首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This study examines the major element composition of mantle-derived garnets recovered from heavy mineral concentrates of several Proterozoic kimberlites of the diamondiferous Wajrakarur Kimberlite Field (WKF) and the almost barren Narayanpet Kimberlite Field (NKF) in the Eastern Dharwar Craton of southern India. Concentrate garnets are abundant in the WKF kimberlites, and notably rare in the NKF kimberlites. Chemical characteristics of the pyropes indicate that the lithology of the sub-continental lithospheric mantle (SCLM) beneath both the kimberlite fields was mainly lherzolitic at the time of kimberlite eruption. A subset of green pyropes from the WKF is marked by high CaO and Cr2O3 contents, which imply contribution from a wehrlitic source. The lithological information on SCLM, when studied alongside geobarometry of lherzolite and harzburgite xenoliths, indicates that there are thin layers of harzburgite within a dominantly lherzolitic mantle in the depth interval of 115–190 km beneath the WKF. In addition, wehrlite and olivine clinopyroxenite occur locally in the depth range of 120–130 km. Mantle geotherm derived from xenoliths constrains the depth of graphite–diamond transition to 155 km beneath the kimberlite fields. Diamond in the WKF thus could have been derived from both lherzolitic and harzburgitic lithologies below this depth. The rarity of diamond and garnet xenocrysts in the NKF strongly suggest sampling of shallower (<155 km depth) mantle, and possibly a shallower source of kimberlite magma than at the WKF.  相似文献   

2.
This paper presents new major and trace element data from 150 garnet xenocrysts from the V. Grib kimberlite pipe located in the central part of the Arkhangelsk diamondiferous province (ADP). Based on the concentrations of Cr2O3, CaO, TiO2 and rare earth elements (REE) the garnets were divided into seven groups: (1) lherzolitic “depleted” garnets (“Lz 1”), (2) lherzolitic garnets with normal REE patterns (“Lz 2”), (3) lherzolitic garnets with weakly sinusoidal REE patterns (“Lz 3”), (4) lherzolitic garnets with strongly sinusoidal REE patterns (“Lz 4”), (5) harzburgitic garnets with sinusoidal REE patterns (“Hz”), (6) wehrlitic garnets with weakly sinusoidal REE patterns (“W”), (7) garnets of megacryst paragenesis with normal REE patterns (“Meg”). Detailed mineralogical and geochemical garnet studies and modeling results suggest several stages of mantle metasomatism influenced by carbonatite and silicate melts. Carbonatitic metasomatism at the first stage resulted in refertilization of the lithospheric mantle, which is evidenced by a nearly vertical CaO-Cr2O3 trend from harzburgitic (“Hz”) to lherzolitic (“Lz 4”) garnet composition. Harzburgitic garnets (“Hz”) have probably been formed by interactions between carbonatite melts and exsolved garnets in high-degree melt extraction residues. At the second stage of metasomatism, garnets with weakly sinusoidal REE patterns (“Lz 3”, “W”) were affected by a silicate melt possessing a REE composition similar to that of ADP alkaline mica-poor picrites. At the last stage, the garnets interacted with basaltic melts, which resulted in the decrease CaO-Cr2O3 trend of “Lz 2” garnet composition. Cr-poor garnets of megacryst paragenesis (“Meg”) could crystallize directly from the silicate melt which has a REE composition close to that of ADP alkaline mica-poor picrites. P-T estimates of the garnet xenocrysts indicate that the interval of ~60–110 km of the lithospheric mantle beneath the V. Grib pipe was predominantly affected by the silicate melts, whereas the lithospheric mantle deeper than 150 km was influenced by the carbonatite melts.  相似文献   

3.
Twenty-five diamonds recovered from 21 diamondiferous peridotitic micro-xenoliths from the A154 South and North kimberlite pipes at Diavik (Slave Craton) match the general peridotitic diamond production at this mine with respect to colour, carbon isotopic composition, and nitrogen concentrations and aggregation states. Based on garnet compositions, the majority of the diamondiferous microxenoliths is lherzolitic (G9) in paragenesis, in stark contrast to a predominantly harzburgitic (G10) inclusion paragenesis for the general diamond production. For garnet inclusions in diamonds from A154 South, the lherzolitic paragenesis, compared to the harzburgitic paragenesis, is distinctly lower in Cr content. For microxenolith garnets, however, Cr contents for garnets of both the parageneses are similar and match those of the harzburgitic inclusion garnets. Assuming that the microxenolith diamonds reflect a sample of the general diamond population, the abundant Cr-rich lherzolitic garnets formed via metasomatic overprinting of original harzburgitic diamond sources subsequent to diamond formation, conversion of original harzburgitic diamond sources occurred in the course of metasomatic overprint re-fertilization. Metasomatic overprinting after diamond formation is supported by the finding of a highly magnesian olivine inclusion (Fo95) in a microxenolith diamond that clearly formed in a much more depleted environment than indicated by the composition of its microxenolith host. Chondrite normalized REE patterns of microxenolith garnets are predominantly sinusoidal, similar to observations for inclusion garnets. Sinusoidal REEN patterns are interpreted to indicate a relatively mild metasomatic overprint through a highly fractionated (very high LREE/HREE) fluid. The predominance of such patterns may explain why the proposed metasomatic conversion of harzburgite to lherzolite appears to have had no destructive effect on diamond content. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Mantle xenocrysts from early Triassic kimberlite pipes from Kharamai,Ary-Mastakh and Kuranakh fields in the Anabar shield of Siberia revealing similar compositional trends were studied to estimate the superplume influence on the subcratonic lithosphere mantle(SCLM).Pressure-temperature(PT) reconstructions using monomineral thermobarometry for 5 phases show division of the SCLM beneath the Kharamai field into 6 units:pyroxenitic Fe-rich(1-2 GPa) and Mg-rich(2-3 GPa) layers;middle with two levels of Gar-Sp pyroxenites at ~3 and 4-5 GPa;Gar-dunite-harzburgites ~4.5-6.5 GPa subjected to Ilm-Px vein metasomatism;and a Mg-rich dunite lower part.In the Anabar shield(Ary-Mastakh,Dyuken and Kuranakh fields) mantle lithosphere is composed of three large units divided into two parts:upper part with amphiboles and phlogopite;two levels of pyroxenites and eclogites at 3 and 4 GPa,and a lower part composed of refertilized dunites.Diagrams showing P-Fe~#Gar clusters for garnets and omphacites illustrate the differences between SCLM of these localities.Differences of Triassic SCLM from Devonian SCLM are in simple layering;abundance of Na-Cr-amphiboles and metasomatism in the upper SCLM part,thick pyroxenite-eclogite layer and lower part depletion,heated from SCLM base to 5.0 GPa.Kharamai mantle clinopyroxenes represent three geochemical types:(1) harzburgitic with inclined linear REE,HFSE troughs and elevated Th,U;(2) lherzolitic or pyroxenitic with round TRE patterns and decreasing incompatible elements;(3) eclogitic with Eu troughs,Pb peak and high LILE content.Calculated parental melts for garnets with humped REE patterns suggest dissolution of former Cpx and depression means Cpx and garnets extraction.Clinopyroxenes from Ary-Mastakh fields show less inclined REE patterns with HMREE troughs and an increase of incompatible elements.Clinopyroxenes from Kuranakh field show flatter spoon-like REE patterns and peaks in Ba,U,Pb and Sr,similar to those in ophiolitic harzburgites.The PT diagrams for the mantle sections show high temperature gradients in the uppermost SCLM accompanied by an increase of P-Fe~#Ol upward and slightly reduced thickness of the mantle keel of the Siberian craton,resulting from the influence of the Permian-Triassic superplume,but with no signs of delamination.  相似文献   

5.
Trace element concentrations in the four principal peridotitic silicate phases (garnet, olivine, orthopyroxene, clinopyroxene) included in diamonds from Akwatia (Birim Field, Ghana) were determined using SIMS. Incompatible trace elements are hosted in garnet and clinopyroxene except for Sr which is equally distributed between orthopyroxene and garnet in harzburgitic paragenesis diamonds. The separation between lherzolitic and harzburgitic inclusion parageneses, which is commonly made using compositional fields for garnets in a CaO versus Cr2O3 diagram, is also apparent from the Ti and Sr contents in both olivine and garnet. Titanium is much higher in the lherzolitic and Sr in the harzburgitic inclusions. Chondrite normalised REE patterns of lherzolitic garnets are enriched (10–20 times chondrite) in HREE (LaN/YbN = 0.02–0.06) while harzburgitic garnets have sinusoidal REEN patterns, with the highest concentrations for Ce and Nd (2–8 times chondritic) and a minimum at Ho (0.2–0.7 times chondritic). Clinopyroxene inclusions show negative slopes with La enrichment 10–100 times chondritic and low Lu (0.1–1 times chondritic). Both a lherzolitic and a harzburgitic garnet with very high knorringite contents (14 and 21 wt% Cr2O3 respectively) could be readily distinguished from other garnets of their parageneses by much higher levels of LREE enrichment. The REE patterns for calculated melt compositions from lherzolitic garnet inclusions fall into the compositional field for kimberlitic-lamproitic and carbonatitic melts. Much more strongly fractionated REE patterns calculated from harzburgitic garnets, and low concentrations in Ti, Y, Zr, and Hf, differ significantly from known alkaline and carbonatitic melts and require a different agent. Equilibration temperatures for harzburgitic inclusions are generally below the C-H-O solidus of their paragenesis, those of lherzolitic inclusions are above. Crystallisation of harzburgitic diamonds from CO2-bearing melts or fluids may thus be excluded. Diamond inclusion chemistry and mineralogy also is inconsistent with known examples of metasomatism by H2O-rich melts. We therefore favour diamond precipitation by oxidation of CH4-rich fluids with highly fractionated trace element patterns which are possibly due to “chromatographic” fractionation processes. Received: 27 January 1996 / Accepted: 5 May 1997  相似文献   

6.
The trace element composition of silicate inclusions in diamonds: a review   总被引:1,自引:0,他引:1  
On a global scale, peridotitic garnet inclusions in diamonds from the subcratonic lithosphere indicate an evolution from strongly sinusoidal REEN, typical for harzburgitic garnets, to mildly sinusoidal or “normal” patterns (positive slope from LREEN to MREEN, fairly flat MREEN–HREEN), typical for lherzolitic garnets. Using the Cr-number of garnet as a proxy for the bulk rock major element composition it becomes apparent that strong LREE enrichment in garnet is restricted to highly depleted lithologies, whereas flat or positive LREE–MREE slopes are limited to less depleted rocks. For lherzolitic garnet inclusions, there is a positive relation between equilibration temperature, enrichment in MREE, HREE and other HFSE (Ti, Zr, Y), and decreasing depletion in major elements. For harzburgitic garnets, relations are not linear, but it appears that lherzolite style enrichment in MREE–HREE only occurs at temperatures above 1150–1200 °C, whereas strong enrichment in Sr is absent at these high temperatures. These observations suggest a transition from melt metasomatism (typical for the lherzolitic sources) characterized by fairly unfractionated trace and major element compositions to metasomatism by CHO fluids carrying primarily incompatible trace elements. Melt and fluid metasomatism are viewed as a compositional continuum, with residual CHO fluids resulting from primary silicate or carbonate melts in the course of fractional crystallization and equilibration with lithospheric host rocks.

Eclogitic garnet inclusions show “normal” REEN patterns, with LREE at about 1× and HREE at about 30× chondritic abundance. Clinopyroxenes approximately mirror the garnet patterns, being enriched in LREE and having chondritic HREE abundances. Positive and negative Eu anomalies are observed for both garnet and clinopyroxene inclusions. Such anomalies are strong evidence for crustal precursors for the eclogitic diamond sources. The trace element composition of an “average eclogitic diamond source” based on garnet and clinopyroxene inclusions is consistent with derivation from former oceanic crust that lost about 10% of a partial melt in the garnet stability field and that subsequently experienced only minor reenrichment in the most incompatible trace elements. Based on individual diamonds, this simplistic picture becomes more complex, with evidence for both strong enrichment and depletion in LREE.

Trace element data for sublithospheric inclusions in diamonds are less abundant. REE in majoritic garnets indicate source compositions that range from being similar to lithospheric eclogitic sources to strongly LREE enriched. Lower mantle sources, assessed based on CaSi–perovskite as the principal host for REE, are not primitive in composition but show moderate to strong LREE enrichment. The bulk rock LREEN–HREEN slope cannot be determined from CaSi–perovskites alone, as garnet may be present in these shallow lower mantle sources and then would act as an important host for HREE. Positive and negative Eu anomalies are widespread in CaSi–perovskites and negative anomalies have also been observed for a majoritic garnet and a coexisting clinopyroxene inclusion. This suggests that sublithospheric diamond sources may be linked to old oceanic slabs, possibly because only former crustal rocks can provide the redox gradients necessary for diamond precipitation in an otherwise reduced sublithospheric mantle.  相似文献   


7.
The diamond population from the Jagersfontein kimberlite is characterized by a high abundance of eclogitic, besides peridotitic and a small group of websteritic diamonds. The majority of inclusions indicate that the diamonds are formed in the subcratonic lithospheric mantle. Inclusions of the eclogitic paragenesis, which generally have a wide compositional range, include two groups of eclogitic garnets (high and low Ca) which are also distinct in their rare earth element composition. Within the eclogitic and websteritic suite, diamonds with inclusions of majoritic garnets were found, which provide evidence for their formation within the asthenosphere and transition zone. Unlike the lithospheric garnets all majoritic garnet inclusions show negative Eu-anomalies. A narrow range of isotopically light carbon compositions (δ13C −17 to −24 ‰) of the host diamonds suggests that diamond formation in the sublithospheric mantle is principally different to that in the lithosphere. Direct conversion from graphite in a subducting slab appears to be the main mechanism responsible for diamond formation in this part of the Earth’s mantle beneath the Kaapvaal Craton. The peridotitic inclusion suite at Jagersfontein is similar to other diamond deposits on the Kaapvaal Craton and characterized by harzburgitic to low-Ca harzburgitic compositions.  相似文献   

8.
The Orapa and Jwaneng kimberlites are located along the western margin of the Kalahari Craton and the prevalence of eclogitic over peridotitic diamonds in both mines has recently been linked to lower P-wave velocities in the deep mantle lithosphere (relative to the bulk of the craton) to suggest a diamond formation event prompted by mid-Proterozoic growth and modification of preexisting Archean lithosphere (Shirey et al. 2002). Here we study peridotitic diamonds from both mines, with an emphasis on the style of metasomatic source enrichment, to evaluate their relationship with this major eclogitic diamond formation event. In their major element chemistry, the peridotitic inclusions compare well with a world-wide database but reveal differences to diamond sources located in the interior of the Western Terrane of the Kaapvaal block, where the classical mines in the Kimberley region are located. The most striking difference is the relative paucity of low-Ca (<2 wt% CaO in garnet) harzburgites and a low ratio of harzburgitic to lherzolitic garnets (2:1). This suggests that lithospheric mantle accreted to the rim of the Zimbabwe and Kaapvaal blocks was overall chemically less depleted. Alternatively, this more fertile signature may be assigned to stronger metasomatic re-enrichment but the trace element signature of garnet inclusions is not in favor of strong enrichment in major elements. For both mines the majority of lherzolitic and harzburgitic garnet inclusions are characterized by moderately sinusoidal REEN patterns and low Ti, Zr and Y contents, indicative of a metasomatic agent with very high LREE/HREE and low HFSE. This is consistent with metasomatism by a CHO-fluid or, as modeled by Burgess and Harte (2003), a highly fractionated, low-volume silicate melt from the MORB-source. In both cases, changes in the major element chemistry of the affected rocks will be limited. In a few garnets from Orapa preferential MREE enrichment is observed, suggesting that the percolating fluid/melt fractionated a LREE-phyllic phase (such as crichtonite). The overall moderate degree of metasomatism reflected by the inclusion chemistry is in stark contrast to lithospheric sections for Orapa and Jwaneng based on mantle xenocrysts and xenoliths, revealing extensive mantle metasomatism (Griffin et al. 2003). This suggests that the formation of peridotitic diamonds predates the intensive modification of the subcratonic lithosphere during Proterozoic rifting and compression, implying that diamonds may survive major tectonothermal events.Editorial responsibility: J. Hoefs  相似文献   

9.
Kimberlite AT-56, discovered in February 2001, represents the most recent addition to the Attawapiskat kimberlite cluster, located in the James Bay Lowlands of Ontario, Canada. AT-56 is a small kimberlite body with a surface diameter of approximately 40 m and a steep southeastern plunge. It consists of a medium to coarse-grained matrix supported kimberlite with abundant olivine, clinopyroxene, garnet, ilmenite and mica macrocrysts in a green-black to orange-black matrix. The kimberlite is classified as a hypabyssal facies sparsely macrocrystic calcite kimberlite. Heavy mineral concentrates from two representative samples of AT-56 have been analyzed to characterize the mantle sampled by the kimberlite. Both samples yielded large heavy mineral concentrates comprised of roughly equal proportions of Mg-ilmenite, Cr-diopside, high-Cr garnet and low-Cr garnet. Mg-chromite is also present in quantities an order of magnitude less than the other constituents.

The high-Cr peridotitic garnet macrocrysts are only slightly more abundant than the low-Cr varieties, the population being dominated by G9 (lherzolitic) types with only a few (less than 10%) weakly sub-calcic G10 (probable harzburgitic) garnets present. Ni thermometry results for a representative selection of G9 and G10 garnets indicate that the majority equilibrated at temperatures ranging from 1000 to 1250 °C. A significant proportion of the low-Cr garnet population derived from AT-56 is characterized by relatively low-Ti (0.2 to 0.4 wt.% TiO2) and elevated Na (0.07 to 0.13 wt.% Na2O) contents characteristic of Group 1, diamond inclusion type eclogite garnets. These sodic garnets have elevated Cr2O3 contents (typically 1 to 2 wt.% Cr2O3), suggesting they may be websteritic in origin rather than eclogitic. Comparison of AT-56 garnet compositions with published data available for other Attawapiskat kimberlites suggests websteritic mantle has also been sampled by kimberlite bodies elsewhere in the Attawapiskat cluster and it may be an important diamond reservoir in this area.  相似文献   


10.

Kimberlites from the Diavik and Ekati diamond mines in the Lac de Gras kimberlite field contain abundant large (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) crystals. We present the first extensive mineral chemical dataset for these megacrysts from Diavik and Ekati and compare their compositions to cratonic peridotites and megacrysts from the Slave and other cratons. The Diavik and Ekati Cr-diopside and Cr-pyrope megacrysts are interpreted to belong to the Cr-rich megacryst suite. Evidence for textural, compositional, and isotopic disequilibrium suggests that they constitute xenocrysts in their host kimberlites. Nevertheless, their formation may be linked to extensive kimberlite magmatism and accompanying mantle metasomatism preceding the eruption of their host kimberlites. It is proposed that the formation of megacrysts may be linked to failed kimberlites. In this scheme, the Cr-rich megacrysts are formed by progressive interaction of percolating melts with the surrounding depleted mantle (originally harzburgite). As these melts percolate outwards, they may contribute to the introduction of clinopyroxene and garnet into the depleted mantle, thereby forming lherzolite. This model hinges on the observation that lherzolitic clinopyroxenes and garnets at Lac de Gras have compositions that are strikingly similar to those of the Cr-rich megacrysts, in terms of major and trace elements, as well as Sr isotopes. As such, the Cr-rich megacrysts may have implications for the origin of clinopyroxene and garnet in cratonic lherzolites worldwide.

  相似文献   

11.
Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania   总被引:9,自引:3,他引:6  
Syngenetic diamond inclusions from the Mwadui kimberlite reveal that an unusually fertile section of lithospheric mantle beneath the Central African Craton was sampled. This is shown by a very high ratio of lherzolitic to harzburgitic garnet inclusions (1:2) and low Mg/Fe-ratios in olivine and orthopyroxene. Geothermometry applied to the peridotitic inclusions indicates disequilibrium between non-touching inclusion pairs to be common. Disequilibrium between garnet-olivine and garnet-orthopyroxene pairs suggests successive iron enrichment during diamond formation, e.g. leading to the presence of harzburgitic garnet and lherzolitic olivine in the same diamond. Apart from the dominant peridotitic inclusion suite (88%), rare eclogitic inclusions occur (2%) and a number of uncertain paragenesis. Two diamonds, one with eclogitic garnets with moderate pyroxene solid solution and the other with a single ferro-periclase inclusion, suggest the contribution of a small sub-lithospheric component. The finding of the association Fe-FeO-Fe3O4 in one single diamond indicates diamond formation over a large range of f O2 conditions, possibly along redox fronts. Steep compositional gradients may also be reflected by the joint occurrence of harzburgitic garnet and a SiO2-phase in the same diamond. Alternatively the formation of the SiO2-phase may be due to extreme carbonation of the peridotitic source. Further unusual findings include the exsolution of a silicate phase from magnetite inclusions, (i.e. primary solution of γ-olivine) and an ilmenite inclusion with an eskolaite (Cr2O3) component of 14.5 mol%, the latter together with harzburgitic paragenesis silicate inclusions. Received: 23 August 1997 / Accepted: 7 January 1998  相似文献   

12.
Trace element concentrations of peridotitic garnet inclusions in diamonds from two Chinese kimberlite pipes were determined using the ion microprobe. Garnet xenocrysts from the same two kimberlite pipes were also analyzed for comparison. In contrast to their extremely refractory major element compositions, all harzburgitic garnets showed enrichment in light rare earth elements (REE) relative to chondrite, resulting in sinuous REE patterns. Both normal and sinuous REE patterns were observed from the lherzolitic garnets. Concentrations of REE in garnets changed significantly from diamond to diamond and no specific correlations were observed with their major element compositions. Analyses of randomly selected two to three points within every grain of a large number of garnet inclusions by the ion microprobe demonstrated that there was no evident compositional heterogeneity, and multiple grains of one phase from a single diamond host also exhibit very similar compositions. This implies that the trace element heterogeneity within one grain or among multiple inclusions from the same diamond host, as reported from Siberian diamonds, is not a common feature for these Chinese diamonds. Concentrations of Na, Ti, and Zr tend to decrease when garnets become more refractory, but variations of Sr and Li are more complex. Compositions rich in light REE and relatively poor in high field strength elements (HFSE) of the harzburgitic garnet inclusions in diamonds are generally consistent with metasomatism by carbonatite melts. The trace element features observed from the garnet inclusions in Chinese diamonds may be caused by carbonatite melt infiltration and partial melt extraction. Spatial and temporal gradients in melt/rock ratio and temperature are the main reasons for the large variations of REE patterns and other trace element concentrations. Received: 27 April 1999 / Accepted: 1 March 2000  相似文献   

13.
Mineral inclusions recovered from 100 diamonds from the A154 South kimberlite (Diavik Diamond Mines, Central Slave Craton, Canada) indicate largely peridotitic diamond sources (83%), with a minor (12%) eclogitic component. Inclusions of ferropericlase (4%) and diamond in diamond (1%) represent “undetermined” parageneses.

Compared to inclusions in diamonds from the Kaapvaal Craton, overall higher CaO contents (2.6 to 6.0 wt.%) of harzburgitic garnets and lower Mg-numbers (90.6 to 93.6) of olivines indicate diamond formation in a chemically less depleted environment. Peridotitic diamonds at A154 South formed in an exceptionally Zn-rich environment, with olivine inclusions containing more than twice the value (of  52 ppm) established for normal mantle olivine. Harzburgitic garnet inclusions generally have sinusoidal rare earth element (REEN) patterns, enriched in LREE and depleted in HREE. A single analyzed lherzolitic garnet is re-enriched in middle to heavy REE resulting in a “normal” REEN pattern. Two of the harzburgitic garnets have “transitional” REEN patterns, broadly similar to that of the lherzolitic garnet. Eclogitic garnet inclusions have normal REEN patterns similar to eclogitic garnets worldwide but at lower REE concentrations.

Carbon isotopic values (δ13C) range from − 10.5‰ to + 0.7‰, with 94% of diamonds falling between − 6.3‰ and − 4.0‰. Nitrogen concentrations range from below detection (< 10 ppm) to 3800 ppm and aggregation states cover the entire spectrum from poorly aggregated (Type IaA) to fully aggregated (Type IaB). Diamonds without evidence of previous plastic deformation (which may have accelerated nitrogen aggregation) typically have < 25% of their nitrogen in the fully aggregated B-centres. Assuming diamond formation beneath the Central Slave to have occurred in the Archean [Westerlund, K.J., Shirey, S.B., Richardson, S.H., Gurney, J.J., Harris, J.W., 2003b. Re–Os systematics of diamond inclusion sulfides from the Panda kimberlite, Slave craton. VIIIth International Kimberlite Conference, Victoria, Canada, Extended Abstracts, 5p.], such low aggregation states indicate mantle residence at fairly low temperatures (< 1100 °C). Geothermometry based on non-touching inclusion pairs, however, indicates diamond formation at temperatures around 1200 °C. To reconcile inclusion and nitrogen based temperature estimates, cooling by about 100–200 °C shortly after diamond formation is required.  相似文献   


14.
Peridotitic inclusions in alluvial diamonds from the Kankan region of Guinea in West Africa are mainly of lherzolitic paragenesis. Nevertheless, extreme Cr2O3 contents (max. 17 wt%) in some of the exclusively lherzolitic garnets document that the diamond source experienced a previous stage of melt extraction in the spinel stability field. This initial depletion was followed by at least two metasomatic stages: (1) enrichment of LREE and Sr and (2) introduction mainly of MREE–HREE and other HFSE (Ti, Y, Zr, Hf). The Ti- and HFSE-poor character of stage (1) points towards a CHO-rich fluid or carbonatitic melt, the high HFSE in stage (2) favour silicate melts as enriching agent. Eclogitic inclusions are derived from a large depth interval ranging from the lithosphere through the asthenosphere into the transition zone. The occurrence of negative Eu anomalies in garnet and clinopyroxene from both lithosphere and transition zone suggests a possible relationship to subducted oceanic crust. Lithospheric eclogitic inclusions are derived from heterogeneous sources, that may broadly be divided into a low-Ca group with LREE depleted trace element patterns and a high-Ca group representing a source with negative LREE–HREE slope that is moderately enriched in incompatible elements relative to primitive mantle. High-Ca inclusions of majoritic paragenesis are significantly more enriched in incompatible elements, such as in Sr and LREE. Calculated whole rock compositions require metasomatic enrichment even if a derivation from MORB is assumed. Received: 26 January 2000 / Accepted: 18 May 2000  相似文献   

15.
With an age of ca. 2.7 Ga, greenschist facies volcaniclastic rocks and lamprophyre dikes in the Wawa area (Superior Craton) host the only diamonds emplaced in the Archean available for study today. Nitrogen aggregation in Wawa diamonds ranges from Type IaA to IaB, suggesting mantle residence times of tens to hundreds of millions of years. The carbon isotopic composition (δ13C) of cube diamonds is similar to the accepted mantle value (− 5.0‰). Octahedral diamonds show a slight shift (by + 1.5‰) to isotopically less negative values suggesting a subduction-derived, isotopically heavy component in the diamond-forming fluids. Syngenetic inclusions in Wawa diamonds are exclusively peridotitic and, similar to many diamond occurrences worldwide, are dominated by the harzburgitic paragenesis. Compositionally they provide a perfect match to inclusions from diamonds with isotopically dated Paleo- to Mesoarchean crystallization ages. Several high-Cr harzburgitic garnet inclusions contain a small majorite component suggesting crystallization at depth of up to 300 km. Combining diamond and inclusion data indicates that Wawa diamonds formed and resided in a very thick package of chemically depleted lithospheric mantle that predates stabilization of the Superior Craton. If late granite blooms are interpreted as final stages of cratonization then a similar disconnect between Paleo- to Mesoarchean diamondiferous mantle lithosphere and Neoarchean cratonization is also apparent in other areas (e.g., the Lac de Gras area of the Slave Craton) and may suggest that early continental nuclei formed and retained their own diamondiferous roots.  相似文献   

16.
The kimberlite fields scattered across the NE part of the Siberian Craton have been used to map the subcontinental lithospheric mantle (SCLM), as it existed during Devonian to Late Jurassic time, along a 1000-km traverse NE–SW across the Archean Magan and Anabar provinces and into the Proterozoic Olenek Province. 4100 garnets and 260 chromites from 65 kimberlites have been analysed by electron probe (major elements) and proton microprobe (trace elements). These data, and radiometric ages on the kimberlites, have been used to estimate the position of the local (paleo)geotherm and the thickness of the lithosphere, and to map the detailed distribution of specific rock types and mantle processes in space and time. A low geotherm, corresponding approximately to the 35 mW/m2 conductive model of Pollack and Chapman [Tectonophysics 38, 279–296, 1977], characterised the Devonian lithosphere beneath the Magan and Anabar crustal provinces. The Devonian geotherm beneath the northern part of the area was higher, rising to near a 40 mW/m2 conductive model. Areas intruded by Mesozoic kimberlites are generally characterised by this higher, but still ‘cratonic' geotherm. Lithosphere thickness at the time of kimberlite intrusion varied from ca. 190 to ca. 240 km beneath the Archean Magan and Anabar provinces, but was less (150–180 km) beneath the Proterozoic Olenek Province already in Devonian time. Thinner Devonian lithosphere (140 km) in parts of this area may be related to Riphean rifting. Near the northern end of the traverse, differences in geotherm, lithosphere thickness and composition between the Devonian Toluopka area and the nearby Mesozoic kimberlite fields suggest thinning of the lithosphere by ca. 50–60 km, related to Devonian rifting and Triassic magmatism. A major conclusion of this study is that the crustal terrane boundaries defined by geological mapping and geophysical data (extended from outcrops in the Anabar Shield) represent major lithospheric sutures, which continue through the upper mantle and juxtapose lithospheric domains that differ significantly in composition and rock-type distribution between 100 and 250 km depth. The presence of significant proportions of harzburgitic and depleted lherzolitic garnets beneath the Magan and Anabar provinces is concordant with their Archean surface geology. The lack of harzburgitic garnets, and the chemistry of the lherzolitic garnets, beneath most of the other fields are consistent with the Proterozoic surface rocks. Mantle sections for different terranes within the Archean portion of the craton show pronounced differences in bulk composition, rock-type distribution, metasomatic overprint and lithospheric thickness. These observations suggest that individual crustal terranes, of both Archean and Proterozoic age, had developed their own lithospheric roots, and that these differences were preserved during the Proterozoic assembly of the craton. Data from kimberlite fields near the main Archean–Proterozoic suture (the Billyakh Shear Zone) suggest that reworking and mixing of Archean and Proterozoic mantle was limited to a zone less than 100 km wide.  相似文献   

17.
PT parameters of crystallization have been determined for pyropes and Cr-diopsides from loose sediments of the Kola region, taking into account the chemical compositions of these minerals. Being either deep-seated xenocrysts or constituents of mantle xenoliths in kimberlites, pyropes and Cr-diopsides bear information on composition of the lithospheric mantle and its diamond resource potential. It was established that pyropes belong to the lherzolitic (45%), harzburgitic (30%), and eclogitic (25%) mineral assemblages. The Ni thermometry of pyropes yielded their formation temperature at 650–1250°C, which corresponds to a depth interval of 75–190 km. The distribution of different pyrope-bearing assemblages and their trace element composition allowed us to suggest a layered structure of the Kola lithospheric mantle. Its shallow unit (75–110 km) is mainly composed of depleted lherzolite; the medium-deep unit (110–170 km) consists of harzburgite, and the deep unit (170–190 km), of both lherzolite and harzburgite. About 16% of lherzolitic-harzburgitic pyropes were derived from the diamond mantle facies, i.e., from a depth of 140–190 km. Cr-diopsides are subdivided into two genetic groups: eclogitic (high Al2O3 and Na2O, low MgO and CaO) and ultramafic (high MgO, CaO, and Cr2O3; low Al2O3 and Na2O). The crystallization parameters of Cr-diopside from deep-seated ultramafic group were determined using the Cr-in-Cpx barometer and En-in-Cpx thermometer. Most samples fall into the graphite stability field (20–45 kbar and 700–1150°C). If these minerals were derived from kimberlites, this implies that the latter were constituents of carbonatite-ultramafic intrusions. Cr-diopsides may also be derived from diamond-free ultramafic xenoliths contained in alkaline ultramafic dikes. Nevertheless, 15% of Cr-diopside compositions fall in the field of diamond stability (55–60 kbar and 1000–1100°C). These conditions fit the geotherm characterizing a low heat flow. The results support the high resource potential of the Kola region for diamonds.  相似文献   

18.
There is no consensus on the processes responsible for near-coeval formation of Archaean continental crust (dominantly tonalite-trondhjemite-granodiorite: TTG), greenstone belts dominated by komatiitic to tholeiitic lavas (KT), and sub-continental lithospheric mantle (SCLM). The Douglas Harbour domain (2.7-2.9 Ga) of the Minto Block, northeastern Superior Province, has two TTG suites, the western and eastern Faribault-Thury (WFT and EFT), with embedded KT greenstones. Tonalites of both suites have high light/heavy rare-earth element ratios (L/HREE), high large ion lithophile element (U-Th-Rb-Cs-La: LILE) contents, positive Sr-Pb anomalies, and negative Nb-Ta-Ti anomalies. Such typical Archaean TTG signatures are commonly explained by melting of subducted oceanic crust, but could also originate by melting the base of thick basaltic plateaux formed above mantle upwellings (plumes), leaving behind restites containing pyroxene, garnet, and rutile. Field relationships (in situ segregation veins), phase equilibria (hornblende stabilized at lower crustal pressure), petrography (corroded epidote and muscovite phenocrysts, rare plagioclase phenocrysts), and trace element models, all imply that FT tonalite to trondhjemite evolution reflects hornblende-dominated fractional crystallization, not partial melting of subducted crust. The geochemistry of parental FT tonalites can be modeled by 15-30% melting of FT tholeiitic metabasalts, with residues of eclogite, garnet-websterite, or hornblende-garnet websterite. A minor residual Ti-phase such as rutile is also needed to generate negative Ti-Nb-Ta troughs in the TTGs. However, large volumes of eclogitic restites complementary to TTG are not observed either at the base of Archaean crustal sections, or in the SCLM. Additional problems with slab-melting models include: (a) the rarity of lithologies and associations characteristic of active margins (ophiolites, andesites, blueschists, accretionary mélanges, molasse, flysch, high-pressure belts, and thrust-and-fold belts); (b) the need to deliver plume-derived KT melt through the slab; and (c) extracting enough TTG melt from a subducting slab in the time available (200-300 my). In the plateau-melting model, heat for crustal anatexis is supplied by ongoing KT magma derived from mantle upwellings. However, SCLM rocks differ from predicted 1-stage mantle melting residua; and the voluminous residual eclogites complementary to TTG generation somehow need to be removed. These two problems might solve one another if the dense crustal restites disaggregated and mixed into the underlying depleted mantle. Mantle melting slows upon exhaustion of Ca-Al-rich phases, with large temperature increases needed to extract more melt from harzburgite residua. Physical addition of delaminated crustal restites would refertilize the refractory mantle, allowing extraction of additional melt increments, and might explain the ultra-depleted and orthopyroxene-rich nature of the SCLM. A hybrid source composed of 10% eclogitic restite of EFT tonalite generation, mixed with harzburgitic residues from 25% melting of primitive mantle, yields model melts with trace element signatures resembling typical Munro komatiites. Variations in the mineralogy and geochemistry of the delaminated component might account for the diversity of komatiite types. Degassing of hornblende-rich delaminated restites would transfer LILE to surrounding depleted mantle and could generate boninites. Fusion of undepleted metabasalt sandwiched among denser restites could generate sanukitoids. Mantle melt pulses generated by catastrophic delamination events would underplate nascent TTG crust and trigger renewed crustal melting, followed by delamination of newly formed eclogitic restites, triggering additional mantle melting, and so on. I posit that delamination of crustal restites catalyzed multi-stage melting of the SCLM and maturation of the Archaean continental crust. Thus, Archaean crust and SCLM are genetically inter-linked, and both form above major mantle upwellings.  相似文献   

19.

The Diavik Diamond Mine in the NWT of Canada has produced in excess of 100 million carats from 3 kimberlite pipes since mining commenced in 2002. Here, we present new findings from deep (>400 m below surface) mining, sampling and drilling work in the A154N kimberlite volcano that require a revision of previous geological and emplacement models and provide a window into how the sub-continental lithospheric mantle (SCLM) below Diavik was sampled by kimberlite magmas through time. Updated internal geological models feature two volcanic packages interpreted to represent two successive cycles of explosive eruption followed by active and passive sedimentation from a presumed crater-rim, both preceded and followed by intrusions of coherent kimberlite. Contact relationships apparent among the geological units allow for a sequential organization of as many as five temporally-discrete emplacement events. Representative populations of mantle minerals extracted from geological units corresponding to four of the emplacement events at A154N are analyzed for major and trace elements, and provide insights into the whether or not kimberlites randomly sample from the mantle. Two independent geothermometers using clinopyroxene and garnet data indicate similar source depths for clinopyroxenes and G9 garnets (130–160 km), and suggest deeper sampling with time for both clinopyroxene and garnets. Harzburgite is limited to 110–160 km, and appears more prevalent in early, low-volume events. Variable ratios of garnet parageneses from the same depth horizons suggest random sampling by passing magmas, but deeper garnet sampling through time suggests early preferential sampling of shallow/depleted SCLM. Evaluations of Ti, Zr, Y and Ga over the range of estimated depths support models of the SCLM underlying the central Slave terrane.

  相似文献   

20.
The Dalnyaya kimberlite pipe(Yakutia,Russia) contains mantle peridotite xenoliths(mostly Iherzolites and harzburgites) that show both sheared porphyroclastic(deformed) and coarse granular textures,together with ilmenite and clinopyroxene megacrysts.Deformed peridotites contain high-temperature Fe-rich clinopyroxenes,sometimes associated with picroilmenites,which are products of interaction of the lithospheric mantle with protokimberlite related melts.The orthopyroxene-derived geotherm for the lithospheric mantle beneath Dalnyaya is stepped similar to that beneath the Udachnaya pipe.Coarse granular xenoliths fall on a geotherm of 35 mWm-2 whereas deformed varieties yield a 45 mWm-2)geotherm in the 2-7.5 GPa pressure interval.The chemistry of the constituent minerals including garnet,olivine and clinopyroxene shows trends of increasing Fe~#(=Fe/(Fe+Mg))with decreasing pressure.This may suggest that the interaction with fractionating protokimberlite melts occurred at different levels.Two major mantle lithologies are distinguished by the trace element patterns of their constituent minerals,determined by LA-ICP-MS.Orthopyroxenes,some clinopyroxenes and rare garnets are depleted in Ba,Sr,HFSE and MREE and represent relic lithospheric mantle.Re-fertilized garnet and clinopyroxene are more enriched.The distribution of trace elements between garnet and clinopyroxene shows that the garnets dissolved primary orthopyroxene and clinopyroxene.Later high temperature clinopyroxenes related to the protokimberlite melts partially dissolved these garnets.Olivines show decreases in Ni and increases in Al,Ca and Ti from Mg-rich varieties to the more Fe-rich,deformed and refertilized ones.Minerals showing higher Fe~#(0.11-0.15) are found within intergrowths of low-Cr ilmenite-clinopyroxene-garnet related to the crystallization of protokimberlite melts in feeder channels.In P-f(O_2) diagrams,garnets and Cr-rich clinopyroxenes indicate reduced conditions at the base of the lithosphere at-5 log units below a FMQ buffer.However,Cr-poor clinopyroxenes,together with ilmenite and some Fe-Ca-rich garnets,demonstrate a more oxidized trend in the lower part of lithosphere at-2 to 0 log units relative to FMQ.Clinopyroxenes from xenoliths in most cases show conditions transitional between those determined for garnets and megacrystalline Cr-poor suite.The relatively low diamond grade of Dalnyaya kimberlites is explained by a high degree of interaction with the oxidized protokimberlite melts,which is greater at the base of the lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号