共查询到10条相似文献,搜索用时 0 毫秒
1.
F. Martín‐Gonzlez M. Freudenthal N. Heredia E. Martín‐Surez R. Rodríguez‐Fernndez 《Geological Journal》2014,49(1):15-27
Ages of Cenozoic sedimentary basins yield information that can be used to infer detailed spatial and temporal evolution in the Alpine foreland. The Tertiary deposits of the NW Iberian Peninsula comprise the remains of a broken foreland basin (the West Duero Basin). This work constrains the timing of tectonic fragmentation and the evolution of the western termination of the Alpine Pyrenean–Cantabrian Orogen (NW Iberian Peninsula). The discovery of Issiodoromys cf. minor 1 and Pseudocricetodon in the lower formation of the Tertiary depression of Sarria (the Toral Formation) constrains its age to the late Early Oligocene (MP23–MP25), similar to its age in the El Bierzo depression (MP24–MP25). Sedimentation initiated in the NE of the study area at Oviedo during the Middle Eocene (Bartonian–Early Priabonian MP16–MP17) and migrated towards the west and south during the Early Oligocene. The Toral Formation was deposited in a foreland basin that connected the present day outcrops of the El Bierzo, Sarria and As Pontes Tertiary depressions. The basin was segmented during the westward migration of structural deformation associated with the Orogen, and the subsequent uplift of the Galaico–Leoneses Mountains. The present‐day height above reference level of the base of the Toral Formation has been used to quantify Alpine segmentation that took place after Early Oligocene times. Minimum tectonic uplift assessed is 960 m in the Cantabrian Mountains and 1050 m in the Galaico–Leoneses Mountains. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
Petrological investigations supported by multi‐scale structural analysis of eclogitized serpentinite in the Zermatt–Saas Zone of the Western Alps allows for the determination of mineral assemblages related to successive fabrics, upon which the P–T–d–t path of these hydrated mantle rocks can be inferred. Serpentinites of the upper Valtournanche, with lenses and dykes of metagabbro and meta‐rodingite, display an Alpine polyphase metamorphic evolution from eclogite to epidote‐amphibolite facies conditions associated with three successive foliations having different parageneses in these rocks. Serpentinite mainly consists of serpentine with minor magnetite; however, where S1 and S2 foliations are pervasive, metamorphic olivine, together with Ti‐clinohumite and clinopyroxene, are also found. The mineral assemblage associated with D1 includes serpentine1, clinopyroxene1, opaque minerals, titanite ± olivine1, Ti‐clinohumite1 and ilmenite; the D2 assemblage is the same (±chlorite) but minerals have different compositions. The assemblage associated with D3 comprises serpentine3, opaque minerals, ±chlorite3, ilmenite and amphibole3. Ti‐clinohumite is associated with veins that are older than D2 and pre‐date D3. Veins that post‐date D3 are characterized by amphibole + chlorite or by serpentine. P–T conditions for S2 parageneses evaluated using two pseudosections for different bulk compositions suggest that these rocks experienced pressures >2.5 ± 0.3 GPa at temperatures slightly higher than 600 °C. The late epidote–amphibolite facies re‐equilibration associated with D3 and D4 developed during late syn‐exhumation deformation related to folding and testifies to a small temperature decrease. These results, which were integrated in the regional framework, suggest that different portions of the Zermatt–Saas Zone registered different P–T peak conditions and underwent different exhumation paths. In addition, the inferred P–T–d–t path suggests that the Valtournanche serpentinites re‐equilibrated close to the UHP conditions registered by the Cignana meta‐cherts. These results imply that tectonic slices exhumed after UHP metamorphism might be wider than previously reported or that small‐size UHP units, tectonically sampled during the Alpine convergence, are more abundant than those that have been detected to date. 相似文献
3.
Sediment‐rich meltwater plumes and ice‐proximal fans at the margins of modern and ancient tidewater glaciers: Observations and modelling 下载免费PDF全文
Julian A. Dowdeswell Kelly A. Hogan Neil S. Arnold Ruth I. Mugford Martin Wells J. Philip P. Hirst Carole Decalf 《Sedimentology》2015,62(6):1665-1692
Turbid meltwater plumes and ice‐proximal fans occur where subglacial streams reach the grounded marine margins of modern and ancient tidewater glaciers. However, the spacing and temporal stability of these subglacial channels is poorly understood. This has significant implications for understanding the geometry and distribution of Quaternary and ancient ice‐proximal fans that can form important aquifers and hydrocarbon reservoirs. Remote‐sensing and numerical‐modelling techniques are applied to the 200 km long marine margin of a Svalbard ice cap, Austfonna, to quantify turbid meltwater‐plume distribution and predict its temporal stability. Results are combined with observations from geophysical data close to the modern ice front to refine existing depositional models for ice‐proximal fans. Plumes are spaced ca 3 km apart and their distribution along the ice front is stable over decades. Numerical modelling also predicts the drainage pattern and meltwater discharge beneath the ice cap; modelled water‐routing patterns are in reasonable agreement with satellite‐mapped plume locations. However, glacial retreat of several kilometres over the past 40 years has limited build‐up of significant ice‐proximal fans. A single fan and moraine ridge is noted from marine‐geophysical surveys. Closer to the ice front there are smaller recessional moraines and polygonal sediment lobes but no identifiable fans. Schematic models of ice‐proximal deposits represent varying glacier‐terminus stability: (i) stable terminus where meltwater sedimentation produces an ice‐proximal fan; (ii) quasi‐stable terminus, where glacier readvance pushes or thrusts up ice‐proximal deposits into a morainal bank; and (iii) retreating terminus, with short still‐stands, allowing only small sediment lobes to build up at melt‐stream portals. These modern investigations are complemented with outcrop and subsurface observations and numerical modelling of an ancient, Ordovician glacial system. Thick turbidite successions and large fans in the Late Ordovician suggest either high‐magnitude events or sustained high discharge, consistent with a relatively mild palaeo‐glacial setting for the former North African ice sheet. 相似文献
4.
The Neoproterozoic Katangan Supergroup comprises a thick sedimentary rock succession subdivided into the Roan, Nguba, and Kundelungu Groups, from bottom to top. Deposition of both Nguba and Kundelungu Groups began with diamictites, the Mwale/Grand Conglomérat and Kyandamu/Petit Conglomérat Formations, respectively, correlated with the 750 Ma Sturtian and (supposedly) 620 Ma Marinoan/Varanger glacial events. The Kaponda, Kakontwe, Kipushi and Lusele Formations are interpreted as cap-carbonates overlying the diamictites. Petrographical features of the Nguba and Kundelungu siliciclastic rocks indicate a proximal facies in the northern areas and a basin open to the south. The carbonate deposits increase southward in the Nguba basin. In the southern region, the Kyandamu Formation contains clasts from the underlying rocks, indicating an exhumation and erosion of these rocks to the south of the basin. It is inferred that this formation deposited in a foreland basin, dating the inversion from extensional to compressional tectonics, and the northward thrusting. Sampwe and Biano sedimentary rocks were deposited in the northernmost foreland basin at the end of the thrusting. The Zn–Pb–Cu and Cu–Ag–Au epigenetic, hypogene deposits occurring in Nguba carbonates and Kundelungu clastic rocks probably originate from hydrothermal resetting and remobilization of pre-existing stratiform base metal mineralisations in the Roan Group. 相似文献
5.
JUAN PEDRO RODRÍGUEZ‐LÓPEZ NIEVES MELÉNDEZ POPPE L.
De BOER ANA ROSA SORIA 《Sedimentology》2010,57(5):1315-1356
Aeolian processes and ephemeral water influx from the Variscan Iberian Massif to the mid‐Cretaceous outer back‐erg margin system in eastern Iberia led to deposition and erosion of aeolian dunes and the formation of desert pavements. Remains of aeolian dunes encased in ephemeral fluvial deposits (aeolian pods) demonstrate intense erosion of windblown deposits by sudden water fluxes. The alternating activity of wind and water led to a variety of facies associations such as deflation lags, desert pavements, aeolian dunes, pebbles scattered throughout dune strata, aeolian sandsheets, aeolian deposits with bimodal grain‐size distributions, mud playa, ephemeral floodplain, pebble‐sand and cobble‐sand bedload stream, pebble–cobble‐sand sheet flood, sand bedload stream, debris flow and hyperconcentrated flow deposits. Sediment in this desert system underwent transport by wind and water and reworking in a variety of sub‐environments. The nearby Variscan Iberian Massif supplied quartzite pebbles as part of mass flows. Pebbles and cobbles were concentrated in deflation lags, eroded and polished by wind‐driven sands (facets and ventifacts) and incorporated by rolling into the toesets of aeolian dunes. The back‐erg depositional system comprises an outer back‐erg close to the Variscan highlands, and an inner back‐erg close to the central‐erg area. The inner back‐erg developed on a structural high and is characterized by mud playa deposits interbedded with aeolian and ephemeral channel deposits. In the inner back‐erg area ephemeral wadis, desiccated after occasional floods, were mud cracked and overrun episodically by aeolian dunes. Subsequent floods eroded the aeolian dunes and mud‐cracked surfaces, resulting in largely structureless sandstones with boulder‐size mudstone intraclasts. Floods spread over the margins of ephemeral channels and eroded surrounding aeolian dunes. The remaining dunes were colonized occasionally by plants and their roots penetrated into the flooded aeolian sands. Upon desiccation, deflation resulted in lags of coarser‐grained sediments. A renewed windblown supply led to aeolian sandsheet accumulation in topographic wadi depressions. Synsedimentary tectonics caused the outer back‐erg system to experience enhanced generation of accommodation space allowing the accumulation of aeolian dune sands. Ephemeral water flow to the outer back‐erg area supplied pebbles, eroded aeolian dunes, and produced hyperconcentrated flow deposits. Fluidization and liquefaction generated gravel pockets and recumbent folds. Dune damming after sporadic rains (the case of the Namib Desert), monsoonal water discharge (Thar Desert) and meltwater fluxes from glaciated mountains (Taklamakan Desert) are three potential, non‐exclusive analogues for the ephemeral water influx and the generation of hyperconcentrated flows in the Cretaceous desert margin system. An increase in relief driven by the Aptian anti‐clockwise rotation of Iberia, led to an altitude sufficient for the development of orographic rains and snowfall which fed (melt)water fluxes to the desert margin system. Quartzite conglomerates and sands, dominantly consisting of quartz and well‐preserved feldspar grains which are also observed in older Cretaceous strata, indicate an arid climate and the mechanical weathering of Precambrian and Palaeozoic metamorphic sediments and felsic igneous rocks. Unroofing of much of the cover of sedimentary rocks in the Variscan Iberian Massif must therefore have taken place in pre‐Cretaceous times. 相似文献
6.
Nejib JEMMALI Fouad SOUISSI Torsten W. VENNEMANN Emmanuel John M. CARRANZA 《Resource Geology》2011,61(4):367-383
The Jebel Ressas Pb–Zn deposits in North‐Eastern Tunisia occur mainly as open‐space fillings (lodes, tectonic breccia cements) in bioclastic limestones of the Upper Jurassic Ressas Formation and along the contact of this formation with Triassic rocks. The galena–sphalerite association and their alteration products (cerussite, hemimorphite, hydrozincite) are set within a calcite gangue. The Triassic rocks exhibit enrichments in trace metals, namely Pb, Co and Cd enrichment in clays and Pb, Zn, Cd, Co and Cr enrichment in carbonates, suggesting that the Triassic rocks have interacted with the ore‐bearing fluids associated with the Jebel Ressas Pb–Zn deposits. The δ18O content of calcite associated with the Pb–Zn mineralization suggests that it is likely to have precipitated from a fluid that was in equilibrium with the Triassic dolostones. The δ34S values in galenas from the Pb–Zn deposits range from ?1.5 to +11.4‰, with an average of 5.9‰ and standard deviation of 3.9‰. These data imply mixing of thermochemically‐reduced heavy sulfur carried in geothermal‐ and fault‐stress‐driven deep‐seated source fluid with bacterially‐reduced light sulfur carried in topography‐driven meteoric fluid. Lead isotope ratios in galenas from the Pb–Zn deposits are homogenous and indicate a single upper crustal source of base‐metals for these deposits. Synthesis of the geochemical data with geological data suggests that the base‐metal mineralization at Jebel Ressas was formed during the Serravallian–Tortonian (or Middle–Late Miocene) Alpine compressional tectonics. 相似文献
7.
Coarse‐grained deep‐water strata of the Cerro Toro Formation in the Cordillera Manuel Señoret, southern Chile, represent the deposits of a major channel belt (4 to 8 km wide by >100 km long) that occupied the foredeep of the Magallanes basin during the Late Cretaceous. Channel belt deposits comprise a ca 400 m thick conglomeratic interval (informally named the ‘Lago Sofia Member’) encased in bathyal fine‐grained units. Facies of the Lago Sofia Member include sandy matrix conglomerate (that show evidence of traction‐dominated deposition and sedimentation from turbulent gravity flows), muddy matrix conglomerate (graded units interpreted as coarse‐grained slurry‐flow deposits) and massive sandstone beds (high‐density turbidity current deposits). Interbedded sandstone and mudstone intervals are present locally, interpreted as inner levée deposits. The channel belt was characterized by a low sinuousity planform architecture, as inferred from outcrop mapping and extensive palaeocurrent measurements. Laterally adjacent to the Lago Sofia Member are interbedded mudstone and sandstone facies derived from gravity flows that spilled over the channel belt margin. A levée interpretation for these fine‐grained units is based on several observations, which include: (i) palaeocurrent measurements that indicate flows diverged (50° to 100°) once they spilled over the confining channel margin; (ii) sandstone beds progressively thin, away from the channel belt margin; (iii) evidence that the eroded channel base was not very well indurated, including a stepped margin and injection of coarse‐grained channel material into surrounding fine‐grained units; and (iv) the presence of sedimentary features common to levées, including slumped units inferring depositional slopes dipping away from the channel margin, lenticular sandstone beds thinning distally from the channel margin, soft sediment deformation and climbing ripples. The tectonic setting and foredeep architecture influenced deposition in the axial channel belt. A significant downstream constriction of the channel belt is reflected by a transition from more tabular units to an internal architecture dominated by lenticular beds associated with a substantially increased degree of scour. Differential propagation of the fold‐thrust belt from the west is speculated to have had a major control on basin, and subsequently channel, width. The confining influence of the basin slopes that paralleled the channel belt, as well as the likelihood that numerous conduits fed into the basin along the length of the active fold‐thrust belt to the west, suggest that proximal–distal relationships observed from large channels in passive margin settings are not necessarily applicable to axial channels in elongate basins. 相似文献
8.
Neil F. Glasser Philip D. Hughes Cassandra Fenton Christoph Schnabel Henrik Rother 《第四纪科学杂志》2012,27(1):97-104
This paper presents results of the analysis of paired cosmogenic isotopes (10Be and 26Al) from eight quartz‐rich samples collected from ice‐moulded bedrock on the Aran ridge, the highest land in the British Isles south of Snowdon. On the Aran ridge, comprising the summits of Aran Fawddwy (905 m a.s.l.) and Aran Benllyn (885 m a.s.l.), 26Al and 10Be ages indicate complete ice coverage and glacial erosion at the global Last Glacial Maximum (LGM). Six samples from the summit ridge above 750–800 m a.s.l. yielded paired 10Be and 26Al ages ranging from 17.2 to 34.4 ka, respectively. Four of these samples are very close in age (10Be ages of 17.5 ± 0.6, 17.5 ± 0.7, 19.7 ± 0.8 and 20.0 ± 0.7 ka) and are interpreted as representing the exposure age of the summit ridge. Two other summit samples are much older (10Be ages of 27.5 ± 1.0 and 33.9 ± 1.2 ka) and these results may indicate nuclide inheritance. The 26Al/10Be ratios for all samples are indistinguishable within one‐sigma uncertainty from the production rate ratio line, indicating that there is no evidence for a complex exposure history. These results indicate that the last Welsh Ice Cap was thick enough to completely cover the Aran ridge and achieve glacial erosion at the LGM. However, between c. 20 and 17 ka ridge summits were exposed as nunataks at a time when glacial erosion at lower elevations (below 750–800 m a.s.l.) was achieved by large outlet glaciers in the valleys surrounding the mountains. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
9.
Richard C. Preece Simon A. Parfitt G. Russell Coope Kirsty E. H. Penkman Philippe Ponel John E. Whittaker 《第四纪科学杂志》2009,24(6):557-580
Considerable debate surrounds the age of the Middle Pleistocene glacial succession in East Anglia following some recent stratigraphical reinterpretations. Resolution of the stratigraphy here is important since it not only concerns the glacial history of the region but also has a bearing on our understanding of the earliest human occupation of north‐western Europe. The orthodox consensus that all the tills were emplaced during the Anglian (Marine Isotope Stage (MIS) 12) has recently been challenged by a view assigning each major till to a different glacial stage, before, during and after MIS 12. Between Trimingham and Sidestrand on the north Norfolk coast, datable organic sediments occur immediately below and above the glacial succession. The oldest glacial deposit (Happisburgh Till) directly overlies the ‘Sidestrand Unio‐bed’, here defined as the Sidestrand Hall Member of the Cromer Forest‐bed Formation. Dating of these sediments therefore has a bearing on the maximum age of the glacial sequence. This paper reviews the palaeobotany and describes the faunal assemblages recovered from the Sidestrand Unio‐bed, which accumulated in a fluvial environment in a fully temperate climate with regional deciduous woodland. There are indications from the ostracods for weakly brackish conditions. Significant differences are apparent between the Sidestrand assemblages and those from West Runton, the type site of the Cromerian Stage. These differences do not result from contrasting facies or taphonomy but reflect warmer palaeotemperatures at Sidestrand and a much younger age. This conclusion is suggested by the higher proportion of thermophiles at Sidestrand and the occurrence of a water vole with unrooted molars (Arvicola) rather than its ancestor Mimomys savini with rooted molars. Amino acid racemisation data also indicate that Sidestrand is significantly younger than West Runton. These data further highlight the stratigraphical complexity of the ‘Cromerian Complex’ and support the conventional view that the Happisburgh Till was emplaced during the Anglian rather than the recently advanced view that it dates from MIS 16. Moreover, new evidence from the Trimingham lake bed (Sidestrand Cliff Formation) above the youngest glacial outwash sediments (Briton's Lane Formation) indicates that they also accumulated during a Middle Pleistocene interglacial – probably MIS 11. All of this evidence is consistent with a short chronology placing the glacial deposits within MIS 12, rather than invoking multiple episodes of glaciation envisaged in the ‘new glacial stratigraphy’ during MIS 16, 12, 10 and 6. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
10.
F. GALLIEN A. MOGESSIE C. A. HAUZENBERGER E. BJERG S. DELPINO B. CASTRO DE MACHUCA 《Journal of Metamorphic Geology》2012,30(3):281-302
Troctolitic gabbros from Valle Fértil and La Huerta Ranges, San Juan Province, NW‐Argentina exhibit multi‐layer corona textures between cumulus olivine and plagioclase. The corona mineral sequence, which varies in the total thickness from 0.5 to 1 mm, comprises either an anhydrous corona type I with olivine|orthopyroxene|clinopyroxene+spinel symplectite|plagioclase or a hydrous corona type II with olivine|orthopyroxene|amphibole|amphibole+spinel symplectite|plagioclase. The anhydrous corona type I formed by metamorphic replacement of primary olivine and plagioclase, in the absence of any fluid/melt phase at <840 °C. Diffusion controlled metamorphic solid‐state replacement is mainly governed by the chemical potential gradients at the interface of reactant olivine and plagioclase and orthopyroxene and plagioclase. Thus, the thermodynamic incompatibility of the reactant minerals at the gabbro–granulite transition and the phase equilibria of the coronitic assemblage during subsequent cooling were modelled using quantitative μMgO–μCaO phase diagrams. Mineral reaction textures of the anhydrous corona type I indicate an inward migration of orthopyroxene on the expense of olivine, while clinopyroxene+spinel symplectite grows outward to replace plagioclase. Mineral textures of the hydrous corona type II indicate the presence of an interstitial liquid trapped between cumulus olivine and plagioclase that reacts with olivine to produce a rim of peritectic orthopyroxene around olivine. Two amphibole types are distinguished: an inclusion free, brownish amphibole I is enriched in trace elements and REEs relative to green amphibole II. Amphibole I evolves from an intercumulus liquid between peritectic orthopyroxene and plagioclase. Discrete layers of green amphibole II occur as inclusion‐free rims and amphibole II+spinel symplectites. Mineral textures and geochemical patterns indicate a metamorphic origin for amphibole II, where orthopyroxene was replaced to form an inner inclusion‐free amphibole II layer, while clinopyroxene and plagioclase were replaced to form an outer amphibole+spinel symplectite layer, at <770 °C. Calculation of the possible net reactions by considering NCKFMASH components indicates that the layer bulk composition cannot be modelled as a ‘closed’ system although in all cases the gain and loss of elements within the multi‐layer coronas (except H2O, Na2O) is very small and the main uncertainties may arise from slight chemical zoning of the respective minerals. Local oxidizing conditions led to the formation of orthopyroxene+magnetite symplectite enveloping and/or replacing olivine. The sequence of corona reaction textures indicates a counter clockwise P–T path at the gabbro–granulite transition at 5–6.5 kbar and temperatures below 900 °C. 相似文献