首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I report the discovery of a low frequency temperature oscillation in the eastern North Atlantic (NA), which was significantly correlated with the Southern Oscillation Index (SOI) in the tropical Pacific, but led the latter index by a number of months. This discovery is significant, because it demonstrates a link between the tropical Pacific and the high northerly latitudes which cannot readily be explained in terms of El Niño/Southern Oscillation (ENSO) feedbacks from the tropics, and opens up the possibility that ENSO and temperature anomalies in northerly climes, may actually have a common origin within, or even external to, the global climate system.  相似文献   

2.
In the tropical Pacific region, El Ni?o/Southern Os- (COADS SST from 1945 to 1993) in the eastern cillation (ENSO) and the Quasi-Biennial Oscillation in (150°W-90°W, 5°S-5°N) and the observed SST far west equatorial Pacific (QBOWP) are two most and zonal wind in the far western equatorial Pacific prominent interannual variation phenomena. The for- (120°-140°E, 0°-10°N) (Fig.1), in the eastern Pa- mer is characterized by coupled SST-wind variability cific the period of S…  相似文献   

3.
《水文科学杂志》2013,58(6):1006-1020
Abstract

This paper aims to compare the shift in frequency distribution and skill of seasonal climate forecasting of both streamflow and rainfall in eastern Australia based on the Southern Oscillation Index (SOI) Phase system. Recent advances in seasonal forecasting of climate variables have highlighted opportunities for improving decision making in natural resources management. Forecasting of rainfall probabilities for different regions in Australia is available, but the use of similar forecasts for water resource supply has not been developed. The use of streamflow forecasts may provide better information for decision-making in irrigation supply and flow management for improved ecological outcomes. To examine the relative efficacy of seasonal forecasting of streamflow and rainfall, the shift in probability distributions and the forecast skill were evaluated using the Wilcoxon rank-sum test and the linear error in probability space (LEPS) skill score, respectively, at three river gauging stations in the Border Rivers Catchment of the Murray-Darling Basin in eastern Australia. A comparison of rainfall and streamflow distributions confirms higher statistical significance in the shift of streamflow distribution than that in rainfall distribution. Moreover, streamflow distribution showed greater skill of forecasting with 0–3 month lead time, compared to rainfall distribution.  相似文献   

4.
El Niño Southern Oscillation (ENSO) is an internal forcing of the climate system. This event has an actual frequency of 2 to 8 years. Evidence from a paleoclimate proxy database of gray scale (GS), in samples from Pallcacocha lake in Ecuador, indicates that the ENSO had a frequency of 35 to 75 years during the Late Pleistocene. In this work we explored the possible relationship between the ENSO proxies (GS) from Pallcacocha and magnetic parameters from sediments sampled at the Mucubají lake in Mérida, Venezuela (i.e. mass-specific magnetic susceptibility, magnetic remanence S ratio and susceptibilitynormalized saturation isothermal remanent magnetization). After applying a Lanczos bandpass filter to the rock magnetic and the GS data, in order to remove, as much as possible, frequencies associated to any periodic event other than ENSO, we found significant correlations between GS and magnetic parameters for the period between 12450 and 10560 cal. yrs BP. These relationships were obtained using an Adaptive Neuro Fuzzy Inference System (ANFIS), a hybrid algorithm that combines fuzzy logic with neural networks. The results show that the magnetic parameters obtained in Mucubají are able to explain 50.5% of the total variance of the ENSO proxy in a range of 35 to 75 years in Pallcacocha, which is roughly the same percentage of the total variance of the temperature in the Venezuelan Andes, explained by the ENSO at present times. In this way we have inferred a possible influence of the ENSO in the Venezuelan Andes during the Late Pleistocene.  相似文献   

5.
ABSTRACT

Since the performance of hydrological models relies on numerous factors, the selection of an appropriate modeling approach for hydrological study has always been a crucial issue. The major objective of this research is to demonstrate that data-driven models such as the Adaptive Neuro-Fuzzy Inference system (ANFIS) are more suitable in a region where spatially distributed precipitation datasets are not available. Since precipitation has a teleconnection with the El Niño Southern Oscillation (ENSO) in different parts of the world, the sea surface temperatures (SSTs) and sea level pressures (SLPs) of the equatorial Pacific can be expected to act as surrogates for the precipitation if there are insufficient raingauge stations in the watershed. Moreover, in contrast to conceptual and physically-based models, data driven models can incorporate SST and SLP in their input vectors, and hence additional forcing of SST with precipitation has been experimented with in past studies. Therefore, our second objective is to test whether the additional forcing of SST and SLP will improve the hydrologic simulation. For this, various ANFIS models for the winter season were developed considering 10 raingauge stations situated at various locations in the watershed. Rainfall from each raingauge station was considered in the ANFIS model one at a time with and without SST/SLP. The results show that the performance of the ANFIS model improved with the additional fusion of SST and SLP, especially when a raingauge station from a remote location was considered. However, this improvement was observed when the analysis was primarily focused on the winter season which is a period with a strong ENSO signal.
Editor D. Koutsoyiannis Associate editor L. See  相似文献   

6.
Abstract

The response of monthly 7-day low flow, monthly instantaneous peak flow, and monthly frequency of flood events to El Niño and La Niña episodes is investigated for 18 rivers that represent a diverse range of climatic types throughout New Zealand. A significant positive or negative deviation from the long-term average was observed in over half the possible combinations of river, streamflow index, and type of ENSO episode; significant deviations were most frequent in the case of low flow, especially during La Niña episodes. Patterns of streamflow response differ widely between rivers, and the response of a given river to individual ENSO episodes is very variable. The patterns of streamflow response to ENSO are consistent to some extent with the climatic effects of ENSO already identified by meteorologists. Two core regions can be defined in which streamflow tends to respond in the same way. These are in the northeast of the North Island, and in the axial ranges of the South Island, where there are significant effects of ENSO on the frequency and duration of rain-bearing northeasterly and westerly winds respectively. The patterns of response strongly reflect topography, and the exposure of catchments to predominant air masses.  相似文献   

7.
A new ocean reanalysis, covering the period from 1990 to 2009, is evaluated against observational sea surface temperature (SST) and sea surface height (SSH) data in reproducing the temporal characteristics of El Ni?o and El Ni?o Modoki. The new reanalysis assimilates the available SST, temperature–salinity profile, and satellite altimetry data sets into a global ocean model forced with surface boundary conditions from the National Centers for Environmental Prediction atmospheric reanalysis 2. Using the Ni?o 3 index and the improved El Ni?o Modoki index, to distinguish between El Ni?o and El Ni?o Modoki signals, our results show that the two time series in the new reanalysis are in agreement with those obtained from observations during the study period. A composite analysis method is used to demonstrate the temporal evolution of these two types of El Ni?o. The new reanalysis has the advantage of representing the strength and location of El Ni?o events better than the control run, with an increase in the spatial correlation, but El Ni?o variability in the reanalysis is weak in the eastern Pacific, particularly off the coast of South America. As for the El Ni?o Modoki events, the initiation, development, and termination of the warm SST anomalies all occur in the central Pacific. All main features associated with the warm SST anomaly pattern of El Ni?o Modoki are well represented in the reanalysis. Furthermore, using this new ocean reanalysis, we select two strong cases to investigate possible mechanisms that may lead to the different warm SST anomaly patterns.  相似文献   

8.
We analyzed the relationship between the earth’s rotational variation and sea-surface temperature anomaly. By means of using Fast Fourier Transform (FFT) bandpass filter on the change of length-of-day (ΔLOD) data, the interannual variation series having time periods greater than 1.5-year and less than 8-year was obtained. Time series analyses of the interannual variation, which corresponds to the El Niño period, reveal a close linkage between the earth’s rotation and El Niño. A detailed comparison suggests, that six of seven El Niño events are nearly synchronous with the interannual variation of the earth’s rotation, and all ΔLOD peak are in El Niño years except 1991–92, which means the interannual variation of the earth’s rotation in these years is relatively slow. The correlation between ΔLOD and sea-surface temperature is about 0.517 (1 month-lag), which far exceeds the 99% significance level.  相似文献   

9.
The influence of the El Niño Southern Oscillation (ENSO) phenomenon on monthly mean river flows of 12 rivers in the extreme south of South America in the 20th century is analysed. The original dataset of each river is divided into two subsets, i.e. warm ENSO events or El Niño, and cold ENSO events or La Niña. The elements of the subsets are composites of 24 consecutive months, from January of the year when the ENSO event begins to December of the following year. The ENSO signal is analysed by comparing the monthly mean value of each subset to the long-term monthly mean. The results reveal that, in general, monthly mean El Niño (La Niña) river flows are predominantly larger (smaller) than the long-term monthly mean in the rivers studied. The anomalies are more evident during the second half of the year in which the event starts and the first months of the following year.  相似文献   

10.
The purpose of this paper is twofold. First, we demonstrate that the asymmetry between El Niño and La Niña events recorded in sea level variation occurs only during extreme episodes of El Niño/Southern Oscillation. Second, we explain that the asymmetry is controlled by certain regular cycles which have time-variable amplitudes. Gridded maps of sea level anomaly that form a spatial-temporal time series (spatial resolution: 1° × 1°, sampling interval: 1 week) spanning the time interval from 14/10/1993 to 18/04/2012 were used. We examined those time series and found that certain regular harmonic signals (periods: 365, 182, 120, 90 and 62 days) are dominant terms of their temporal variability. By subtracting those oscillations from sea level anomaly data, residuals were determined. Using skewness and kurtosis as measures of asymmetry and nonlinearity — after adopting 10-year moving window — we found that the extreme El Niño 1997/1998 has been a dominant driving force of the asymmetry and nonlinearity of El Niño/Southern Oscillation since the end of 1993. In order to detect residual signals that are responsible for the asymmetry, we applied the Fourier Transform Band Pass Filter and found that there are two important oscillations remaining in the residual sea level anomaly data, i.e. the annual and semiannual ones with time-varying amplitudes. We hypothesize that temporarily uneven amplitudes have meaningful impact on the aforementioned asymmetry.  相似文献   

11.
Science China Earth Sciences - The effects of spring soil moisture over the vast region from the lower and middle reaches of the Yangtze River valley to North China (YRNC) and El Niño on the...  相似文献   

12.
13.
The 1997–1998 El Niño was the strongest in known history. However, its effects on rainfall in different parts of the globe were not all as expected (floods were expected in some regions and droughts in others). The characteristics of this El Niño, and the expected and observed precipitation effects are described; the reasons for the expectations not coming true in some regions are discussed. This paper attempts to review the important scientific issues involved in El Niño phenomena for the general reader.  相似文献   

14.
15.
A Lagrangian analysis was applied to the outputs of a coupled physical-biogeochemical model to describe the redistribution of nitrate-rich and nitrate-poor surface water masses in the tropical Pacific throughout the major 1997 El Niño. The same tool was used to analyze the causes of nitrate changes along trajectories and to investigate the consequences of the slow nitrate uptake in the high nutrient low chlorophyll (HNLC) region during the growth phase of the event. Three patterns were identified during the drift of water masses. The first mechanism is well known along the equator: oligotrophic waters from the western Pacific are advected eastward and retain their oligotrophic properties along their drift. The second concerns the persistent upwelling in the eastern basin. Water parcels have complex trajectories within this retention zone and remain mesotrophic. This study draws attention to the third process which is very specific to the HNLC region and to the El Niño period. During the 1997 El Niño, horizontal and vertical inputs of nitrate decreased so dramatically that nitrate uptake by phytoplankton became the only mechanism driving nitrate changes along pathways. The study shows that because of the slow nitrate uptake characteristic of the tropical Pacific HNLC system, nitrate in the pre-El Niño photic layer can support biological production for a period of several months. As a consequence, the slow nitrate uptake delays the gradual onset of oligotrophic conditions over nearly all the area usually occupied by upwelled waters. Owing to this process, mesotrophic conditions persist in the tropical Pacific during El Niño events.  相似文献   

16.
Simulation outputs were used to contrast the distinct evolution patterns between two types of El Niño. The modeled isotherm depth anomalies closely matched satellite sea surface height anomalies. Results for the El Niño Modoki (central Pacific El Niño) corresponded well with previous studies which suggested that thermocline variations in the equatorial Pacific contain an east–west oscillation. The eastern Pacific El Niño experienced an additional north–south seesaw oscillation between approximately 15° N and 15° S. The wind stress curl pattern over the west-central Pacific was responsible for the unusual manifestation of the eastern Pacific El Niño. The reason why the 1982/1983 El Niño was followed by a normal state whereas a La Niña phase developed from the 1997/1998 El Niño is also discussed. In 1997/1998, the Intertropical Convergence Zone (ITCZ) retreated faster and easterly trade winds appeared immediately after the mature El Niño, cooling the sea surface temperature in the equatorial Pacific and generating the La Niña event. The slow retreat of the ITCZ in 1982/1983 terminated the warm event at a much slower rate and ultimately resulted in a normal phase.  相似文献   

17.
During the contemporaneous interval of 1796–1882 a number of significant decreases in temperature are found in the records of Central England and Northern Ireland. These decreases appear to be related to the occurrences of El Niño and/or cataclysmic volcanic eruptions. For example, a composite of residual Central England temperatures, centering temperatures on the yearly onsets of 20 El Niño events of moderate to stronger strengths, shows that, on average, the change in temperature varied by about ±0.3°C from normal, being warmer during the boreal fall–winter leading up to the El Niño year and cooler during the spring–summer of the El Niño year. Also, the influence of El Niño on Central England temperatures appears to have lasted about 1–2 years. Similarly, a composite of residual Central England temperatures, centering temperatures on the month of eruption for 26 cataclysmic volcanic eruptions, shows that, on average, the temperature decreased by about 0.1–0.2°C, typically, 1–2 years after the eruption; although for specific events, like Tambora, the decrease was considerably greater. Additionally, tropical eruptions appear to have produced greater cooling than extratropical eruptions, and eruptions occurring in boreal spring–summer appear to have produced greater cooling than those occurring in fall–winter.  相似文献   

18.
This paper presents the EOF analysis results of the lightning density (LD) anomalies for the different seasons in southeastern China and Indochina Peninsula by using the OTD/LIS database (June 1995 to Feb. 2003) of the global LD with 2.5Ü×2.5× resolution offered by Global Hydrology Resource Center. It is shown that the LD positive anomalies in the region occurred at the same time of NINO3 SSTA steep increase in the spring of 1997 and remained to be a higher level till the next spring, as well the corresponding anomaly percent maximum in different seasons was 89%, 30%, 45%, 498% and 55% successively from the beginning to the end of the 1997/98 El Niño event (ENSO). The centre of the LD positive anomalies for the spring or winter season is located at southeastern China and the adjacent coastal areas, but it for the summer or autumn season is located at the southern Indochina Peninsula and Gulf of Thailand, whose position for each season in the ENSO as contrasted with the normal years has a westward shift, and especially for winter or spring season a northward shift at the same time. In addition, an analysis of the interannual variations in the LD anomaly percent, convective precipitation and H-CAPE days in southern China shows that each among the three anomaly percents is correlative with the other for the positive anomaly zone and Kuroshio area. The relative variation of LD during the El Niño period is the highest among the three rates and is larger than that during the non-El Niño period, meaning that the response of lightning activities to the ENSO is the most sensitive in both areas. But the response of lightning activities and precipitation to the ENSO appears to be more complex and diversified either in Kuroshio area or in the Qinghai-Tibet Plateau and northwestern and northeastern China.  相似文献   

19.
The North Atlantic Oscillation (NAO) and the Southern Oscillation (SO) are compared from the standpoint of a possible common temporal scale of oscillation. To do this a cross-spectrum of the temporal series of NAO and SO indices was determined, finding a significant common oscillation of 6/8 years. To assure this finding, both series were decomposed in their main oscillations using singular spectrum analysis (SSA). Resulting reconstructed series of 6/8 years oscillation were then cross-correlated without and with pre-whitened, the latter being significant. The main conclusion is a possible relationship between a common oscillation of 6/8 years that represents about 20% of the SO variance and about 25% of the NAO variance.  相似文献   

20.
Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China’s coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China’s coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China’s coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4–7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号