首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Trapping of sustained turbidity currents by intraslope minibasins   总被引:1,自引:0,他引:1  
Depositional turbidity currents have filled many intraslope minibasins with sediment creating targets for petroleum exploration. The dynamics of sustained turbidity currents and their depositional characteristics are investigated in a scaled physical model of a minibasin. Each turbidity current deposited a downstream thinning wedge of sediment near the inlet. Farther downstream the turbidity current was ponded by a barrier. The ponded part of the turbidity current was separated from the sediment‐free water above by a relatively sharp, horizontal settling interface indicating highly Froude‐subcritical flow. The very slow moving flow within the ponded zone created conditions for the passive rainout of suspended sediment onto the bed. In the lower part of the ponded zone, the concentration and mean grain‐size of the sediment in suspension tended to be relatively uniform in both the vertical and streamwise directions. As a result, the deposit emplaced in the ponded zone showed only a weak tendency toward downstream fining and was passively draped over the bed in such a way that irregularities in the inerodible bed were accurately reflected. The discharge of suspended sediment overflowing the downstream end of the minibasin was significantly less than the inflow discharge, resulting in basin sediment trapping efficiencies >95%. A simple model is developed to predict the trapping of sediment within the basin based on the relative magnitudes of the input discharge of turbid water and the detrainment discharge of water across the settling interface. This model shows a limiting case in which an intraslope basin captures 100% of the sediment from a ponded turbidity current, even through a succession of sustained flow events, until sediment deposition raises the settling interface above the downstream lip of the minibasin. This same process defines one of the mechanisms for minibasin filling in nature, and, when this mechanism is operative, the trap efficiency of sediment can be expected to be high until the minibasin is substantially filled with sediment.  相似文献   

2.
尼日尔三角洲坡脚逆冲带沉积样式及构造控制   总被引:3,自引:0,他引:3  
研究尼日尔三角洲深水坡脚逆冲带沉积样式、构造对沉积的控制可以揭示深水沉积分布与演化特征.运用生长地层翼旋转机理和地震相分析技术对研究区的沉积类型、构造与沉积关系进行了分析.认为在深水陆坡重力滑动作用所形成的微盆地内, 层序边界表现为微盆地边缘上超不整合面或重力流对下伏地层的侵蚀不整合; 逆冲构造隆升速率与沉积速率共同控制了重力流可容空间和沉积充填样式; 沉积垂向演化以块状搬运复合体-浊积扇-深海披覆泥或浊积扇-深海披覆泥为特征.在充分考虑构造隆升和沉积速率影响因素的基础上, 建立了单一微盆地和多个微盆地的沉积演化模式.   相似文献   

3.
The turbulent flow structure, suspended sediment dynamics and deposits of experimental sustained turbidity currents exiting a channel across a break in slope into a wide tank are documented. The data shed light on the flow evolution and deposit geometry of analogous natural channel‐fed submarine fans. Flows generated in a 0·3 m wide, sloping (0°, 6°, 9° or 20°) channel crossed an angular slope break and spread onto a horizontal tank floor. Flow development comprised: (i) channelized phase (unsteady channel flow developing into steady channel flow); (ii) initial lateral expansion phase (unsteady‐spreading wall jet phase); (iii) constant lateral expansion phase (steady‐spreading wall jet phase); and (iv) rapid waning phase. Phases (i) and (iv) are similar to laterally constrained turbidity currents, but phases (ii) and (iii) are considerably different from such two‐dimensional currents. Steeper channel slopes produced greater flow velocities and turbulence intensities, but these effects diminished markedly with distance from the channel mouth. Flow velocity vectors in the tank had similar patterns for all channel slopes, with a central core of faster velocity and narrow vector dispersion and slower flow with larger dispersion at the jet margins. Suspended sediment concentrations were higher within flow heads and dense basal layers in flow bodies. Time‐averaged acoustic backscatter data showed vertical concentration gradients, confirmed by siphon samples. The deposits comprised a thick central ridge, of similar order width to the channel mouth, with abrupt margins and a surrounding, very thin, fan‐like sheet. The ridge was coarser grained and better sorted than the original sediment, with grain‐size fining downstream, particularly over the fan‐like sheet. The formation of a central ridge suggests that, in the tank, vertical turbulent momentum exchange is more significant for sediment dynamics than spanwise momentum exchange due to lateral expansion. The streamwise elongate geometry of the ridge contrasts with conventional fan‐like geometry found with surge‐type turbidity flows, a result that has widespread stratigraphic and economic implications.  相似文献   

4.
Sediment waves are commonly observed on the sea floor and often vary in morphology and geometry according to factors such as seabed slope, density and discharge of turbidity currents, and the presence of persistent contour currents. This paper documents the morphology, internal geometry and distribution of deep‐water (4000 to 5000 m) bedforms observed on the sea floor offshore eastern Canada using high‐resolution multibeam bathymetry data and seismic stratigraphy. The bedforms have wavelengths of >1 km but fundamentally vary in terms of morphology and internal stratigraphy, and are distinguished into three main types. The first type, characterized by their long‐wavelength crescentic shape, is interpreted as net‐erosional cyclic steps. These cyclic steps were formed by turbidity currents flowing through canyons and overtopping and breaching levées. The second type, characterized by their linear shape and presence on levées, is interpreted as net‐depositional cyclic steps. These upslope migrating bedforms are strongly aggradational, indicating high sediment deposition from turbidity currents. The third type, characterized by their obliqueness to canyons, is observed on an open slope and is interpreted as antidunes. These antidunes were formed by the deflection of the upper dilute, low‐density parts of turbidity currents by contour currents. The modelling of the behaviour of these different types of turbidity currents reveals that fast‐flowing flows form cyclic steps while their upper parts overspill and are entrained westward by contour currents. The interaction between turbidity currents and contour currents results in flow thickening and reduced sediment concentration, which leads to lower flow velocities. Lower velocities, in turn, allow the formation of antidunes instead of cyclic steps because the densiometric Froude number (Fr′) decreases. Therefore, this study shows that both net‐erosional and net‐depositional cyclic steps are distributed along channels where turbidity currents prevail whereas antidunes form on open slopes, in a mixed turbidite/contourite system. This study provides insights into the influence of turbidity currents versus contour currents on the morphology, geometry and distribution of bedforms in a mixed turbidite–contourite system.  相似文献   

5.
The south Uralian foreland basin forms part of the giant, yet sparsely documented, PreCaspian salt tectonic province. The basin can potentially add much to the understanding of fluviolacustrine sedimentation within salt‐walled minibasins, where the literature has been highly reliant on only a few examples (such as the Paradox Basin of Utah). This paper describes the Late Permian terrestrial fill of the Kul’chumovo salt minibasin near Orenburg in the south Urals in which sediments were deposited in a range of channel, overbank and lacustrine environments. Palaeomagnetic stratigraphy shows that, during the Late Permian, the basin had a relatively slow and uniform subsidence pattern with widespread pedogenesis and calcrete development. Angular unconformities or halokinetic sequence boundaries cannot be recognized within the relatively fine‐grained fill, and stratigraphic and spatial variations in facies are therefore critical to understanding the subsidence history of the salt minibasin. Coarse‐grained channel belts show evidence for lateral relocation within the minibasin while the development of a thick stack of calcrete hardpans indicates that opposing parts of the minibasin became largely inactive for prolonged periods (possibly in the order of one million years). The regular vertical stacking of calcrete hardpans within floodplain mudstones provides further evidence that halokinetic minibasin growth is inherently episodic and cyclical.  相似文献   

6.
DONALD R. LOWE 《Sedimentology》2012,59(7):2042-2070
Deposits of submarine debris flows can build up substantial topography on the sea floor. The resulting sea floor morphology can strongly influence the pathways of and deposition from subsequent turbidity currents. Map views of sea floor morphology are available for parts of the modern sea floor and from high‐resolution seismic‐reflection data. However, these data sets usually lack lithological information. In contrast, outcrops provide cross‐sectional and lateral stratigraphic details of deep‐water strata with superb lithological control but provide little information on sea floor morphology. Here, a methodology is presented that extracts fundamental lithological information from sediment core and well logs with a novel calibration between core, well‐logs and seismic attributes within a large submarine axial channel belt in the Tertiary Molasse foreland basin, Austria. This channel belt was the course of multiple debris‐flow and turbidity current events, and the fill consists of interbedded layers deposited by both of these processes. Using the core‐well‐seismic calibration, three‐dimensional lithofacies proportion volumes were created. These volumes enable the interpretation of the three‐dimensional distribution of the important lithofacies and thus the investigation of sea floor morphology produced by debris‐flow events and its impact on succeeding turbidite deposition. These results show that the distribution of debris‐flow deposits follows a relatively regular pattern of levées and lobes. When subsequent high‐density turbidity currents encountered this mounded debris‐flow topography, they slowed and deposited a portion of their sandy high‐density loads just upstream of morphological highs. Understanding the depositional patterns of debris flows is key to understanding and predicting the location and character of associated sandstone accumulations. This detailed model of the filling style and the resulting stratigraphic architecture of a debris‐flow dominated deep‐marine depositional system can be used as an analogue for similar modern and ancient systems.  相似文献   

7.
Large roughness features, caused by erosion of the sea floor, are commonly observed on the modern sea floor and beneath turbidite sandstone beds in outcrop. This paper aims to investigate the effect of such roughness elements on the turbulent velocity field and its consequences for the sediment carrying capacity of the flows. Experimental turbidity currents were run through a rectangular channel, with a single roughness element fixed to the bottom in some runs. The effect of this roughness element on the turbulent velocity field was determined by measuring vertical profiles of the vertical velocity component in the region downstream of the basal obstruction with the Ultrasonic Doppler Velocity Profiling technique. The experiments were set up to answer two research questions. (i) How does a single roughness element alter the distribution of vertical turbulence intensity? (ii) How does the altered profile evolve in the downstream direction? The results for runs over a plane substrate are similar to data presented previously and show a lower turbulence maximum near the channel floor, a turbulence minimum associated with the velocity maximum, and a turbulence maximum associated with the upper flow interface. In the runs in which the flows were perturbed by the single roughness element, the intensity of the lower turbulence maximum was increased between 41% to 81%. This excess turbulence dissipated upwards in the flow while it travelled further downstream, but was still observable at the most distal measurement location (at a distance ca 39 times the roughness height downstream of the element). All results point towards a similarity between the near bed turbulence structure of turbidity currents and free surface shear flows that has been proposed by previous authors, and this proposition is supported further by the apparent success of a shear velocity estimation method that is based on this similarity. Theory of turbulent dispersal of suspended sediment is used to discuss how the observed turbulent effects of a single large roughness element may impact on the suspended sediment distribution in real world turbidity currents. It is concluded that this impact may consist of a non‐equilibrium net‐upwards transport of suspended sediment, counteracting density stratification. Thus, erosive substrate topography created by frontal parts of natural turbidity flows may super‐elevate sediment concentrations in upper regions above equilibrium values in following flow stages, delay depletion of the flow via sedimentation and increase their run‐out distance.  相似文献   

8.
《Sedimentology》2018,65(3):931-951
Submarine leveed channels are sculpted by turbidity currents that are commonly highly stratified. Both the concentration and the grain size decrease upward in the flow, and this is a fundamental factor that affects the location and grain size of deposits around a channel. This study presents laboratory experiments that link the morphological evolution of a progressively developing leveed channel to the suspended sediment structure of the turbidity currents. Previously, it was difficult to link turbidity current structure to channel–levee development because observations from natural systems were limited to the depositional products while experiments did not show realistic morphodynamics due to scaling issues related to the sediment transport. This study uses a novel experimental approach to overcome scaling issues, which results in channel inception and evolution on an initially featureless slope. Depth of the channel increased continuously as a result of levee aggradation combined with varying rates of channel floor aggradation and degradation. The resulting levees are fining upward and the grain‐size trend in the levee matches the upward decrease in grain size in the flow. It is shown that such deposit trends can result from internal channel dynamics and do not have to reflect upstream forcing. The suspended sediment structure can also be linked to the lateral transition from sediment bypass in the channel thalweg to sediment deposition on the levees. The transition occurs because the sediment concentration is below the flow capacity in the channel thalweg, while higher up on the channel walls the concentration exceeds capacity resulting in deposition of the inner levee. Thus, a framework is provided to predict the growth pattern and facies of a levee from the suspended sediment structure in a turbidity current.  相似文献   

9.
Unlike for subaerial settings, the impact of subaqueous relay ramps on sediment dispersal is still poorly understood. A combination of analogue laboratory experiments in a sandbox with numerical flow calculations is used to simulate relay ramp topographies on rifting continental margins and to analyse the resulting turbidity current pathways and their deposits. Various scenarios are investigated, including inflow perpendicular and oblique to the relay ramp axis as well as flow constrained by an incised channel on the ramp and by a landward‐directed tilt of the ramp. Without channelling, most sedimentation takes place on the basin floor because the bulk of the flow follows the steepest gradient down the fault and into the rift basin. With a channel along the relay ramp, significant flow occurs initially down the ramp axis, but channel spillover and basinward ramp tilting combine to redirect much of the sediment down the fault slope into the basin. When the relay ramp has a landward‐oriented tilt, most of the current flows down the ramp and deposits its sediment load there and at the foot of the ramp. However, also here a considerable amount of the flow is shed over the hanging wall fault and into the basin, forming a secondary depocentre, while ponding redistributes thin deposits over a wider area of the basin. The quantitative dependence of these results on the specific ramp geometries remains to be investigated further but may bear great importance for refined sedimentary models in subaqueous rifted settings as well as for hydrocarbon exploration therein.  相似文献   

10.
Integrated fluvial sequence stratigraphic and palaeosol analysis can be used to better reconstruct depositional systems, but these approaches have not been combined to examine halokinetic minibasins. This study characterizes the temporal and spatial patterns of lithofacies and palaeosols in a sequence stratigraphic framework to reconstruct a model of minibasin evolution and identify halokinetic influences on fluvial deposition. This research documents fluvial cycles and stratigraphic hierarchy, palaeosol maturity and apparent sediment accumulation rates in the Chinle Formation within the Big Bend minibasin. This study also uses palaeosols to help identify fluvial aggradational cycle (FAC) sets. The Chinle is divided into two hectometre‐scale (102 m) fluvial sequences, six decametre‐scale (101 m) FAC sets, and variable numbers of metre‐scale FACs depending on proximity to the minibasin. Ten pedotypes representing 225 palaeosol profiles are recognized. The pedotypes include palaeosols similar to modern Entisols, Inceptisols, Aridisols, Vertisols and Alfisols. A maturity index (1–5) is assigned to each pedotype to assess its variability in palaeosol development. Estimated palaeosol development time is used to approximate apparent sediment accumulation rates. Increased subsidence resulted in a greater number and thicker FACs, thicker FAC sets and fluvial sequence sections, and lithofacies associations reflecting more rapid sedimentation along the minibasin axis. Palaeocurrent indicators converge towards the minibasin axis and indicate that it formed and drifted through time. Relative palaeosol maturity is inversely related to stratal thickness, and decreases towards the minibasin where episodic burial by fluvial sediment was more frequent. Metre‐scale FACs are most abundant towards the minibasin axis, and locally have Entisols and Inceptisols developed upon their upper boundaries reflecting increased sediment accumulation rates. Areas outside the minibasin are characterized by fewer FACs that are associated with more mature palaeosols. Palaeosol‐derived apparent sediment accumulation rates are as much as two orders of magnitude greater within the minibasin than in marginal areas. The combined stratigraphic, palaeocurrent and palaeosol evidence is used to develop a model for the evolution of the Big Bend minibasin that illustrates the halokinetic affect on fluvial and landscape processes.  相似文献   

11.
Flow properties of turbidity currents in Bute Inlet, British Columbia   总被引:1,自引:0,他引:1  
Bute Inlet, a fiord along the southwestern coast of British Columbia, Canada, includes a sea-floor sedimentation system 70 km in length which resembles those developed on some large submarine fans. Turbidity currents originate at the head of the flord on the submerged delta fronts of the Homathko and Southgate rivers. They move downslope for about 30 km within a single large incised channel, spill onto a depositional area termed the channel lobe complex, and finally spread out over a low-relief distal splay area that passes 55 km downslope into a flat basin floor. During the present study, turbidity currents in Bute Inlet were studied using sea-floor morphology, bottom sediment distribution, and in-situ instrument packages. The mean velocities of the most recent flows, estimated from surface sediment grain size, has varied between 100–120 cm s–1 in the incised channel, 20–50 cms–1 in the channel lobe complex, and < 5 cm s–1 on the basin floor. Velocities based on channel morphology are poorly constrained but are in the range of 160-425 cm s–1 in the upper part of the incised channel and 66 cm s–1 in the lower channel. Calculated flow densities range from 1.049 to 1.028g cm–3. Turbidity flows monitored in 1986 using submerged instrument packages exceeded 32 m in thickness in the upper part of the incised channel, where the maximum measured velocity was 330 cm s–1. At the head of the channel lobe complex the maximum velocity had declined to 75 cm s–1. The density of the monitored flows is estimated at 1.025-1.03g cm–3. The cored sediments and channel morphology yield estimates of mean flow velocities that are generally greater than those measured by the in-situ instrument packages and estimated from modern surface sediments. The former suggest past flow velocities up to 500 cm s–1 in the incised channel, about 20 cm s–1 in spillover deposits along the lower part of the incised channel, and 100-140 cm s–1 in the distal splay. The contrast between the velocities of modern and past flows suggests that past flows may have been considerably larger and more energetic than those presently occurring in Bute Inlet. The size properties of sediments in the monitored turbidity flows suggest a strong vertical size gradient in the suspended load during transport. The surface and cored sediments fine downslope from the channel lobe complex to distal splay area. Distinctive sedimentary sequences are recognized in cores from the spillover lobes, channel lobe complex, distal splay, and basin floor depositional areas. Many individual turbidites grade downslope from massive Ta divisions in the channel lobe complex and probably in the incised channel to Ta divisions overlain by slurried divisions on the distal splay and largely slurried beds on the basin floor. These facies suggest that individual currents commonly evolve from largely cohesionless suspensions in the incised channel and channel lobe complex to dilute cohesive slurries downslope on the distal splay and basin floor. Many flows in Bute Inlet fail to develop a traction state of sedimentation and the resulting turbidites lack well-developed Tb. Tc, and Td divisions.  相似文献   

12.
The late Pleistocene and Holocene stratigraphy of Navy Fan is mapped in detail from more than 100 cores. Thirteen 14C dates of plant detritus and of organic-rich mud beds show that a marked change in sediment supply from sandy to muddy turbidites occurred between 9000 and 12,000 years ago. They also confirm the correlation of several individual depositional units. The sediment dispersal pattern is primarily controlled by basin configuration and fan morphology, particularly the geometry of distributary channels, which show abrupt 60° bends related to the Pleistocene history of lobe progradation. The Holocene turbidity currents are depositing on, and modifying only slightly, a relict Pleistocene morphology. The uppermost turbidite is a thin sand to mud bed on the upper-fan valley levées and on parts of the mid-fan. Most of its sediment volume is in a mud bed on the lower fan and basin plain downslope from a sharp bend in the mid-fan distributary system. Little sediment occurs farther downstream within this distributary system. It appears that most of the turbidity current overtopped the levée at the channel bend, a process referred to as flow stripping. The muddy upper part of the flow continued straight down to the basin plain. The residual more sandy base of the flow in the distributary channel was not thick enough to maintain itself as gradient decreased and the channel opened out on to the mid-fan lobe. Flow stripping may occur in any turbidity current that is thick relative to channel depth and that flows in a channel with sharp bends. Where thick sandy currents are stripped, levée and mid-fan erosion may occur, but the residual current in the channel will lose much of its power and deposit rapidly. In thick muddy currents, progressive overflow of mud will cause less declaration of the residual channelised current. Thus both size and sand-to-mud ratio of turbidity currents feeding a fan are important factors controlling morphologic features and depositional areas on fans. The size-frequency variation for different types of turbidity currents is estimated from the literature and related to the evolution of fan morphology.  相似文献   

13.
Flume experiments were performed to study the flow properties and depositional characteristics of high‐density turbidity currents that were depletive and quasi‐steady to waning for periods of several tens of seconds. Such currents may serve as an analogue for rapidly expanding flows at the mouth of submarine channels. The turbidity currents carried up to 35 vol.% of fine‐grained natural sand, very fine sand‐sized glass beads or coarse silt‐sized glass beads. Data analysis focused on: (1) depositional processes related to flow expansion; (2) geometry of sediment bodies generated by the depletive flows; (3) vertical and horizontal sequences of sedimentary structures within the sediment bodies; and (4) spatial trends in grain‐size distribution within the deposits. The experimental turbidity currents formed distinct fan‐shaped sediment bodies within a wide basin. Most fans consisted of a proximal channel‐levee system connected in the downstream direction to a lobe. This basic geometry was independent of flow density, flow velocity, flow volume and sediment type, in spite of the fact that the turbidity currents of relatively high density were different from those of relatively low density in that they exhibited two‐layer flow, with a low‐density turbulent layer moving on top of a dense layer with visibly suppressed large‐scale turbulence. Yet, the geometry of individual morphological elements appeared to relate closely to initial flow conditions and grain size of suspended sediment. Notably, the fans changed from circular to elongate, and lobe and levee thickness increased with increasing grain size and flow velocity. Erosion was confined to the proximal part of the leveed channel. Erosive capacity increased with increasing flow velocity, but appeared to be constant for turbidity currents of different grain size and similar density. Structureless sediment filled the channel during the waning stages of the turbidity currents laden with fine sand. The adjacent levee sands were laminated. The massive character of the channel fills is attributed to rapid settling of suspension load and associated suppression of tractional transport. Sediment bypassing prevailed in fan channels composed of very fine sand and coarse silt, because channel floors remained fully exposed until the end of the experiments. Lobe deposits, formed by the fine sand‐laden, high‐density turbidity currents, contained massive sand in the central part grading to plane parallel‐laminated sand towards the fringes. The depletive flows produced a radial decrease in mean grain size in the lobe deposits of all fans. Vertical trends in grain size comprised inverse‐to‐normal grading in the levees and in the thickest part of the lobes, and normal grading in the channel and fringes of the fine sandy fans. The inverse grading is attributed to a process involving headward‐directed transport of relatively fine‐grained and low‐concentrated fluid at the level of the velocity maximum of the turbidity current. The normal grading is inferred to denote the waning stage of turbidity‐current transport.  相似文献   

14.
Advances in acoustic imaging of submarine canyons and channels have provided accurate renderings of sea‐floor geomorphology. Still, a fundamental understanding of channel inception, evolution, sediment transport and the nature of the currents traversing these channels remains elusive. Herein, Autonomous Underwater Vehicle technology developed by the Monterey Bay Aquarium Research Institute provides high‐resolution perspectives of the geomorphology and shallow stratigraphy of the San Mateo canyon‐channel system, which is located on a tectonically active slope offshore of southern California. The channel comprises a series of crescent‐shaped bedforms in its thalweg. Numerical modelling is combined with interpretations of sea‐floor and shallow subsurface stratigraphic imagery to demonstrate that these bedforms are likely to be cyclic steps. Submarine cyclic steps compose a morphodynamic feature characterized by a cyclic series of long‐wave, upstream‐migrating bedforms. The bedforms are cyclic steps if each bedform in the series is bounded by a hydraulic jump in an overriding turbidity current, which is Froude‐supercritical over the lee side of the bedform and Froude‐subcritical over the stoss side. Numerical modelling and seismic‐reflection imagery support an interpretation of weakly asymmetrical to near‐symmetrical aggradation of predominantly fine‐grained net‐depositional cyclic steps. The dominant mode of San Mateo channel maintenance during the Holocene is interpreted to be thalweg reworking into aggrading cyclic steps by dilute turbidity currents. Numerical modelling also suggests that an incipient, proto‐San Mateo channel comprises a series of relatively coarse‐grained net‐erosional cyclic steps, which nucleated out of sea‐floor perturbations across the tectonically active lower slope. Thus, the interaction between turbidity‐current processes and sea‐floor perturbations appears to be fundamentally important to channel initiation, particularly in high‐gradient systems. Offshore of southern California, and in analogous deep‐water basins, channel inception, filling and maintenance are hypothesized to be strongly linked to the development of morphodynamic instability manifested as cyclic steps.  相似文献   

15.
近10年来,国内外的沉积构型研究从之前的以精细表征为主扩展到成因机制分析。文中以同生逆断层控制的冲积扇、可容空间影响下的曲流河点坝、浅水缓坡背景下的三角洲指状砂坝以及大陆斜坡微盆地背景下的重力流沉积等为例介绍相关研究进展。(1)挤压盆地边缘复杂的同生逆断裂构造活动控制了冲积扇的构型要素类型、叠置样式、分布演化及定量规模,表现出有别于构造稳定条件下的冲积扇构型模式;(2)曲流河在可容空间较小的情况下可发育顺流迁移型点坝,表现出特殊的微相类型、分布样式及旋回特征,而随着A/S值的不断增大,曲流河点坝可由鳞片状逐步演变为条带状,最后变为点状;(3)浅水三角洲中可发育类似于河控较深水三角洲中的指状砂坝沉积,其平面形态、微相组合样式、定量规模等特征受气候、沉积物供给、沉积水体等多因素的影响;(4)大陆斜坡微盆地内部可发育重力流水道、朵叶体、块状搬运体等多种构型要素类型,不同构型要素的空间分布样式、定量规模及构型演化模式受复杂地形地貌及构造活动的影响较为明显。综合原型模型分析、沉积物理模拟及数值模拟开展系统的定量化研究,建立定量的、可预测的碎屑岩沉积构型模式,是今后碎屑岩沉积构型研究的发展趋势。  相似文献   

16.
建立了基于库区不规则断面的一维非恒定异重流数学模型,并采用明流与异重流水沙输移模型交替运算的两步模式,即用潜入条件动态判别异重流计算的上游边界位置,将潜入点上游的明流浑水段与下游异重流段计算连接起来。水流运动、泥沙输移与河床变形过程完全耦合,采用TVD(Total Variation Diminishing)形式的MUSCL-Hancock格式进行数值求解。将该模型应用于恒定流量与释放定量悬沙两种条件下的异重流水槽实验模拟,比较了有无水面梯度项对模拟精度的影响,计算结果表明该模型能较为准确地预测异重流的厚度、含沙量分布及传播过程。  相似文献   

17.
Digital echo sounding, SeaBeam swath bathymetry data and sediment cores were collected on the continental slope (1500–3700 m water depth) off southeastern Tasmania in order to study sedimentary processes in the vicinity of an ocean disposal site. The new bathymetry data show that the shallower limits of the disposal site are positioned on the seaward edge of a gently dipping (3°) mid‐slope shoulder, between 1200 and 2100 m water depth. The slope below the disposal site is relatively steep (6.5°) and is cut by submarine canyons which lead into the adjacent East Tasman Saddle. The SeaBeam bathymetry data show a small submarine canyon traversing the slope in 2400 m water depth directly downslope from the disposal site, with local slopes of up to 22°. The canyon feeds into a perched basin at 2450 m, which could be acting as a local sediment trap. Short (<90 cm) gravity cores indicate that indurated erosional surfaces characterise the slope environment. The cores contain Upper Cretaceous (upper Campanian) sandstones and siltstones, which in places crop out on the sea floor where they are locally draped by a thin (0–30 cm), modern layer of hemipelagic calcareous ooze. Five cores collected from the vicinity of the disposal site had lead and zinc concentrations in the surface 1 cm of 10.3 ± 5.0 and 39.5 ± 19.6 mg/kg, respectively, significantly greater than the background values (2.9 ± 1.4 for lead and 21.2 ± 5.4 for zinc) which characterise the underlying unit that is composed of the same hemipelagic calcareous ooze. Lead and zinc are constituents of the dumped material, jarosite, which, after mixing with slope sediments, can be used as sediment tracers. One core contains a fining‐upwards bed which is also elevated in lead and zinc. This is interpreted as evidence for dispersal of the jarosite from the disposal site downslope to depths >3000 m via turbidity flows sometime during the past 24 years. Current meter data collected from 30 m above the sea floor over one year at the disposal site show that bottom currents attain speeds of up to 0.46 m/s. The current events are attributed to eddies shed by the East Australia Current. The measured bottom currents are capable of transporting fine‐grained hemipelagic muds and could provide a trigger mechanism for turbidity flows.  相似文献   

18.
The deeply dissected Southwest Grand Banks Slope offshore the Grand Banks of Newfoundland was investigated using multiple data sets in order to determine how canyons and intercanyon ridges developed and what sedimentary processes acted on glacially influenced slopes. The canyons are a product of Quaternary ice‐related processes that operated along the margin, such as ice stream outwash and proglacial plume fallout. Three types of canyon are defined based on their dimensions, axial sedimentary processes and the location of the canyon head. There are canyons formed by glacial outwash with aggradational and erosional floors, and canyons formed on the slope by retrogressive failure. The steep, narrow intercanyon ridges that separate the canyons are composite morphological features formed by a complex history of sediment aggradation and degradation. Ridge aggradation occurred as a result of mid to late Quaternary background sedimentation (proglacial plume fallout and hemipelagic settling) and turbidite deposition. Intercanyon ridge degradation was caused mainly by sediment removal due to local slump failures and erosive sediment gravity flows. Levée‐like deposits are present as little as 15 km from the shelf break. At 30 km from the shelf, turbidity currents spilled over a 400 m high ridge and reconfined in a canyon formed by retrogressive failure, where a thalweg channel was developed. These observations imply that turbidity currents evolved rapidly in this slope‐proximal environment and attained flow depths of hundreds of metres over distances of a few tens of kilometres, suggesting turbulent subglacial outwash from tunnel valleys as the principal turbidity current‐generating mechanism.  相似文献   

19.
The East China Sea Shelf has an unusually wide and low gradient shelf, supplied from sediment‐charged rivers and large river delta systems, with bottom currents sweeping the sea floor and located in the path of strong typhoons. Sediment gravity flow deposits, including four hybrid event beds and a high density turbidite, are identified in a core from the mid‐shelf of the East China Sea. The hybrid event beds typically comprise three or two internal divisions from the base to the top: (i) H1, H3 and H5; or (ii) H3 and H5. Radiocarbon ages of the hybrid event beds were in the range of 3821 to 8526 yr bp . Based on correlation with surrounding cores, the hybrid events may have happened at any time between 1930 yr bp and 3890 yr bp . The δ13C values in hybrid event beds together with bathymetry data suggest local erosion on the shelf. The average δ13C value for the H1 division is similar to the H3 division in the hybrid event beds, implying that the organic matter in the H1 and H3 divisions may come from the same source area. Cross‐plots of upper continental crust normalized rare earth elements in the five units reveal that the sediment source of the four hybrid event beds and the turbidite was ultimately primarily from Korean rivers. Partial transformation from a moderate‐strength debris flow with the additional role of erosional bulking can explain occurrences of hybrid event beds on the East China Sea Shelf. The data indicate that hybrid sediment gravity flow deposits were sourced from intra‐shelf failures and subsequently transformed and deposited as hybrid event beds. The study shows that hybrid sediment gravity flows and turbidity currents may not necessarily indicate proximity to a major fluvial or deltaic system and that intra‐shelf sedimentation can be a sediment source. It is unlikely that the debris flows and turbidity currents were triggered by a hyperpycnal flow or tsunami, because both can carry continental and/or coastal signals which have not been recognized in the core. Typhoons are the probable triggering mechanism.  相似文献   

20.
Turbidity currents in the ocean are driven by suspended sediment. Yet results from surveys of the modern sea floor and turbidite outcrops indicate that they are capable of transporting as bedload and depositing particles as coarse as cobble sizes. While bedload cannot drive turbidity currents, it can strongly influence the nature of the deposits they emplace. This paper reports on the first set of experiments which focus on bedload transport of granular material by density underflows. These underflows include saline density flows, hybrid saline/turbidity currents and a pure turbidity current. The use of dissolved salt is a surrogate for suspended mud which is so fine that it does not settle out readily. Thus, all the currents can be considered to be model turbidity currents. The data cover four bed conditions: plane bed, dunes, upstream‐migrating antidunes and downstream‐migrating antidunes. The bedload transport relation obtained from the data is very similar to those obtained for open‐channel flows and, in fact, is fitted well by an existing relation determined for open‐channel flows. In the case of dunes and downstream‐migrating antidunes, for which flow separation on the lee sides was observed, form drag falls in a range that is similar to that due to dunes in sand‐bed rivers. This form drag can be removed from the total bed shear stress using an existing relation developed for rivers. Once this form drag is subtracted, the bedload data for these cases collapse to follow the same relation as for plane beds and upstream‐migrating antidunes, for which no flow separation was observed. A relation for flow resistance developed for open‐channel flows agrees well with the data when adapted to density underflows. Comparison of the data with a regime diagram for field‐scale sand‐bed rivers at bankfull flow and field‐scale measurements of turbidity currents at Monterey Submarine Canyon, together with Shields number and densimetric Froude number similarity analyses, provide strong evidence that the experimental relations apply at field scale as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号