首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epochs of changing atmospheric CO2 and seawater CO2–carbonic acid system chemistry and acidification have occurred during the Phanerozoic at various time scales. On the longer geologic time scale, as sea level rose and fell and continental free board decreased and increased, respectively, the riverine fluxes of Ca, Mg, DIC, and total alkalinity to the coastal ocean varied and helped regulate the C chemistry of seawater, but nevertheless there were major epochs of ocean acidification (OA). On the shorter glacial–interglacial time scale from the Last Glacial Maximum (LGM) to late preindustrial time, riverine fluxes of DIC, total alkalinity, and N and P nutrients increased and along with rising sea level, atmospheric PCO2 and temperature led, among other changes, to a slightly deceasing pH of coastal and open ocean waters, and to increasing net ecosystem calcification and decreasing net heterotrophy in coastal ocean waters. From late preindustrial time to the present and projected into the 21st century, human activities, such as fossil fuel and land-use emissions of CO2 to the atmosphere, increasing application of N and P nutrient subsidies and combustion N to the landscape, and sewage discharges of C, N, P have led, and will continue to lead, to significant modifications of coastal ocean waters. The changes include a rapid decline in pH and carbonate saturation state (modern problem of ocean acidification), a shift toward dissolution of carbonate substrates exceeding production, potentially leading to the “demise” of the coral reefs, reversal of the direction of the sea-to-air flux of CO2 and enhanced biological production and burial of organic C, a small sink of anthropogenic CO2, accompanied by a continuous trend toward increasing autotrophy in coastal waters.  相似文献   

2.
A number of different impurities are located in the open channels of natural beryl crystals. The rare Maxixe beryl contains an unusual amount of NO2. The isoelectronic CO2 radical is found in the irradiated Maxixe-type beryl. The NO2 radicals are distributed in the Be–Al plane of the crystal, with the nitrogen atom close to the oxygens of the beryl cavity wall. These oxygens repel the negative CO2 radical, which is located at the center of the beryl cavity and rotates around its O–O axis, which is parallel to the crystal c-axis. When there is a nearby alkali ion at the center of the beryl channel, it reorients the CO2 radical so that its bisector is parallel to the c-axis and points toward the positive ion. Different signals are analyzed for Li+, Na+, and another counter-ion, which probably is Cs+. The related NO3 and CO3 radicals are the color centers in the investigated deep blue beryls. The slow decay of the color, which makes these beryls useless as gem stones, is related to the decay of the hydrogen atoms which are present in these crystals. Evidence is given that NO3 is created in Maxixe beryl by a natural process, while CO3 in Maxixe-type beryl has been created by irradiation. The temperature dependence of the EPR signals of these two radicals was investigated, but a definitive proof that they rotate at the center of the beryl cavity could not be given. EPR signals from some other radicals in beryl have been observed and described.  相似文献   

3.
4.
To understand the influence of fluid CO2 on ultramafic rock-hosted seafloor hydrothermal systems on the early Earth, we monitored the reaction between San Carlos olivine and a CO2-rich NaCl fluid at 300 °C and 500 bars. During the experiments, the total carbonic acid concentration (ΣCO2) in the fluid decreased from approximately 65 to 9 mmol/kg. Carbonate minerals, magnesite, and subordinate amount of dolomite were formed via the water-rock interaction. The H2 concentration in the fluid reached approximately 39 mmol/kg within 2736 h, which is relatively lower than the concentration generated by the reaction between olivine and a CO2-free NaCl solution at the same temperature. As seen in previous hydrothermal experiments using komatiite, ferrous iron incorporation into Mg-bearing carbonate minerals likely limited iron oxidation in the fluids and the resulting H2 generation during the olivine alteration. Considering carbonate mineralogy over the temperature range of natural hydrothermal fields, H2 generation is likely suppressed at temperatures below approximately 300 °C due to the formation of the Mg-bearing carbonates. Nevertheless, H2 concentration in fluid at 300 °C could be still high due to the temperature dependency of magnetite stability in ultramafic systems. Moreover, the Mg-bearing carbonates may play a key role in the ocean-atmosphere system on the early Earth. Recent studies suggest that the subduction of carbonated ultramafic rocks may transport surface CO2 species into the deep mantle. This process may have reduced the huge initial amount of CO2 on the surface of the early Earth. Our approximate calculations demonstrate that the subduction of the Mg-bearing carbonates formed in komatiite likely played a crucial role as one of the CO2 carriers from the surface to the deep mantle, even in hot subduction zones.  相似文献   

5.
6.
7.
陈巍 《江西地质科技》1996,23(4):195-197
选择Chromsorb104作固定相,解决了H2O对测SO2的干扰,也避免了酸分解法测CO2的干扰,可一次实现四种成份连测,具有快速,灵敏(万分之几至十万分之几)用样量少等特点,很适宜批量样品的分析。  相似文献   

8.
9.
The arrested, prograde amphibolite- to granulite-facies transition at Kabbaldurga, south India, overprints Archacan amphibolite-facies nebulitic gneisses and the late Archaean Closepet granite. Previous studies have shown that this facies transition was controlled by a channelled influx of a dehydrating fluid, assumed to be CO2, at 750°C and 5.5 kbar confining pressure. The effect of this type of prograde transition on zircon U–Pb isotopic systematics and whole-rock geochemistry has been studied using 1 kg amphibolite-facies, transitional and granulite-facies domains from a single block of gneiss. The zircon populations from all three domains have essentially similar morphology and U–Pb systematics. This similarity shows that at the conditions under which the prograde granulite-facies transition took place via fluid influx, the zircon U–Pb systematics were not disturbed by the process. Using the pooled data from all three domains, it is concluded that the protolith of the gneiss formed at 2965±4 Ma (2), and that zircons also grew during an anatectic event common to all domains at 2528±5 Ma. The granulite-facies metamorphism has not been dated directly due to the lack of response to the zircon U–Pb isotopic systematies to it. However, field and petrographic criteria dictate that its maximum age is 2528±5 Ma, the age of the anatectic event common to each domain in the gneiss block, which was overprinted during the granulite-facies event. For most major and trace elements, consistent enrichment or depletion trends associated with the transition to granulite facies cannot be identified with confidence. However, the granulite-facies portion is LREE (light-rare-earth-element)-enriched and H (heavy) REE-depleted compared with the amphibolite-facies domain, and the transitional domain is at intermediate values. The isotopic and geochemical evidence presented supports the conclusion that the granulite-facies charnockitic rocks at Kabbaldurga were not formed by removal of an anatectic melt, but that they formed later by simple metamorphic overprint of amphibolite-facies rocks.  相似文献   

10.
CO2地质处置研究进展   总被引:9,自引:0,他引:9  
减少CO2向大气排放的一个主要的方法是将其隔离在地下深部,即CO2地质处置。CO2地质处置的方法主要包括:含水层处置,海洋处置,利用CO2开采油气以及煤层甲烷气体等。含水层处置有三种机制:(1)水力学方法;(2)溶解的方法;(3)矿物处置。CO2地质处置是可行的技术方法,在实际中已有了应用。在难以获得复杂的深部含水层环境的情况下,地球化学数值模拟方法在评价地质处置CO2可行性上具有重要的作用。  相似文献   

11.
Chemical interaction processes among injected CO2, saline fluids and potential reservoir materials are experimentally simulated to derive dissolution rates of natural materials (minerals) that can be used as input parameters for modeling of CO2 storage in deep saline formations and risk analyses. In order to study dissolution processes, mineral aliquots were exposed to CO2-bearing brines at elevated temperature (60, 100, 150 °C) and pressure (85 bar) and at various run durations. Several potential reservoir rocks include carbonates as cement. Calcite and dolomite grains were therefore mainly used as solid starting material. Experiments with the two feldspar varieties alkali feldspar and almost pure anorthite were performed in addition. Grain sizes of the mineral starting materials varied between <63 μm and 500 μm with most experiments performed at grain size fractions of 160 – 250 μm and 250 – 500 μm. All experiments run with a complex synthetic brine (total dissolved solids: ∼156 g/l) according to a natural upper cretaceous formation water. Dry ice was used as CO2-source. All experiments were done in closed batch reactors. These reactors allow mimicking reservoir conditions far from the injection site as well as reservoir conditions after finishing the CO2 injection. The concentration changes during the experiment were monitored by ICP-OES measurements of the initial and the post-run fluids. Dissolution rates were derived based on the concentration changes of the brine.Most of the studied experimental variables and parameters (temperature, run duration, grain size, brine composition – expressed as pH-value and ionic strength) impact alteration of the reacting agents, i.e. they change the chemical composition of the brine, change the surfaces of the mineral aliquots exposed to the CO2-bearing brine, and induce formation of secondary minerals. Hence, all influencing parameters on dissolution processes have to be considered and time-resolved changes of the dissolution behavior have to be implemented in numerical simulations of processes at CO2 injection sites and CO2 storage reservoirs.  相似文献   

12.
Fluid-calcite-calcite dihedral angles have been measured for fluids in the system H2O−CO2−NaCl, between 1 and 2 kbar, and 550–750° C. It is found that the calcite-calcite-H2O dihedral angle decreases steadily with addition of NaCl from a value of about 80° (pure water) to 44° (60 wt% NaCl). The CO2−H2O system displays a well-defined minimum at , with a dihedral angle of 50°, in contrast to those of pure CO2 and H2O which are 90° and 80° respectively. Experiments containing fluids which are immiscible at run conditions showed a bimodal distribution of dihedral angles in the CO2−H2O−NaCl system, which can be approximately correlated with the compositions of the two fluid phases. Such bimodality was only observed for immiscible fluids in the H2O−NaCl system if the quench rate exceeded about 200°C per min. This is probably due to the extremely rapid establishment of the single phase dihedral angle on quenching. The fluid phase topology in devolatilising marbles will only be a connected network for very saline brines and fluids with close to 0.5. Fluids trapped in fluid inclusions in calcite grains in marbles may be predominantly H2O-rich or CO2-rich, and of low salinity. All other fluid compositions in the H2O−CO2−NaCl-calcite system will occupy isolated pores, the largest of which will grow at the expense of the smallest. Escape of fluid produced during devolatilisation reactions under such conditions will occur by fluid overpressuring and hydrofracture. In contrast, previous experimental studies of quartz-fluid dihedral angles between 950° and 1100° C (Watson and Brenan 1987) predict that quartz-dominated lithologies will permit pervasive flow of H2O−NaCl fluids, but not of H2O−CO2 fluids. Documented geological examples of differences in permeability and fluid flow mechanism between metamorphic argillites, psammites and limestones which support the results of the experimental studies are discussed.  相似文献   

13.
The timing of mantle−derived CO2 charging in sedimentary basins is the basis for studying CO2-sandstone interactions and CO2-oil interactions. In general, the time of the volcanic eruption near the CO2 gas reservoir is considered to be the time of mantle-derived CO2 charging. However, this approach is not suitable for hydrocarbon-bearing basins that have experienced multiple volcanic events. In this paper, using dawsonite-bearing sandstones contained in an oil-bearing CO2 gas and oil reservoir in the southern Songliao Basin as the object of the study on the basis of paragenetic sequence and fluid inclusions, we establish a mineral dating method for determining the time of mantle-derived CO2 charging. In this method, the mineral used for dating is dawsonite, which is formed under a high CO2 partial pressure and records the migration and aggregation of mantle-derived CO2 in geologic history. By interpreting the dawsonite-bearing sandstone in the southern Songliao Basin, we find two hydrocarbon charges and one CO2 charge and that the mantle-derived CO2 charging occurred slightly later than or quasi-simultaneously with the second hydrocarbon filling. Combining the currently known time of hydrocarbon reservoir formation and the time of tectonic fracture development, we deduce that the mantle-derived CO2 formed the dawsonite in the southern Songliao Basin at the end of the Cretaceous (end of the Mingshui period) and the beginning of the Paleogene.  相似文献   

14.
《Chemical Geology》2004,203(1-2):139-151
Aragonite is precipitated by a new CO2-diffusion technique from a Ca2+–Mg2+–Cl solution between 10 and 50 °C. Crystallisation of aragonite instead of calcite occurs by maintaining a [Mg2+]/[Ca2+] ratio of 2 in the fluid. The dissolved inorganic carbon (DIC) is received by diffusion of CO2 through a polyethylene membrane (diffusion coefficient: DCO2=10−6.4 cm2 s−1 at 19 °C). It is suggested that significant amounts of DIC may be transferred by diffusion of CO2 in natural systems if the CO2 gradient is high. The CO2-diffusion technique is used as a kind of simple mixed flow reactor for the co-precipitation of barium and strontium with aragonite. The distribution coefficients of Ba2+ and Sr2+ decrease from 10 to 50 °C according to DBa,a*=2.42−0.03595T (°C) and DSr,a*=1.32−0.005091T (°C). At 25 °C, the distribution coefficients are DBa,a*=1.5±0.1 and DSr,a*=1.19±0.03. The effect of temperature on DBa,a* is about one order of magnitude higher versus that on DSr,a*. Thus, Ba2+ may be a potential paleotemperature indicator if the composition of the solution is known.  相似文献   

15.
The thermodynamic properties of the copper carbonates malachite and azurite have been studied by adiabatic calorimetry, by heat-flux Calvet Calorimetry, by differential thermal analysis (DTA) and by thermogravimetrie (TGA) analysis. The heat capacities, C p 0 of natural malachite and azurite have been measured between 3.8 and 300 K by low-temperature adiabatic calorimetry. The heat capacity of azurite exhibits anomalous behavior at low temperatures. At 298.15 K the molar heat capacities C p 0 and the third law entropies S 298.15 0 are 228.5±1.4 and 254.4±3.8 J mol?1 K?1 for azurite and 154.3±0.93 and 166.3±2.5 J mol?1 K?1 for malachite. Enthalpies of solution at 973 K in lead borate 2PbO·B2O3 have been measured for heat treated malachite and azurite. The enthalpies of decomposition are 105.1±5.8 for azurite and 66.1±5.0 kJ mol? for malachite. The enthalpies of formation from oxides of azurite and malachite determined by oxide melt solution calorimetry, are ?84.7±7.4 and ?52.5±5.9 kJ mol?1, respectively. On the basis of the thermodynamic data obtained, phase relations of azurite and malachite in the system Cu2+-H2O-CO2 at 25 and 75 °C have been studied.  相似文献   

16.
Asadi  Sina  Moore  Farid 《Mineralogy and Petrology》2017,111(1):145-161
Mineralogy and Petrology - The Bavanat Cu deposit occurs as veins controlled by a NE–trending structure within the Permo–Triassic Surian metamorphic complex (SMC), southwest of Iran....  相似文献   

17.
Albrechtschraufite, MgCa4F2[UO2(CO3)3]2?17-18H2O, triclinic, space group Pī, a?=?13.569(2), b?=?13.419(2), c?=?11.622(2) Å, α?=?115.82(1), β?=?107.61(1), γ?=?92.84(1)° (structural unit cell, not reduced), V?=?1774.6(5) Å3, Z?=?2, D c?=?2.69 g/cm3 (for 17.5 H2O), is a mineral that was found in small amounts with schröckingerite, NaCa3F[UO2(CO3)3](SO4)?10H2O, on a museum specimen of uranium ore from Joachimsthal (Jáchymov), Czech Republic. The mineral forms small grain-like subhedral crystals (≤ 0.2 mm) that resemble in appearance liebigite, Ca2[UO2(CO3)3]??~?11H2O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX?=?1.511(2), nY?=?1.550(2), nZ?=?1.566(2), 2?V?=?65(1)° (λ?=?589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO2 and H2O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1?=?0.0206 and wR2?=?0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO2(CO3)3]4? anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF2(Ocarbonate)3(H2O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO6, CaF2O2(H2O)4, CaFO3(H2O)4 and CaO2(H2O)6 coordination polyhedra. The crystal structure is built up from MgCa3F2[UO2(CO3)3]?8H2O layers parallel to (001) which are linked by Ca[UO2(CO3)3]?5H2O moieties into a framework of the composition MgCa4F2[UO2(CO3)3]?13H2O. Five additional water molecules are located in voids of the framework and show large displacement parameters. One of the water positions is partly vacant, leading to a total water content of 17-18H2O per formula unit. The MgCa3F2[UO2(CO3)3]?8H2O layers are pseudosymmetric according to plane group symmetry cmm. The remaining constituents do not sustain this pseudosymmetry and make the entire structure truly triclinic. A characteristic paddle-wheel motif Ca[UO2(CO3)3]4Ca relates the structure of albrechtschraufite partly to that of andersonite and two synthetic alkali calcium uranyl tricarbonates.  相似文献   

18.
The municipal solid waste (MSW) landfills are the significant sources of atmospheric contamination, due to biogas production by anaerobic decomposition of organic matter via bacterial activity. Biogas released from landfills is commonly composed of a mixture of methane (55%-60%) and carbon dioxide (40%-45%), with minor contents of N2, H2, CO and traces of toxic and bad smelling inorganic and organic compounds. Particular attention has to be paid to CH4 and CO2 because of their liability for the greenhouse effect. Presently, the U.S. methane emission from landfills is considered to be about 25% of the total methane released to the atmosphere. Accordingly, field measurements should be planned in order to verify and, eventually, optimize the amount of gases released from waste disposals to the atmosphere. Simultaneous measurements of methane and carbon dioxide fluxes are an effective tool to better evaluate: (1) the amount of biogas released, (2) the real efficiency of the impervious cover, and (3) the presence of anomalous degassing zones or of newly formed fractures. Static closed-chamber methods for CH4 and CO2 flux measurements have been developed and used in both natural and artificial systems. Furthermore, portable gas-chromatographers equipped with flame ionization detector (FID) and accumulation chamber connected to infrared detectors (IR) .have been utilized for measuring CH4 and CO2 fluxes, respectively. This paper deals with a detailed investigation that combines (1) CH4 and CO2 flux measurements from solid waste disposal and surrounding areas (determined by an accumulation chamber equipped with two IR detectors, respectively), (2) chemical composition of soil and piezometer gases (collected in pre-evacuated glass tubes and analyzed by gas-chromatography), and (3) CO2 linear concentration measurements on optical air paths with IR laser devices. This multi-methodological approach was successfully applied to an active MSW in Tuscany (Central Italy). The analytical results have shown that the CO2/CH4 ratios of the piezometer gases have large variations, likely related to the different stage of decomposition processes affecting the heterogeneous solid material of the waste landfill. Significant contents of light hydrocarbons and BTX were also detected.  相似文献   

19.
We present new equilibrium mixed-volatile (H2O–CO2) solubility data for a phonotephrite from Erebus volcano, Antarctica. H2O–CO2-saturated experiments were conducted at 400–700 MPa, 1,190 °C, and ~NNO + 1 in non-end-loaded piston cylinders. Equilibrium H2O–CO2 fluid compositions were determined using low-temperature vacuum manometry, and the volatile and major element compositions of the glassy run products were determined by Fourier transform infrared spectroscopy and electron microprobe. Results show that the phonotephrite used in this study will dissolve ~0.8 wt% CO2 at 700 MPa and a fluid composition of $ X_{{{\text{H}}_{ 2} {\text{O}}}} $ ~0.4, in agreement with previous experimental studies on mafic alkaline rocks. Furthermore, the dissolution of CO2 at moderate to high $ X_{{{\text{H}}_{ 2} {\text{O}}}}^{\text{fluid}} $ in our experiments exceeds that predicted using lower-pressure experiments on similar melts from the literature, suggesting a departure from Henrian behavior of volatiles in the melt at pressures above 400 MPa. With these data, we place new constraints on the modeling of Erebus melt inclusion and gas emission data and thus the interpretation of its magma plumbing system and the contributions of primitive magmas to passive and explosive degassing from the Erebus phonolite lava lake.  相似文献   

20.
Saturation index with respect to calcite (SIc) and equilibrium CO2 partial pressure are important parameters to study groundwater in limestone aquifers. Aside from their use in time series, CO2 and SIc are used to estimate the baseline of CO2 in the vadose zone. The objective of this paper is to present conceptual examples on the use of the CO2–SIc relationship to have new information from usual parameters. Case study was considered as an example of use from Cussac site, a limestone aquifer in southwest of France. The result showed that CO2 baseline in unsaturated zone is found close to 25,000 ± 1,000 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号