantle xenoliths from the Junan and Daxizhuang areas, a highly heterogeneous, secular evolution of the lithosphere is inferred for the region in Late Cretaceous time.  相似文献   

11.
The petrology and geochemistry of some new occurrences of Mesoproterozoic diamondiferous hypabyssal-facies kimberlites from the Chigicherla, Wajrakarur-Lattavaram and Kalyandurg clusters of the Wajrakarur kimberlite field (WKF), Eastern Dharwar craton (EDC), southern India, are reported. The kimberlites contain two generations of olivine, and multiple groundmass phases including phlogopite, spinel, calcite, dolomite, apatite, perovskite, apatite and rare titanite, and xenocrysts of eclogitic garnet and picro-ilmenite. Since many of the silicate minerals in these kimberlites have been subjected to carbonisation and alteration, the compositions of the groundmass oxide minerals play a crucial role in their characterisation and in understanding melt compositions. While there is no evidence for significant crustal contamination in these kimberlites, some limited effects of ilmenite entrainment are evident in samples from the Kalyandurg cluster. Geochemical studies reveal that the WKF kimberlites are less differentiated and more primitive than those from the Narayanpet kimberlite field (NKF), Eastern Dharwar craton. Highly fractionated (La/Yb = 108–145) chondrite-normalised distribution patterns with La abundances of 500–1,000 × chondrite and low heavy rare earth elements (HREE) abundances of 5–10 × chondrite are characteristic of these rocks. Metasomatism by percolating melts from the convecting mantle, rather than by subduction-related processes, is inferred to have occurred in their source regions based on incompatible element signatures. While the majority of the Eastern Dharwar craton kimberlites are similar to the Group I kimberlites of southern Africa in terms of petrology, geochemistry and Sr–Nd isotope systematics, others show the geochemical traits of Group II kimberlites or an overlap between Group I and II kimberlites. Rare earth element (REE)-based semi-quantitative forward modelling of batch melting of southern African Group I and II kimberlite source compositions involving a metasomatised garnet lherzolite and very low degrees of partial melting demonstrate that (1) WKF and NKF kimberlites display a relatively far greater range in the degree of melting than those from the on-craton occurrences from southern Africa and are similar to that of world-wide melilitites, (2) different degrees of partial melting of a common source cannot account for the genesis of all the EDC kimberlites, (3) multiple and highly heterogeneous kimberlite sources involve in the sub-continental lithospheric mantle (SCLM) in the Eastern Dharwar craton and (4) WKF and NKF kimberlites generation is a resultant of complex interplay between the heterogeneous sources and their different degrees of partial melting. These observations are consistent with the recent results obtained from inversion modelling of REE concentrations from EDC kimberlites in that both the forward as wells as inverse melting models necessitate a dominantly lithospheric, and not asthenospheric, mantle source regions. The invading metasomatic (enriching) melts percolating from the convecting (asthenosphere) mantle impart an OIB-like isotopic signature to the final melt products.  相似文献   

12.
The compositional structure and thermal state of the subcontinental lithospheric mantle (SCLM) beneath the Kalahari Craton and the surrounding mobile belts have been mapped in space and time using >3400 garnet xenocrysts from >50 kimberlites intruded over the period 520–80 Ma. The trace-element patterns of many garnets reflect the metasomatic refertilisation of originally highly depleted harzburgites and lherzolites, and much of the lateral and vertical heterogeneity observed in the SCLM within the craton is the product of such metasomatism. The most depleted, and possibly least modified, SCLM was sampled beneath the Limpopo Belt by early Paleozoic kimberlites; the SCLM beneath other parts of the craton may represent similar material modified by metasomatism during Phanerozoic time. In the SW part of the craton, the SCLM sampled by “Group 2” kimberlites (>110 Ma) is thicker, cooler and less metasomatised than that sampled by “Group 1” kimberlites (mostly ≤95 Ma) in the same area. Therefore, the extensively studied xenolith suite from the Group 1 kimberlites probably is not representative of primary Archean SCLM compositions. The relatively fertile SCLM beneath the mobile belts surrounding the craton is interpreted as largely Archean SCLM, metasomatised and mixed with younger material during Paleoproterozoic to Mesoproterozoic rifting and compression. This implies that at least some of the observed secular evolution in SCLM composition worldwide may reflect the reworking of Archean SCLM. There are strong correlations between mantle composition and the lateral variations in seismic velocity shown by detailed tomographic studies. Areas of relatively low Vp within the craton largely reflect the progressive refertilisation of the Archean root during episodes of intraplate magmatism, including the Bushveld (2 Ga) and Karroo (ca. 180 Ma) events; areas of high Vp map out the distribution of relatively less metasomatised Archean SCLM. The relatively low Vp of the SCLM beneath the mobile belts around the craton is consistent with its fertile composition. The seismic data may be used to map the lateral extent of different types of SCLM, taking into account the small lateral variations in the geotherm identified using the techniques described here.  相似文献   

13.
The results of geochemical and geochronological study of the Kengurak-Sergachi gabbroanorthosite massif in the Selenga-Stanovoi superterrane, southern frame of the Siberian craton, are presented. According to geochemical peculiarities, the massif rocks are close to the autonomous “massif-type anorthosite.” The massif age corresponds to 1866 ± 6 Ma based on the results of U-Pb zircon dating. The Kengurak-Sergachi massif was intruded most likely in post-collision epoch concurrently to formation of the South Siberian giant post-collision magmatic belt (1.87–1.84 Ga) extending along the southwestern flank of the Siberian craton.  相似文献   

14.
The kimberlite fields scattered across the NE part of the Siberian Craton have been used to map the subcontinental lithospheric mantle (SCLM), as it existed during Devonian to Late Jurassic time, along a 1000-km traverse NE–SW across the Archean Magan and Anabar provinces and into the Proterozoic Olenek Province. 4100 garnets and 260 chromites from 65 kimberlites have been analysed by electron probe (major elements) and proton microprobe (trace elements). These data, and radiometric ages on the kimberlites, have been used to estimate the position of the local (paleo)geotherm and the thickness of the lithosphere, and to map the detailed distribution of specific rock types and mantle processes in space and time. A low geotherm, corresponding approximately to the 35 mW/m2 conductive model of Pollack and Chapman [Tectonophysics 38, 279–296, 1977], characterised the Devonian lithosphere beneath the Magan and Anabar crustal provinces. The Devonian geotherm beneath the northern part of the area was higher, rising to near a 40 mW/m2 conductive model. Areas intruded by Mesozoic kimberlites are generally characterised by this higher, but still ‘cratonic' geotherm. Lithosphere thickness at the time of kimberlite intrusion varied from ca. 190 to ca. 240 km beneath the Archean Magan and Anabar provinces, but was less (150–180 km) beneath the Proterozoic Olenek Province already in Devonian time. Thinner Devonian lithosphere (140 km) in parts of this area may be related to Riphean rifting. Near the northern end of the traverse, differences in geotherm, lithosphere thickness and composition between the Devonian Toluopka area and the nearby Mesozoic kimberlite fields suggest thinning of the lithosphere by ca. 50–60 km, related to Devonian rifting and Triassic magmatism. A major conclusion of this study is that the crustal terrane boundaries defined by geological mapping and geophysical data (extended from outcrops in the Anabar Shield) represent major lithospheric sutures, which continue through the upper mantle and juxtapose lithospheric domains that differ significantly in composition and rock-type distribution between 100 and 250 km depth. The presence of significant proportions of harzburgitic and depleted lherzolitic garnets beneath the Magan and Anabar provinces is concordant with their Archean surface geology. The lack of harzburgitic garnets, and the chemistry of the lherzolitic garnets, beneath most of the other fields are consistent with the Proterozoic surface rocks. Mantle sections for different terranes within the Archean portion of the craton show pronounced differences in bulk composition, rock-type distribution, metasomatic overprint and lithospheric thickness. These observations suggest that individual crustal terranes, of both Archean and Proterozoic age, had developed their own lithospheric roots, and that these differences were preserved during the Proterozoic assembly of the craton. Data from kimberlite fields near the main Archean–Proterozoic suture (the Billyakh Shear Zone) suggest that reworking and mixing of Archean and Proterozoic mantle was limited to a zone less than 100 km wide.  相似文献   

15.
Geochronological database considered in the work and characterizing the Anabar collision system in the Northeast Siberian craton includes coordinated results of Sm-Nd and Rb-Sr dating of samples from crustal xenoliths in kimberlites, deep drill holes, and bedrock outcrops. As is inferred, collision developed in three stages dated at 2200–2100, 1940–1760, and 1710–1630 Ma. The age of 2000–1960 Ma is established for substratum of mafic rocks, which probably originated during the lower crust interaction with asthenosphere due to the local collapse of the collision prism. Comparison of Sm-Nd and Rb-Sr isochron dates shows that the system cooling from ≈700 to ≈300°C lasted approximately 300 m.y. with a substantial lag relative to collision metamorphism and granite formation. It is assumed that accretion of the Siberian craton resulted in formation of a giant collision mountainous structure of the Himalayan type that was eroded by 1.65 Ga ago, when accumulation of gently dipping Meso-to Neoproterozoic (Riphean) platform cover commenced.  相似文献   

16.
Coarse-grained, granular spinel lherzolites xenoliths from the Premier kimberlite show evidence of melt extraction and metasomatic enrichment, documenting a complex history for the shallow mantle beneath the Bushveld complex. Compositions of orthopyroxene, clinopyroxene and spinel indicate equilibration within the spinel–peridotite facies of the upper mantle, at depths from 80 to 100 km and temperatures from 720 to 850 °C. Bulk compositions have lower Mg-number [atomic 100 Mg/(Mg + Fe*)] than previously studied spinel peridotites from Premier, and have higher Mg/Si than low-temperature coarse grained garnet lherzolites, suggesting shallower melting conditions or metasomatic enrichment. Clinopyroxene in one sample is highly LREE-depleted indicating very minor modification of a residue of 20% melt extraction, whereas the calculated REE pattern for a melt in equilibrium with a mildly LREE-depleted sample is similar to MORB or late Archean basalt, possibly related to the Bushveld Complex. Bulk and mineral compositions suggest minimal refertilization by silicate melts in four out of six samples, but REE patterns indicate introduction of a LIL-enriched component that may be related to kimberlite.  相似文献   

17.
The Saramta peridotite massif is located within the Sharyzhalgai complex, SW margin of the Siberian craton. The Saramta massif was formed in the Archean and then juxtaposed with granulites of crystalline basement of the Siberian craton. The Saramta harzburgites are highly refractory in terms of lack of residual clinopyroxene, olivine Mg-number (up to 0.937), and spinel Cr-number (∼0.5), suggesting high degree of partial melting. Detailed study of their microstructures shows that they have extensively reacted with a SiO2-rich melt, leading to the crystallization of orthopyroxene, clinopyroxene, amphibole and spinel at the expense of olivine. The major element compositions of the least reacted harzburgites are similar to the residues of refractory peridotites produced by the fractional melting (initial melting pressures >3 GPa and melt fractions ∼40%). Moreover, non-residual clinopyroxenes are highly depleted in Yb, Zr and Ti, but highly enriched in LREE. A two-stage history is proposed for the Saramta peridotite: (1) primitive mantle underwent depletion in the garnet stability field followed by melting in the spinel stability field; (2) refractory harzburgites underwent refertilization by SiO2-rich melt in supra-subduction zone. Rare Saramta lherzolites probably formed from more refractory harzburgites as a result of such a melt–rock reaction. The Saramta peridotites are similar to low-T coarse-grained peridotites of subcratonic mantle. Processes of their formation, as reflected by textures and composition of minerals of the Saramta peridotites, are characteristic of the early stages of subcratonic mantle formation.  相似文献   

18.
Travel times from earthquakes recorded at two seismic networks were used to derive an average P wavespeed model for the crust and upper mantle to depths of 320 km below southern Africa. The simplest model (BPI1) has a Moho depth of 34 km, and an uppermost mantle wavespeed of 8.04 km/s, below which the seismic wavespeeds have low positive gradients. Wavespeed gradients decrease slightly around 150 km depth to give a ‘knee’ in the wavespeed-depth model, and the wavespeed reaches 8.72 km/s at a depth of 320 km. Between the Moho and depths of 270 km, the seismic wavespeeds lie above those of reference model IASP91 of Kennett [Research School of Earth Sciences, Australian National University, Canberra, Australia (1991)] and below the southern African model of Zhao et al. [Journal of Geophysical Research 104 (1999) 4783]. At depths near 300 km all three models have similar wavespeeds. The mantle P wavespeeds for southern Africa of Qiu et al. [Geophysical Journal International 127 (1996) 563] lie close to BPI1 at depths between 40 and 140 km, but become lower at greater depths. The seismic wavespeeds in the upper mantle of model BPI1 agree satisfactorily with those estimated from peridotite xenoliths in kimberlites from within the Kaapvaal craton.The crustal thickness of 34 km of model BPI1 is systematically lower than the average thickness of 41 km computed over the same region from receiver functions. This discrepancy can be partly explained by an alternative model (BPI2) in which there is a crust–mantle transition zone between depths of 35 and 47 km, below which seismic wavespeed increases to 8.23 km/s. A low-wavespeed layer is then required at depths between 65 and 125 km.  相似文献   

19.
我国东北地区位于中亚造山带的东段,由多个微陆块俯冲拼合所组成,是研究壳幔相互作用的理想地区。但该区岩石圈地幔性质,包括壳幔属性是否解耦、是否有古老地幔残留、导致地幔性质差异的机制是什么,都还不清楚。东北地区多地出露新生代玄武岩并有橄榄岩捕虏体,如松嫩-张广才岭地块的阿巴嘎、五大连池和蛟河,兴安地块的哈拉哈、诺敏和科洛,以及与华北拼合褶皱带处的双辽、伊通和汪清等。其中阿巴嘎、哈拉哈、诺敏、科洛和蛟河的橄榄岩含有Mg#≥91.5的橄榄石,最大Re亏损年龄是2.1~1.9Ga,富集Sr、Nd同位素组成且变化范围大,反映交代作用强烈,这些特征与大陆岩石圈地幔有明显的相似性;而拼合带处的双辽、伊通、汪清及松嫩-张广才岭地块中的五大连池地幔包体橄榄石,Re亏损年龄总体为中元古代,Sr、Nd同位素组成变化范围小,交代作用弱,与大洋岩石圈地幔亲缘性更明显。这些差别总体反映出地块内部与地块边缘相比,有岩石圈地幔形成时代相对较老、亏损程度较高、地幔交代作用较强的特点。但也有例外的情况,如五大连池与科洛相比,更远离贺根山-黑河断裂带,但地幔属性更饱满,反映地块内部深部作用过程可能更强烈。因此,我们认为东北岩石圈地幔性质差异的根本原因与微陆块初始属性和后来的俯冲拼合及软流圈-岩石圈相互作用等有关。  相似文献   

20.
吉林省南部辉南-靖宇地区第四纪碱性玄武岩中的地幔包体主要为尖晶石相二辉橄榄岩和方辉橄榄岩。二辉橄榄岩和方辉橄榄岩的平衡温度分别为770~1000℃和850~1025℃,对应的氧逸度 (fO2)值分别为FMQ -0.70至+0.34 (均值为FMQ -0.06) 和FMQ -0.46至+0.05 (均值为FMQ -0.15),它们与深海橄榄岩(abyssal peridotites)以及软流圈地幔的fO2相似。橄榄岩的fO2值,连同其全岩化学成分(如Mg#、Al2O3、CaO、Ni、Co和Cr)和矿物化学成分(如橄榄石的Fo、尖晶石的Cr#和Mg#,以及辉石的Mg#)特征,表明辉南-靖宇地区龙岗火山群下面的岩石圈地幔很可能是在晚中生代以来,伴随着华北克拉通和扬子板块的碰撞以及来自东侧太平洋板块和北侧蒙古-额霍次克(Mongolo-Okhotsk)板块分别向西和向南的俯冲叠加,原来的古老岩石圈失衡、塌陷(拆沉?),取而代之的深部软流圈底辟、上涌,又经历了低度部分熔融的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号