首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The present contribution deals with the taxonomy of 11 species of perisphinctoid ammonite recovered recently from the Štramberk Limestone as exposed at the Kotouč Quarry (Štramberk, Moravia). The majority of these are described from this unit for the first time. In the stratigraphic evaluation, finds of ammonites from other localities within the quarry, which were published by us in 2013 and 2014, are included. Ammonites recorded from beyond the continuous section document a stratigraphic range from upper lower Tithonian to lower Berriasian inclusive. In addition to taxonomy and new ontogenetic data of some species, we also present information on the distribution of species recognised and on their palaeogeographic distribution, as well as data on the structural composition of the Homole Block at Kotouč Quarry.  相似文献   

2.
Numerous mineral veins are hosted in a body of teschenite which is situated within the Lower Cretaceous flysch siliciclastics of the Silesian Unit at Tichá. Mineralogy, fluid inclusions, stable isotopes and trace elements have been studied in order to assess the origin of this mineralization. Three stages of vein cementation have been recognized, each of them being characterized by distinct mineral composition and genetic conditions. The first stage is composed of titanite, aegirine-augite to aegirine, annite, analcime and strontian apatite. These minerals originated from NaCl-rich, CaCl2-poor magmatic brine (total fluid salinities range between 47 and 57 wt%), leaving after crystallization of host teschenite in low-pressure (<1 kbar) environment. Crystallization temperatures reached ~390–510 °C for early phases, titanite and aegirine-augite. The second stage is formed by calcite, chlorite, dolomite, siderite, strontianite, quartz, pyrite and sphalerite. The parent fluids were low-salinity (0.5–4.5 wt% NaCl eq.) aqueous solutions with low content of strong REE-complexing ligands, that were progressively cooled during mineral precipitation (up to ~190 °C at the beginning, ~90 °C at the end of crystallization). These fluids are interpreted to be predominantly of external origin, derived from surrounding sedimentary sequences during diagenetic dewatering of clay minerals. The highly positive δ18O and near-zero δ13C values indicate an interaction of fluids with sedimentary carbonates. The third stage is formed by a dense net of calcite veinlets, which probably originated during tectonic deformations connected with orogenetic movements during the Tertiary. The source of strontium for first stage mineralization was probably related to the special conditions of magmatic evolution of the host teschenite, whereas strontium for second stage minerals could have been remobilized during hydrothermal alteration from earlier teschenite-hosted mineral phases and/or limestone.  相似文献   

3.
This paper deals with the regional and structural framework of the Cretaceous rocks in the Afikpo Basin located in the southeastern part of the Lower Benue Trough. Results from regional tectonics are presented together with those of the microtectonic analysis of microfaults in the Owutu-Afikpo-Adadama area in the basin. The Owutu-Afikpo-Adadama ridge at the north-central part of the basin marks the boundary between the Late Cenomanian-Turonian-Conianian sediments and the Campanian-Maastrichtian sandstones. This ridge trends N45°E on average and is faulted in three main directions, namely: (1) N-S normal faults; (2) NE-SW strike-slip faults; and (3) NW-SE strike-slip faults. The faulted rocks along these brittle discontinuities are mainly cataclastics with internal fracture cleavage and sigmoidal quartz mosaics that are reminiscent of extensional deformation. The cataclasites often bear slickenside striations.  相似文献   

4.
Two types of compositionally heterogeneous slags have been found in the wall masonry of the Gothic Castle ruin Obřany. The bright phase is composed of quartz, tridymite, cristobalite, and porous glass, while the dark one also contains feldspars, hercynite, magnetite, clinopyroxenes, and a suite of accessory phases. The bright slags have a similar chemical composition as the mortar from the castle masonry or local sandstones, based on rare earth elements (REE) and other trace element abundances. In contrast, the dark slags are characterized by elevated contents of Al2O3 (15.4–18.6 wt.%) and Fe2O3tot (4.1–10.0 wt.%), and consequently resemble the local clay. The investigated slags are not related to iron metallurgy in terms of their composition and texture. They probably originated in a medieval lime kiln through heat sintering of the inner lining during the burning process under relatively high temperatures (1080–1500°C). Simultaneously, the finding of relics of clinker‐like material together with products of its hydration in the hydraulic mortar from the wall masonry infers the production of hydraulic lime or Roman cement during the construction of the castle in the 14th century. The Obřany Castle appears to represent one of the first applications of hydraulic binders in Moravia.  相似文献   

5.
The Middle–Lower Yangtze River Valley is one of the most important metallogenic belts in China, hosting numerous Cu–Fe–Au–Mo deposits. The Taochong deposit is located in the northern part of the Fanchang iron ore district of the Middle–Lower Yangtze River metallogenic belt. The Fe-orebody is hosted by Middle Carboniferous to Lower Permian limestones. Skarns and Fe-orebodies occur as tabular bodies along interlayer-gliding faults, at some distance from the inferred granitic intrusions. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity—the skarn, iron oxide (main mineralization stage), and carbonate stages—all contributed to the formation of the Taochong iron deposit. The skarn stage is characterized by the formation of garnet and pyroxene, with high-temperature, hypersaline hydrothermal fluids with isotopic compositions similar to those of typical magmatic fluids. These fluids were probably generated by the separation of brine from a silicate melt instead of the product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by actinolite, chlorite, quartz, calcite and hematite. The hydrothermal fluids at this stage are represented by saline fluid inclusions that coexist with vapor-rich inclusions with anomalously low δD values (− 66‰ to − 94‰). The decrease in ore fluid δ18Owater with time and decreasing depth is consistent with the decreases in fluid salinity and temperature. The fluid δD values also show a decreasing trend with decreasing depth. Both fluid inclusion and stable isotopic data suggest that the ore fluid during the main period of mineralization was evolved by the boiling of various mixtures of magmatic brine and meteoric water. This process was probably induced by a drop in pressure from lithostatic to hydrostatic. The carbonate stage is represented by calcite veins that cut across the skarn and orebody, locally producing a dense stockwork. This observation indicates the veins formed during the waning stages of hydrothermal activity. The fluids from this stage are mainly represented by a variety of low-salinity fluid inclusions, as well as fewer high-salinity inclusions. These particular fluids have the lowest δ18Owater values (− 2.2‰ to 0.4‰) and a wide of range of δD values (− 40‰ to − 81‰), which indicate that they were originated from a mixture of residual fluids from the oxide stage, various amounts of meteoric water, and possibly condensed vapor. Low-temperature boiling probably occurred during this stage.We also discuss the reasons behind the anomalously low δD values in fluid inclusion water extracted by thermal decrepitation from quartz at high temperatures, and suggest that calcite data provide a possible benchmark for adjusting low δD values found in quartz intergrown with calcite.  相似文献   

6.
A deformed ca. 570 Ma syenite–carbonatite body is reported from a Grenville-age (1.0–1.2 Ga) terrane in the Sierra de Maz, one of the Western Sierras Pampeanas of Argentina. This is the first recognition of such a rock assemblage in the basement of the Central Andes. The two main lithologies are coarse-grained syenite (often nepheline-bearing) and enclave-rich fine-grained foliated biotite–calcite carbonatite. Samples of carbonatite and syenite yield an imprecise whole rock Rb–Sr isochron age of 582 ± 60 Ma (MSWD = 1.8; Sri = 0.7029); SHRIMP U–Pb spot analysis of syenite zircons shows a total range of 206Pb–238U ages between 433 and 612 Ma, with a prominent peak at 560–580 Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525 ± 7 Ma (Pampean orogeny) and at ca. 430–440 Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neo-proterozoic lower continental crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号