首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A particular non-stromatolitic carbonate succession making up the third member of the Mesoproterozoic Gaoyuzhuang (高于庄) Formation might demonstrate that a stromatolite decline of the Mesoproterozoic occurring at ca. 1 450 Ma besides other three events of the Proterozoic,respectively,occurred at ca. 2 000 Ma,ca. 1 000 Ma,and ca. 675 Ma. The forming duration of this non-stromatolitic carbonate succession can be generally correlative to that of a similar depositional succession in North America,i.e. a non-stromatolitic carbonate succession made up by the Helena Formation of the Belt Supergroup,which suggests that the stromatolite decline occurring at ca. 1 450 Ma may be a global event. This information endows the non-stromatolitic carbonate succession making up the third member of the Gaoyuzhuang Formation in the Yanshan (燕山) area with important significance for the further understanding of Precambrian sedimentology. The Mesoproterozoic Gaoyuzhuang Formation in Yanshan area is a set of more than 1 000 m thick carbonate strata that can be divided into four members (or subformations). The first member (or the Guandi (官地) subformation) is marked by a set of stromatolitic dolomites overlying a set of transgressive sandstones; the second member (or the Sangshu'an (桑树鞍) subformation) is a set of manganese dolomites with a few stromatolites; the third member (or the Zhangjiayu (张家峪) subformation) is chiefly made up of leiolite and laminite limestones and is characterized by the development of molar-tooth structures in leiolite limestone; the fourth member (or the Huanxiusi (环秀寺) subformation) is composed of a set of dolomites of stromatolitic reefs or lithoherms. Sequence-stratigraphic divisions at two sections,i.e. the Jixian (蓟县) Section in Tianjin (天津) and the Qiangou (千沟) Section of Yanqing (延庆) County in Beijing (北京),demonstrate that a particularly non-stromatolitic succession making up the third member of the Mesoproterozoic Gaoyuzhuang Formation is developed in the Yanshan area of North China,in which lots of grotesque matground structures (wrinkle structures and palimpsest ripples) are developed in beds of leiolite limestone at the Qiangou Section and lots of molar-tooth structures are developed in beds of leiolite limestone at the Jixian Section. The time scale of the Gaoyuzhuang Formation is deduced as 200 Ma (from 1 600 Ma to 1 400 Ma). The duration of an obvious hiatus between the Gaoyuzhuang Formation and the underlying Dahongyu (大红峪) Formation is deduced as 50 Ma to 100 Ma,thus the forming duration of the GaoyuzhuangFormation is thought as 100 Ma (1 500 Ma to 1 400 Ma). Furthermore,the age of the subface of the third member of the Gaoyuzhuang Formation that is just in the mid position of the Gaoyuzhuang Formation can be deduced as about 1 450 Ma,which is the basis to infer a stromatolite decline of the Mesoproterozoic occurring at ca. 1 450 Ma. Importantly,several features of both the molar-tooth structure and the stromatolite,such as the particular forming environment,the important facies-indicative meaning,and the episodic distribution in the earth history,might express the evolutionary periodicity of the surface environment of the earth and can provide meaningful clues for the understanding of the Precambrian world,although their origin and forming mechanism is highly contentious. Therefore,like other three stromatolitic declines,respectively,occurring at ca. 675 Ma,ca. 1 000 Ma,and ca. 2 000 Ma,the identification of the stromatolite decline occurring at ca. 1 450 Ma during the Golden Age of stromatolites (2 800 Ma to 1 000 Ma) has important meaning for the further understanding of the evolving carbonate world of the Precambrian.  相似文献   

2.
The geothermal field is mainly controlled by the regional tectonic framework characterized by alternationsof uplifted and depressed basement. and exhibits a similar zoned distribution of temperatures. In the upliftedarea the geothermal gradient (G) and terrestrial heat flow value(q) of the Cenozoic sedimentary cover are rela-tively high, with G=3.5-5.0℃/100m and q=63-84mW/m~2; whereas in the depressions they are rela-tively low, with G=2.7-3.5℃/100m and q=46-59mW/m~2. In the whole region, G=3.58℃/100m and q=61.5±13.4nW/m~2, indicating a comparatively high geothermal background and the presence of localgeothermal anomalies. A comparison of the results of mathematical simulation of the geothermal field with themeasured values shows a good agrecment between them. The geothermal difference between various tectonicunits is caused chiefly by the lateral and vertical variation of thermal properties of shallow crustal rocks. Thisphenomenon can be regarded as the result of redistribution of relatively uniform heat flows from the deep crustin the surficial part of the crust in the process of their upward conduction.  相似文献   

3.
This diagenetic study (including fieldwork, petrographic, fluid inclusion, and stable isotope investigations) deals with the outcrop of Upper Permian–Lower Triassic carbonate rocks, which are equivalent to the Khuff Formation. The studied succession, which outcrops in the Ras Al Khaimah region, northern United Arab Emirates, comprises three formations, including the Bih, the Hagil, and the Ghail formations. The study focuses on unraveling the conditions and fluid compositions encountered during diagenesis of the succession. Emphasize is also made on linking diagenesis to major stratigraphic surfaces and to highlight reservoir property evolution and heterogeneity of the studied rocks. The evolution of fluids and related diagenetic products can be summarized as follows: (1) formation of near-surface to shallow burial, fine-crystalline dolomite (dolomite matrix) through pervasive dolomitization of carbonate sediments by modified marine pore waters; (2) formation of coarse-crystalline dolomite cement by highly evolved marine pore waters (13–23 wt.% NaCl eq.) at elevated temperatures (120–208°C), and (3) calcite cementation by highly saline fluid (20–23 wt.% NaCl eq.) at high temperature (170–212°C). A final calcite cement generation has been formed by the percolation of meteoric fluids during uplift. Fracture- and vug-filling diagenetic minerals are mainly restricted to the mid-Bih breccia marker level, suggesting preferential focused fluid flow through specific stratigraphic surfaces as well as along tectonic-related structures. Reservoir properties have been evolved as result of the interplay of the original sedimentary texture and the diagenetic evolution. Porosity is higher in the Bih Formation, which is dominated by dolomitized packstones and grainstones, than in the Hagil and Ghail formations, consisting mainly of dolomitized mudstones and wackestones. Image analyses were used to quantify the visual porosity in thin sections. The highest porosity values were measured in the Bih Formation, which is characterized by significant amounts of vug- and fracture-filling cements. This feature is attributed to the increase of porosity owing to substantial dissolution of abundant intergranular and vug-filling cements. In contrast, the Hagil and Ghail formations, which consist of finer-grained rock than the Bih Formation, were less cemented, and thus, the porosity enhancement by cement dissolution was insignificant.  相似文献   

4.
INTRODUCTIONThestrataofMesoprotCrozoicandNeoproterozoicaredevelopedcompletelyinthesouthpartoftheNorthetnaplatformandconsistofthreesystems,inasCendingorder,Jixiaulan,QingbaikouanandSlman.BasedonadetailedinvestigationontheolltcropandthecomprehenSiveanalysis,wediscussthecharaCterofsequencestratigraphyandthecorrelationoftheMemo--Neoproterozoicinthearea.FnThRrsor~unCrsANDPARA~unCrsMeSO--NooprotffezoicRadonalfortigraphyThesouthernpartofNorthChinaplatformherereferstotheareasincluding…  相似文献   

5.
《Gondwana Research》2002,5(1):197-203
Limited evidence from Sm-Nd TDM model ages, U-Pb ages of xenocrystic zircon, and Pb isotopic data indicates the presence of Paleoproterozoic and Mesoproterozoic crust (2.0-1.3 Ga) in the southern and central Appalachian orogen. This apparently unexposed older crust must underlie much of the Blue Ridge, and it was recycled to produce most of the rocks of the Blue Ridge with ages ≤1.3 Ga. In the eastern Blue Ridge and in blocks to the southeast, there also is a significant juvenile Neoproterozoic source component. Going toward the southeast, the central and eastern Piedmont (Carolina terrane) appears to be underlain by progressively less source component older than 1.0 Ga. Late Proterozoic rocks of the Carolina terrane are derived largely from a juvenile source with a Nd isotopic composition that approaches that of depleted mantle.  相似文献   

6.
Paleoproterozoic Xuwujia gabbronorites in the northern margin of the North China craton occur as dykes, sills and small plutons intruded into khondalite (aluminous paragneisses, sedimentary protoliths deposited at ca. 2.0–1.95 Ga), and as numerous entrained bodies and fragments of variable scales in the Liangcheng granitoids (ca. 1.93–1.89 Ga). These gabbronoritic dykes are present at all locations where ca. 1.93–1.92 Ga ultra-high-temperature metamorphism is recorded in the khondalite. A gabbronorite sample from the Hongmiaozi dyke gives zircon 207Pb/206Pb mean ages of 1954 ± 6 Ma (core domains) and 1925 ± 8 Ma (rim domains). These ages, as well as previously reported ages, constrain the age of mafic magmatism to be at ca. 1.96–1.92 Ga (∼1.93 Ga). One sample from the Xigou gabbro intruded by the Liangcheng granitoids gives a zircon 207Pb/206Pb mean age of 1857 ± 4 Ma, which is interpreted as the age of a metamorphic overprint. The Xuwujia gabbronorites comprise mainly gabbronorite compositions, as well as some norite, olivine gabbronorite, monzonorite, quartz gabbronorite, and quartz monzonorite. Chemically, they are tholeiitic and can be divided into two groups: a high-Mg group (6.2–22.9 wt.% MgO) and a relatively low-Mg group (2.2–5.7 wt.% MgO). The high-Mg group shows negative Eu-anomalies (Eu/Eu* = 0.53–0.72), slight light rare earth element enrichment (La/YbN = 0.56–1.53), and small negative anomalies in high field-strength elements. The ?Nd (t = 1.93 Ga) values vary from +0.3 to +2.4. The low-Mg group shows varied Eu-anomalies (Eu/Eu* = 0.48–1.05), and is enriched in light rare earth elements (La/YbN = 1.51–11.98). The majority shows negative anomalies in high field-strength elements (e.g., Th, Nb, Zr, and Ti). Initial ?Nd (at 1.93 Ga) values for low-Mg gabbronorites vary from −5.0 to 0. The Xuwujia gabbronorites possibly experienced assimilation of crust, and fractional crystallization of initially olivine and hypersthene (the high-Mg group), and then olivine, clinopyroxene, and plagioclase (the low-Mg group). The slightly younger Liangcheng granitoids consist of garnet-bearing granite, granodiorite and quartz-rich granitic compositions. They are intermediate to felsic calc-alkaline rocks, thought to be derived from surrounding metasedimentary crust. Xigou gabbro could represent early cumulates. The granitoids have relatively high-Mg numbers (up to 54), and show some chemical affinities with the gabbronorites, which could have resulted from incorporation of gabbronoritic melts. The occurrence and chemical variations of the Xuwujia gabbronorites and Liangcheng granitoids can be interpreted to have resulted from crust–mantle interaction, with mingling and partial mixing of mantle (gabbronoritic) and crustal (granitic) melts. The Xuwujia gabbronorites originated from a mantle region with high potential temperatures (∼1550 °C), possibly associated with a plume or more likely a ridge-subduction-related mantle upwelling event. They could have had extremely high primary intrusion temperatures (up to 1400 °C). Emplacement of these magmas was likely responsible for the extensive crustal anatexis (Liangcheng granitoids) and the local ultra-high-temperature metamorphism. These sequences may have followed ca. 1.95 Ga continent–continent (arc?) juxtaposition and were themselves followed by significant regional uplift and exhumation in the northern margin of the North China craton.  相似文献   

7.
The Palaeoproterozoic Luoling granites occur along the southern margin of the North China Craton. They are rich in silica and total alkalis with SiO2 contents ranging from 65.18 to 72.72 wt.%, K2O from 4.68 to 6.62 wt.%, and Na2O from 1.35 to 4.88 wt.%. They have high Fe*[FeOt/(FeOt + MgO)] ranging from 0.84 to 0.95 wt.% and low MnO (0.03–0.09 wt.%), MgO (0.27–1.55 wt.%), CaO (0.36–2.04 wt.%), TiO2 (0.4–1.12 wt.%), and P2O5 (0.04–0.36 wt.%). Geochemically, they show typical characteristics of A-type granites, such as high contents of alkalis (i.e. high K2O + Na2O, with K2O/Na2O > 1), Rb, Y, Nb, and REEs (except for Eu); high FeOt/MgO and Ga/Al ratios; and low CaO, Al2O3, and Sr contents. New secondary ion mass spectroscopy (SIMS) zircon U–Pb ages reveal that the Luoling granites were emplaced at 1786 ± 7 Ma and thus were approximately coeval with Xiong'er volcanic rocks in the area. Their negative bulk-rock initial Nd and zircon initial Hf isotopic ratios suggest that they have affinities to EM-I-type mantle and both are the products of Xiong'er magmatism during the Palaeoproterozoic. We regard them as produced under a continental rift setting during the Palaeoproterozoic, genetically related to the break-up of the Columbia supercontinent.  相似文献   

8.
The late Paleoproterozoic Dagushi Formation comprises a fluvial-lacustrine succession and represents the initial fill of the Xiong’er Basin in the southern North China Craton. Employing integrated outcrop surveys and detrital zircon U-Pb-Hf dating, this study examines the provenance and depositional setting of the Dagushi Formation. Five major depositional facies, including braided channel, distributary channel, subaqueous stream/mouth bar, pro-delta and shallow lake, were identified, based on lithofacies and associations. They were interpreted as representing a braided river delta-lacustrine system. The ages of the last metamorphic event of the basement, covering volcanics and the youngest zircon together constrain a depositional age of ca. 1.79 Ga for the Dagushi Formation. Zircon age distributions reveal a provenance change from ca. 2.7–2.5 Ga rocks in the lower part, to ca. 2.3–1.9 Ga sources in the middle-upper part of the Dagushi Formation. Considering the vertical sedimentology, this provenance change could be induced by the rising water-level caused by a tectonic subsidence. The ca. 2.7–2.5 Ga zircons are suggested to be locally sourced from the late Neoarchean–Paleoproterozoic metamorphic basement. The northeast Zhongtiao Mts area (current co-ordinates) is supposed to have appeared as a paleo-uplift and served as a source area for the Paleoproterozoic grains. The Dagushi Formation records an early ‘underfilled’ stage of the Xiong’er Rift.  相似文献   

9.
Geological mapping and zircon U–Pb laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) dating has identified a Mesoarchean (2857 ± 17 Ma) geological unit in the Luanjiajie area of the northern margin of the North China Craton, within the northern part of Liaoning Province, China. This unit is dominated by tonalitic and trondhjemite gneisses that form part of a typical tonalite–trondhjemite–granodiorite (TTG) rock assemblage. These Mesoarchean gneisses are enriched in Na and depleted in K, yield K2O/Na2O ratios of 0.34–0.50, have Rittmann index (σ) values of 1.54–3.04, and are calc-alkaline. They have EuN/EuN* values of 0.77–1.20 (average of 1.03), indicating that these samples have negligible Eu anomalies, and yield high LaN/YbN values (4.92–23.12). These characteristics indicate that these Mesoarchean gneisses have fractionated rare earth element (REE) compositions that are enriched in the light REE (LREE) and depleted in the heavy REE (HREE), with steeply dipping chondrite-normalized REE patterns. These gneisses are also enriched in Rb, Th, K, Zr, and Hf, and are relatively depleted in Ta, Nb, P, and Ti. In summary, the magma that formed these tonalitic and trondhjemite gneisses was most likely derived from the partial melting of lower-crustal basaltic rocks during subduction. The timing of formation (2.85 Ga) of the Luanjiajie tonalite and trondhjemite gneisses probably represents the timing of initiation of plate tectonics within the LongGang Block during a SE-directed subduction event. The presence of inherited zircons with ages of >3.0 Ga within the Luanjiajie gneisses suggests that this area may contain as yet undiscovered rocks that formed before 3.0 Ga.  相似文献   

10.
The Miocene Kahramanmara? Peripheral Foreland Basin (KPFB) resemble to classic foreland basin model, with small differences. In the classic model, both the accretionary wedge and foredeep extend lengthways parallel to the plate margin. In addition, accretionary wedge includes wedge top basin or piggy back basin that extends parallel to foredeep. However, the accretionary wedge of the KPFB contains small half-graben type basins that obliquely intersect the plate margin between the Arabian Plate and the Anatolide–Taurides Platform (due to the irregular shape of the plate boundary). Tectonic lineaments controlled the shape and orientation of these basins and larger main depocentre of the KFPB, which were predominantly filled with deep-sea sediments. This paper focuses on the provenance of features of the KFPB, predominantly was fed from the northern basin margin, while also aiming to resolve the complex basin evolution that occurred during the Miocene.Clasts of Palaeozoic and Mesozoic limestone and ophiolites are common components of the confined deep-water clastic systems, which evolved as elongated trenches in the north-western sector of the KPFB during the Early-Middle Miocene. During the Middle Miocene, continuous thrusting of the northern basin margin to south caused depocentre migration to south-east, through the basin interior. At that time, the north-east and central depocentres of the KPFB were filled primarily by clasts of ophiolite and metamorphic units. The tectonic control on basin fill architecture can be observed anywhere in the KFPB. The principal tectonic features controlled the geometry and orientation of the canyon, the channel geometry of the deep-water slope on the northern basin margin, the frequency and distribution of slump-slide-debris flows and the overall pattern of sedimentation cycles in the stratigraphy of the slope and the central basin floor. Some basin sectors have continuously reactivated and as a result, different sediment entry points with substantial local accumulation of sediment and deformation have evolved on the slope and basin floor. Three scales of provenance were used to investigate the source rock: (a) field-based observation and analysis of conglomerate clasts, (b) modal analysis of sandstone facies and (c) geochemical analysis, all of which were in agreement.  相似文献   

11.
The Coompana Block is an essentially unknown basement province that separates the Gawler Craton of South Australia from the Yilgarn Craton of Western Australia. Previously unstudied granitic gneiss intersected by deep drilling in the Coompana Block represents an important period of within-plate magmatism during a time of relative magmatic quiescence in the Australian Proterozoic. Granitic gneiss intersected at ~1500 m depth in Mallabie 1 diamond drillhole is metaluminous and dominantly granodioritic in composition. The granodiorites have distinctive A-type chemistry characterised by high contents of Zr, Nb, Y, Ga, LREE with low Mg#, Sr, CaO and HREE. U – Pb LA-ICPMS dating of magmatic zircons provides an age of 1505 ± 7 Ma, interpreted as the crystallisation age of the granite protolith. ? Nd values are high with respect to exposed crust of the Musgrave Province and Gawler Craton, and range from +1.2 to +3.3 at 1.5 Ga. The granitic gneiss is interpreted to be a fractionated melt of a mantle-derived parental melt. The tectonic environment into which the precursor granite was emplaced is not clear. One possibility is emplacement within an extensional environment. Regardless, the granitic gneiss intersected in Mallabie 1 represents magmatic activity during the ‘Australian Mesoproterozoic magmatic gap’ of ca 1.50 – 1.35 Ga, and is a possible source for ca 1.50 detrital zircons found in sedimentary rocks of Tasmania and Antarctica, and metasedimentary rocks of the eastern Musgrave Province.  相似文献   

12.
The ~1.74 Ga Damiao anorthosite complex, North China, is composed of anorthosite and leuconorite with subordinate melanorite, mangerite, oxide-apatite gabbronorite, perthite noritic (i.e., jotunitic) and ferrodioritic dykes. The complex hosts abundant vein-, pod- and lens-like Fe–Ti–P ores containing variable amounts of apatite (10–60 modal%) and Fe–Ti oxides. In addition to Fe–Ti–P ores, there are also abundant Fe–Ti ores which are closely associated with Fe–Ti–P ores in the deposit. Most of Fe–Ti–P ores are dominated by Fe–Ti oxides and apatite, devoid of silicate minerals, mineralogically similar to the common nelsonites elsewhere. In contrast, Fe–Ti ores are dominated by Fe–Ti oxides with minor apatite (<5 modal %). The parental magma of these ores, estimated from olivine and apatite compositions using mineral-melt partition coefficients, has composition similar to the ferrodioritic dykes. Fe–Ti–P ores have variable Fe–Ti oxides and apatite proportions, indicating that they are cumulates. Their simple assemblage of Fe–Ti oxides and apatite and local net-texture suggest that the Fe–Ti–P ores in Damiao have formed from nelsonitic melts immiscibly separated from the ferrodioritic magma during late-stage differentiation. Fe–Ti ores are also cumulates and have mineral compositions similar to Fe–Ti–P ores. The close association between Fe–Ti and Fe–Ti–P ores indicates that the Fe–Ti ores may have also formed from the nelsonitic melts. We proposed that differentiation of nelsonitic melts accompanied by gravity settling is responsible for the formation of Fe–Ti and Fe–Ti–P ores. Such a differentiation process in nelsonitic melts is well supported by variations of Sr, Y, Th, U, REE and Eu/Eu* of apatite in Fe–Ti–P ores. Using oxides/apatite ratio of 2:1 and compositions of apatite and calculated primary oxides, we estimate the composition of the nelsonitic melt as ~52.0 wt% Fe2O3t, ~18.5 wt% CaO, ~14.2 wt% P2O5, ~8.7 wt% TiO2, ~4.0 wt% Al2O3 and ~1.1 wt% MgO with minor SiO2, K2O, Na2O and F. Such a nelsonitic melt is suggested to be possibly conjugated with Si-rich melts compositionally similar to the Damiao jotunitic dykes (~50 wt% SiO2 and ~15 wt% Fe2O3t) which may subsequently evolve to mangeritic rocks in Damiao. Our modeling also indicates that the onset of immiscibility occurs at a time when the evolved melt has ~44 wt% SiO2, ~21 wt% Fe2O3t, ~3.0 wt% TiO2 and ~2.6 wt% P2O5. High oxygen fugacity and phosphorous content in magmas may play important roles in the immiscibility of nelsonitic magmas, including promoting iron enrichments and widening the two-liquid field.  相似文献   

13.
Doklady Earth Sciences - A detailed structural study showed that the Mesoproterozoic Karadjilga granite–gneiss massif of the Kyrgyz North Tianshan represents a sheet intrusion, concordant to...  相似文献   

14.
The Ordovician Ponón Trehué Formation is the only early Palaeozoic sedimentary sequence known to record a primary contact with the Grenvillian-age basement of the Argentinean Cuyania terrane, in its southwards extension named the San Rafael block. Petrographic and geochemical data indicate contributions from a dominantly upper continental crustal component and a subordinated depleted component. Nd isotopes indicate εNd of ? 4.6, ?Sm/Nd ? 0.36 and TDM 1.47 Ga in average. Pb-isotope ratios display average values for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb of 19.15, 15.69 and 38.94 respectively. U–Pb detrital zircon ages from the Ponón Trehué Formation cluster around values of 1.2 Ga, indicating a main derivation from a local basement source (Cerro La Ventana Formation). The Upper Ordovician Pavón Formation records a younger episode of clastic sedimentation within the San Rafael block, and it shows a more complex detrital zircon age population (peaks at 1.1 and 1.4 Ga as well as Palaeoproterozoic and Neoproterozoic detrital grains). Detailed comparison between the two Ordovician clastic units indicates a shift with time in provenance from localized basement to more regional sources. Middle to early Upper Ordovician age is inferred for accretion of the Cuyania terrane to the proto-Andean margin of Gondwana.  相似文献   

15.
16.
To constrain the evolution of the eastern segment of the Paleo-Asian Ocean (PAO), petrography, geochemistry and zircon U-Pb dating analyses were conducted over the gabbro and rhyolite in the Kaiyuan area, North Liaoning, in the eastern segment of the northern margin of the North China Craton (NCC). Zircon dating results indicate that the gabbros and rhyolite were formed in the Trassic (246 +/- 2Ma, 241 +/- 2Ma, 226 +/- 3Ma and 241 +/- 2Ma). The three gabbros of Triassic have similar geochemical characteristics, originated from the mantle, and were contaminated by crust materials in the process of ascending and emplacement. The Early Triassic gabbro (246Ma) originated from the enriched mantle source metasomatized by fluid. It was formed by 1% partial melting of garnet spinel lherzolite in the extensional environment caused by breaking off slab. The Middle Triassic gabbro (241Ma) was derived from a transitional mantle metasomatized by fluid and melt, and was formed by 1% to 2% partial melting of garnet spinel peridotite. The Late Triassic gabbro (226Ma) was derived from a transitional mantle metasomatized by fluid and melt, and was formed by 3% similar to 4% partial melting of garnet spinel lherzolite in the post-orogenic extensional environment. The Middle Triassic rhyolite (241Ma) has the characteristic of post collisional I-type granite, that enriched in light rare earth elements and large ion lithophile elements, depleted in high field strength elements, and negative Nb, Ti, P and Sr anomaly. The low content of Sr and Yb suggested a 30 similar to 40km depth source. The Middle Trassic "bimodal" igneous rocks implied an extensional environment caused by the remainder oceanic crust breaked away at the bottom of the crust. Based on the lithologic association, regional strata information and the chronological data in this paper and published by predecessors, the Triassic magmatism in the eastern segment of the northern margin of the NCC can be divided into five stages: 252 similar to 246Ma, 246 similar to 242Ma, 242 similar to 240Ma, 240 similar to 230Ma and 230 similar to 215Ma. These five magmatic events were the results of the southward subduction and extinction of the PAO: (1) The transformation from active continental margin to syn-collisional setting resulted in the final closure of the PAO (252 similar to 246 Ma); (2) Continuous pushing resulted in orogenic uplift (246 similar to 242Ma); (3) Extension caused by the detachment of the remainder subduction oceanic crust at the bottom of the crust (242 similar to 240Ma); (4) Rapid uplift and crustal thickening (240 similar to 230Ma); (5) Extension of post-orogenic(230 similar to 215Ma).  相似文献   

17.
The Mesoproterozoic (~1.23 Ga) Sudbury dyke swarm was emplaced at equatorial latitudes and cross-cuts the Grenville, Southern and Superior Provinces of the Canadian Shield. The dyke swarm has been linked to the break-up of the Mesoproterozoic supercontinent Columbia (1.8 to 1.3 Ga). The Sudbury dykes are alkaline olivine diabases that extend ~300 km to the W and NW from the Grenville Front. Major element trends and MELTS modeling indicate fractional crystallization of olivine and plagioclase. Detailed mineral chemical analyses across a 90-m-wide dyke shows a symmetric M-shaped pattern indicating vertical flow differentiation. The highest measured Fo value of olivine from the chilled margin of one dyke is 70, suggesting the parental magmas of the dykes were evolved. Unlike other dykes of the Canadian Shield, the Sudbury dykes do not show significant chemical variation across the length of the swarm. The Sudbury dykes have high Sr/Y (>10), La/YbN (>5) and Sm/YbPM (>2.4) values indicating they originated from a garnet-bearing source. The low Th/Nb (<1.5) values contrast with the low Nb/La (<0.6) and La/Ba (~0.4) values, suggesting a possible lithospheric mantle or subduction-modified mantle source. In the context of Grenvillian tectonics, the Sudbury dykes intruded the Laurentian craton and parautochthonous rocks. The dykes occupy pre-existing west to northwest trending faults, suggesting that they exploited regional structural heterogeneities during the closure of the Elzevir basin (i.e., 1,250 to 1,190 Ma). The alkaline composition, limited spatial-chemical variation, volume, geometry and regional geological context suggest that the dykes are not likely related to a mantle plume or the break-up of a supercontinent.  相似文献   

18.
《China Geology》2019,2(2):157-168
The Wujiatai Formation, which is well exposed in Huangjiatai-Xichahe region of the northern Kongling area of central Yangtze Craton, is a suite of epimetamorphic conglomerates to pebbly sandstones to fine sandstone-dolostones deposited in littoral-carbonate platform facies. The formation has angular unconformity contacts with both the overlying Neoproterozoic Nantuo Formation and the underlying Paleoproterozoic Huanglianghe Formation complex. Detrital zircons from metafine sandstones of the lower Wujiatai Formation have ages ranging from 3377–1828 Ma, with the youngest zircons dating to about 1828 Ma. In addition, whole-rock Pb-Pb isochron ages from dolostones in the upper Wujiatai Formation yield an age of 1718±230 Ma. These dates constrain the depositional age of the Wujiatai Formation between 1800 Ma and 1600 Ma. These are the earliest Mesoproterozoic sedimentary records reported in the Kongling region, and fill the gaps in Early Mesoproterozoic stratigraphy in Yangtze Craton. Histograms of detrital zircon ages for the Wujiatai Formation reveal four major peaks at 2039 Ma, 2691 Ma, 2966 Ma and 3377 Ma, which is consistent with the ages of the basement rocks that underlie the center of Yangtze Craton, indicating that sediment provenance is mainly from the Kongling complex. The lower Wujiatai Formation mainly consists of clastic rocks, whereas the upper Wujiatai Formation consists of dolostones. This stratigraphic change implies a deepening sequence in an expanding basin with an initial cratonic rifting tectonic setting, corresponding to the initial breakup of the Columbia supercontinent in Yangtze Craton.© 2019 China Geology Editorial Office.  相似文献   

19.
INTRODUCTION Located at the famous Jixian Section in Tianjinin the North China , the MesoproterozoicGaoyuzhuang Formationis a set of 1 600 mthick car-bonates that formed over about 200 Ma in the Clym-Figure 1 .Section location of the Mesoprotero-zoic Gaoyuzhuang Formation at the Jixian Sec-tion in Tianjin.mian (1 600 Ma to 1 400 Ma ;Zhu et al .,1994 ; Du,1992 ;Fig.1) . The Gaoyuzhuang Formation at theJixian Section can be divided into four members thatare characterized by differ…  相似文献   

20.
This paper reports results from detrital zircon U–Pb geochronology, Hf isotopic geochemistry, sandstone modal analysis, and palaeocurrent analysis of the early Mesozoic strata within the Ningwu basin, China, with the aims of constraining the depositional ages and sedimentary provenances and shedding new light on the Mesozoic tectonic evolution of the northcentral North China Craton (NCC). The zircons from early Mesozoic sandstones are characterized by three major populations: Phanerozoic (late Palaeozoic and early Mesozoic), late Palaeoproterozoic (with a peak at approximately 1.8 Ga), and Neoarchaean (with a peak at approximately 2.5 Ga). Notably, three Phanerozoic zircons in the Early Triassic Liujiagou Formation were found to have positive εHf(t) values and characteristics typical of zircons from the Central Asian Orogenic Belt (CAOB). Therefore, the CAOB began to represent the provenance of sediment in the sedimentary basins in the northern NCC no later than the Early Triassic (261 Ma), implying that the final amalgamation of the NCC and CAOB occurred before the Early Triassic. The U–Pb geochronologic and Hf isotopic results show that the Lower Middle Triassic sediments were mainly sourced from the Yinshan–Yanshan Orogenic Belt (YYOB), and that a sudden change in provenances occurred, shifting from a mixed YYOB and CAOB source in the Middle Jurassic to a primarily YYOB source in the Late Jurassic. The results of the sandstone modal analysis suggest that the majority of the samples from the Lower Middle Jurassic rocks were derived from either Continental Block or Recycled Orogen sources, whereas all the samples from the Upper Jurassic rocks were derived from Mixed sources. The change in source might be ascribed to the southward subduction and closure of the Okhotsk Ocean and the resulting intense uplift of the YYOB during the Late Jurassic. This uplift likely represents the start of the Yanshan Orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号