首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Quaternary deposits of tectonically stable areas are a powerful tool to investigate high‐frequency climate variations (<10 ka) and to distinguish allogenic and autogenic factors controlling deposition. Therefore, an Upper Pleistocene–Holocene coastal apron‐fan system in north–western Sardinia (Porto Palmas, Italy) was studied to investigate the relations between climate changes, sea‐level fluctuations and sediment source‐supply that controlled its development. The sedimentary sequence records the strong influence of local (wet/dry) and worldwide (sea‐level) environmental variations in the sedimentation and preservation of the deposits. A multi‐disciplinary approach allowed subdivision of the succession into four major, unconformity‐bounded stratigraphic units: U1 U2, U3 and U4. Unit U1, tentatively dated to the warm and humid Marine Isotopic Stage (MIS) 5, consists of sandy, gravelly coastal/beach deposits developed during high sea‐level in low‐lying areas. Unit U2 consists of debris‐flow dominated fan‐deposits (ca 74 ka; MIS 4), preserved as partial fills of small valleys and coves. Unit U2 is mainly composed of reddish silty conglomerate to pebbly siltstones sourced from the Palaeozoic metamorphic inland hills (bedrock), superficially disintegrated during the preceding warm, vegetation‐rich MIS 5. The cold and semi‐arid climate strongly reduced vegetation cover along the valley flanks. Therefore, sediment gravity‐flow processes, possibly activated by rainstorms, led to deposition of debris‐flow dominated fans. Unit U3 consists of water‐flow dominated alluvial‐fan deposits (ca 47 to 23 ka; MIS 3), developed on a slightly inclined coastal plain. Unit U3 is composed of sandstone and sandy conglomerate fed from two main sediment sources: metamorphic inland bedrock and Quaternary bioclastic‐rich shelf‐derived sands. During this cold phase, sea‐level dropped sufficiently to expose bioclastic sands accumulated on the shelf. Frequent climate fluctuations favoured inland aeolian transport of sand during dry phases, followed by reworking of the aeolian bodies by flash floods during wet phases. Bedrock‐derived fragments mixed with water‐reworked, wind‐blown sands led to the development of water‐flow dominated fans. The Dansgaard–Oeschger events possibly associated with sand landward deflation and main fan formations are Dansgaard–Oeschger 13 (ca 47 ka), Dansgaard–Oeschger 8 (ca 39 ka) and Dansgaard–Oeschger 2 (ca 23 ka). No record of sedimentation during MIS 2 was observed. Finally, bioclastic‐rich aeolianites (Unit U4, ca 10 to 5 ka; MIS 1), preserved on a coastal slope, were developed during the Holocene transgression (ca 10 to 5 ka; MIS 1). The studied sequence shows strong similarities with those of other Mediterranean sites; it is, however, one of the few where the main MIS 4 and MIS 3 climatic fluctuations are registered in the sedimentary record.  相似文献   

2.
The Late Pleistocene was characterized by rapid climate oscillations with alternation of warm and cold periods that lasted up to several thousand years. Although much work has been carried out on the palaeoclimate reconstruction, a direct correlation of ice‐core, marine and terrestrial records is still difficult. Here we present new data from late Middle Pleniglacial to Lateglacial alluvial‐fan and aeolian sand‐sheet deposits in northwestern Germany. Records of Late Pleniglacial alluvial fans in central Europe are very rare, and OSL dating is used to determine the timing of fan aggradation. In contrast to fluvial systems that commonly show a delay between climate change and incision/aggradation, the small alluvial‐fan systems of the Senne area responded rapidly to climatic changes and therefore act as important terrestrial climate archives for this time span. The onset of alluvial‐fan deposition correlates with the climate change from warm to cold at the end of MIS 3 (29.3±3.2 ka). Strong fan progradation started at 24.4±2.8 ka and may be related to a period of higher humidity. The vertical stacking pattern of sedimentary facies and channel styles indicate a subsequrent overall decrease in water and sediment supply, with less sustained discharges and more sporadic runoffs from the catchment area, corresponding to an increasing aridity in central Europe during the Late Pleniglacial. Major phases of channel incision and fan aggradation may have been controlled by millennial‐scale Dansgaard–Oeschger cycles. The incision of channel systems is attributed to unstable climate phases at cold–warm (dry–wet) or warm–cold (wet–dry) transitions. The alluvial‐fan deposits are bounded by an erosion surface and are overlain by aeolian sand‐sheets that were periodically affected by flash‐floods. This unconformity might be correlated with the Beuningen Gravel Bed, which is an important marker horizon in deposits of the Late Pleniglacial resulting from deflation under polar desert conditions. The deposition of aeolian sand‐sheet systems (19.6±2.1 to 13.1±1.5 ka) indicates a rapid increase in aridity at the end of the Late Pleniglacial. Intercalated flash‐floods deposits and palaeosols (Finow type) point to temporarily wet conditions during the Lateglacial. The formation of an ephemeral channel network probably marks the warm‐cold transition from the Allerød to the Younger Dryas.  相似文献   

3.
Investigation of chemical and physical weathering of bedrock and alluvial sediment in the Anza Borrego Desert, California, sheds light on weathering processes in hot‐arid systems and clarifies interpretations of climate from alluvial sediment. All of the alluvial sediment in the study area emanates from Cretaceous tonalite of the Peninsular Range, enabling exploration of the effects of external variables – climate, transport distance and tectonics – on the physical and chemical properties of the sediment. Chemical weathering in this area is dominated by plagioclase alteration observed in both bedrock outcrops and sediment, evinced most clearly by changes in the Eu anomaly. Biotite chemical weathering, manifested by interlayer K+ loss, is not evident in bedrock, but clearly observed in the sediment. Despite the weak intensity of chemical weathering (Chemical Index of Alteration = 56 to 62), fine‐grained (<63 μm) sediment displays a clear weathering trend in A–CN–K space and contains up to 25% clay minerals. Physical abrasion and grain‐size reduction in biotite during transport predominates in the sediment, whereas physical (insolation) weathering affecting bedrock is inferred from estimates of differential thermal expansion of mineral phases in response to extreme temperature changes in the study area. Chemical alteration and Brunauer–Emmett–Teller surface area both increase within the active Elsinore fault zone at the distal end of the depositional transect, reflecting tectonic‐induced fracturing and associated accelerated weathering. Extensive fracturing, together with a more humid Pleistocene climate, probably facilitated in situ bedrock weathering, preceding arid alluvial deposition in the Holocene. This study demonstrates that both climate and tectonic processes can affect chemical and physical weathering, resulting in alteration of plagioclase, leaching of K+ from biotite in the sediment and formation of clay minerals, even in hot, arid systems.  相似文献   

4.
Alluvial fans serve as useful archives that record the history of depositional and erosional processes in mountainous regions and thus can reveal the environmental controls that influenced their development. Economically, they play an important role as groundwater reservoirs as well as host rocks for hydrocarbons in deeply buried systems. The interpretation of these archives and the evaluation of their reservoir architecture, however, are problematic because marked heterogeneity in the distribution of sedimentary facies makes correlation difficult. This problem is compounded because the accumulated sedimentary deposits of modern unconsolidated fan systems tend to be poorly exposed and few such systems have been the focus of investigation using high‐resolution subsurface analytical techniques. To overcome this limitation of standard outcrop–analogue studies, a geophysical survey of an alpine alluvial fan was performed using ground‐penetrating radar to devise a scaled three‐dimensional subsurface model. Radar facies were classified and calibrated to lithofacies within a fan system that provided outcropping walls and these were used to derive a three‐dimensional model of the sedimentary architecture and identify evolutionary fan stages. The Illgraben fan in the Swiss Alps was selected as a case study and a network of ca 60 km sections of ground‐penetrating radar was surveyed. Seven radar facies types could be distinguished, which were grouped into debris‐flow deposits and stream‐flow deposits. Assemblages of these radar facies types show three depositional units, which are separated by continuous, fan‐wide reflectors; they were interpreted as palaeo‐surfaces corresponding to episodes of sediment starvation that affected the entire fan. An overall upward decline in the proportion of debris‐flow deposits from ca 50% to 15% and a corresponding increase in stream‐flow deposits were identified. The uppermost depositional unit is bounded at its base by a significant incision surface up to 700 m wide, which was subsequently filled up mostly by stream‐flow deposits. The pronounced palaeo‐surfaces and depositional trends suggest that allocyclic controls governed the evolution of the Illgraben fan, making this fan a valuable archive from which to reconstruct past sediment fluxes and environmental change in the Alps. The results of the integrated outcrop–geophysical approach encourage similar future studies on fans to retrieve their depositional history as well as their potential reservoir properties.  相似文献   

5.
Characterization of alluvial bajada facies distribution using TM imagery   总被引:1,自引:0,他引:1  
Automatic mapping techniques using multiband satellite image information have been used to study sediment grain‐size variations on an alluvial bajada. A previous study of sparsely vegetated alluvial surfaces in central‐western Argentina showed that the reflectivity recorded in seven‐band Landsat TM images is controlled by sediment composition, age and grain size. At diameters >4 mm, clast composition influences image information, while at grain sizes smaller than sand, clay mineralogy begins to influence spectral characteristics. The progressive increase in desert varnish and the loss of fine grain‐size fractions as a result of deflation cause the age influence. The bajada sedimentary environment is well suited for testing the influence of grain‐size variability on image recovery, as most drainage basins are small and sourced by a single geological unit, which produces compositionally homogeneous alluvial surfaces. Additionally, most drainage lines are active within intervals of 10–50 years, reducing the effect of surface ageing. Larger than average drainage basins produce oversized drainage lines that disrupt the bajada, generate individual alluvial fans and have slightly different compositions. Two typical bajadas were selected to map grain‐size characteristics using automatic classification techniques. The obtained classes were checked in the field, and grain‐size and compositional counts were completed. Although both bajadas are very different in composition, most grain‐size curves showed similar shapes, suggesting that deposition took place by the same process (hyperconcentrated flash floods). The values of the median and mean were consistent across the same class between both bajadas. Thus, unsupervised classification techniques are useful for mapping sediment grain size, although minor field control is needed. Image classes represent areas of similar grain size, which are elongated parallel to the mountain front in an active alluvial bajada, indicating a homogeneous distribution of sedimentary processes along strike. Changes in the width of image classes indicate different downstream fining rates closely related to the topographic gap and the slope change rate. In contrast to bajadas, alluvial fans have semi‐circular belts and a pie‐piece‐shaped area in which most active streams are located. Thus, unlike fans, bajadas lack autocyclic mechanisms for producing heterogeneous sedimentary sequences. The sedimentary log of an ancient bajada was measured in order to show the influence of allocyclic factors in the absence of autocyclicity.  相似文献   

6.
This paper presents an overview of the evolution of the Nile deep‐sea turbidite system during the last 200 kyr, over a series of glacial to interglacial cycles. Six individual deep‐sea fans were identified from an extensive field data set. Each fan comprises a canyon, channel system and terminal lobes. Two of these fan systems were possibly active at the same time, at least during some periods. Large‐scale slope failures destroyed channel segments and caused the formation of new submarine fan systems. These slope failures thus played an important role in the overall evolution of the turbidite system. During the last glacial maximum (ca 25 to 14·8 ka) the central and eastern parts of the Nile deep‐sea turbidite system were relatively inactive. This inactivity corresponds to a lowstand in sea‐level, and a period of arid climate and relatively low sediment discharge from the Nile fluvial system. Rapid accumulation of fluvial flood‐derived deposits occurred across the shallower part of the submarine delta during sea‐level rise between ca 14·8 and 5 ka. The most recent deep‐sea channel–lobe system was very active during this period of rising sea‐level, which is also associated with a wetter continental climate and increased sediment and water discharge from the Nile. Increased sediment deposition in shallower water areas led to occasional large‐scale slope failure. The Nile deep‐sea turbidite system was largely inactive after ca 5 ka. This widespread inactivity is due to retreat of the coastline away from the continental shelf break, and to a more arid continental climate and reduced discharge of sediment from the Nile. The Nile deep‐sea turbidite system may be more active during periods of rising and high sea‐level associated with wetter climates, than during lowstands, and may rapidly become largely inactive during highstands in sea‐level coupled with arid periods. These acute responses to climate change have produced sedimentary/stratigraphic features that diverge from traditional sequence models in their nature and timing. This large‐scale sedimentary system responded to monsoon‐driven climate change and sea‐level change in a system‐wide and contemporaneous manner.  相似文献   

7.
8.
Sediment accumulation downstream of hydraulic jumps can occur in many settings but the architectures of such deposits are poorly documented. Here, three flume runs were used to examine the influence of sediment grain size and transport rate on the characteristics of hydraulic‐jump unit bars. In one of these runs six hydraulic‐jump unit bars formed a hydraulic‐jump bar complex. In another, the same sediment was supplied more quickly and only two unit bars formed. In the third run with the same sediment supply rate, but different grain size, only one large unit bar formed. All unit bars developed in a similar way but their size and internal architecture differed; they all resulted from a reduction in sediment transport capacity at the transition from supercritical flow to subcritical flow in the hydraulic jump. After initial onset of sedimentation and unit bar formation, generation of subsequent unit bars may be: (i) related to small changes in sediment flux; and (ii) independent of changes in the hydraulic jump. Continued sedimentation caused changes from oscillating to weak hydraulic jumps and hydraulic‐jump unit bars formed in both circumstances. The flow of water and suspended sediment becomes shallower over the lee of the bar complex. This leads to flow acceleration and a return to supercritical flow conditions. In turn, a chain of such features can form and generate a chute and pool bed morphology. There is an inherent upper size limit to a hydraulic‐jump bar complex due to the changing flow conditions over the growing deposit as the water above it becomes shallower. There is also an amplitude minimum for the development of foresets and subsequent unit bar growth. Hydraulic‐jump unit bars have architectures that should be recognizable in the rock record and because their size is constrained by the flow conditions, their identification should be useful for interpreting palaeoenvironment.  相似文献   

9.
In this study, the distribution of channel‐bed sediment facies in the lowermost Mississippi River is analysed using multibeam data, complemented by sidescan sonar and compressed high‐intensity radar pulse seismic data, as well as grab and core samples of bed material. The channel bed is composed of a discontinuous layer of alluvial sediment and a relict substratum that is exposed on the channel bed and sidewalls. The consolidated substratum is made up of latest Pleistocene and Early Holocene fluvio‐deltaic deposits and is preferentially exposed in the deepest thalweg segments and on channel sidewalls in river bends. The exposed substratum commonly displays a suite of erosional features, including flutes that are quantitatively similar in form to those produced under known laboratory conditions. A total of five bed facies are mapped, three of which include modern alluvial deposits and two facies that are associated with the relict substratum. A radius of curvature analysis applied to the Mississippi River centreline demonstrates that the reach‐scale distribution of channel‐bed facies is related to river planform. From a broader perspective, the distribution of channel‐bed facies is related to channel sinuosity — higher sinuosity promotes greater substratum exposure at the expense of alluvial sediment. For example, the ratio of alluvial cover to substratum is ca 1·5:1 for a 45 km segment of the river that has a sinuosity of 1·76 and this ratio increases to ca 3:1 for a 120 km segment of the river that has a sinuosity of 1·21. The exposed substratum is interpreted as bedrock and, given the relative coverage of alluvial sediment in the channel, the lowermost Mississippi River can be classified as a mixed bedrock‐alluvial channel. The analyses demonstrate that a mixed bedrock‐alluvial channel boundary can be associated with low‐gradient and sand‐bed rivers near their marine outlet.  相似文献   

10.
The Ombrone palaeovalley was incised during the last glacial sea‐level fall and was infilled during the subsequent Late‐glacial to Holocene transgression. A detailed sedimentological and stratigraphic study of two cores along the palaeovalley axis led to reconstruction of the post‐Last Glacial Maximum valley‐fill history. Stratigraphic correlations show remarkable similarity in the Late‐glacial to early‐Holocene succession, but discrepancy in the Holocene portion of the valley fill. Above the palaeovalley floor, about 60 m below sea‐level, Late‐glacial sedimentation is recorded by an unusually thick alluvial succession dated back to ca 18 cal kyr bp . The Holocene onset was followed by the retrogradational shift from alluvial to coastal facies. In seaward core OM1, the transition from inner to outer estuarine environments marks the maximum deepening of the system. By comparison, in landward core OM2, the emplacement of estuarine conditions was interrupted by renewed continental sedimentation. Swamp to lacustrine facies, stratigraphically equivalent to the fully estuarine facies of core OM1, represent the proximal expression of the maximum flooding zone. This succession reflects location in a confined segment of the valley, just landward of the confluence with a tributary valley. It is likely that sudden sediment input from the tributary produced a topographic threshold, damming the main valley course and isolating its landward segment from the sea. The seaward portion of the Ombrone palaeovalley presents the typical estuarine backfilling succession of allogenically controlled incised valleys. In contrast, in the landward portion of the system, local dynamics completely overwhelmed the sea‐level signal, following marine ingression. This study highlights the complexity of palaeovalley systems, where local morphologies, changes in catchment areas, drainage systems and tributary valleys may produce facies patterns significantly different from the general stratigraphic organization depicted by traditional sequence‐stratigraphic models.  相似文献   

11.
Mixed‐wood boreal forests are characterized by a heterogeneous landscape dominated by coniferous or deciduous species depending on stand moisture and fire activity. Our study highlights the long‐term drivers of these differences between landscapes across mixed‐wood boreal forests to improve simulated vegetation dynamics under predicted climate changes. We investigate the effects of main climate trends and wildfire activities on the vegetation dynamics of two areas characterized by different stand moisture regimes during the last 9000 years. We performed paleofire and pollen analyses in the mixed‐wood boreal forest of north‐western Ontario, derived from lacustrine sediment deposits, to reconstruct historical vegetation dynamics, which encompassed both the Holocene climatic optimum (ca. 8000–4000 a bp ) and the Neoglacial period (ca. 4000 a bp ). The past warm and dry period (Holocene climatic optimum) promoted higher fire activity that resulted in an increase in coniferous species abundance in the xeric area. The predicted warmer climate and an increase in drought events should lead to a coniferization of the xeric areas affected by high fire activity while the mesic areas may retain a higher broadleaf abundance, as these areas are not prone to an increase in fire activity. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
Tunnicliffe, J., Church, M. & Enkin, R. J. 2012 (January): Postglacial sediment yield to Chilliwack Lake, British Columbia, Canada. Boreas, Vol. 41, pp. 84–101. 10.1111/j.1502‐3885.2011.00219.x. ISSN 0300‐9483. Seismic records and evidence from sediment cores at Chilliwack Lake provide the basis for a long‐term (postglacial) sediment budget for a 324‐km2 Cordilleran catchment. Chilliwack Lake (11.8 km2 surface area), situated in the North Cascade Mountains, near Chilliwack, British Columbia, was formed behind a valley‐wide recessional moraine in the final phase of post‐Fraser alpine glaciation. Seismic surveys highlight the postglacial lacustrine record, which is underlain by a thick layer of sediments related to deglacial sedimentation. Sediment cores provide details of grain‐size fining from the delta to the distal lake basin. The cores also show a record of intermittent fire and debris flows. Magnetic measurements of lake sediments provide information on grain size, as well as a dating framework. The total postglacial lake‐floor deposit volume is estimated to be 397 ± 27 × 106 m3. Including estimates of fan and delta deposition, the specific postglacial yield to the lake is calculated to be ~86 ± 13 Mg km2 a?1. The sediment volume in the uppermost (Holocene) lacustrine layer is 128 ± 9 × 106 m3, representing ~41 ± 4 Mg km2 a?1 in the Holocene. Compared with other Cordilleran lakes of similar size, particularly those with glacial cover in the watershed, Chilliwack Lake has experienced relatively modest rates of sediment accumulation. This study provides an important contribution to a growing database of long‐term (postglacial) sediment yield data for major Cordilleran lakes, essential for advancing our understanding of the pace of landscape evolution in formerly glaciated mountainous regions.  相似文献   

13.
The textural variability of river bed gravels at bar scales is poorly understood, as are the relations between variability at this scale and at reach and river scales. Surface and subsurface grain‐size distributions were therefore examined at reach, bar and bedform scales along lower Fraser River, British Columbia, Canada. Grain‐size variations within compound bars are conditioned by longitudinal position, elevation and morphological setting. Surface and subsurface sediments tend to decrease in median size from bar head to bar tail by 33% and 17%, respectively. Sediment size is constrained at some upper limit that is inversely related to bar surface elevation and which is consistent with competence considerations. The surface sediments on unit bars are finer and better sorted than the bed materials in bar‐top channels and along the main bar edges. Secondary unit bars tend to have a lower sand content than other features, a consequence of sediment resorting. Individual unit bars and gravel sheets exhibit streamwise grain‐size fining and lee‐side sand deposition. Over time, significant amounts of cut and fill do not ipso facto cause changes in surface grain sizes; yet, sediment characteristics can change without any significant morphological adjustment taking place. At the reach scale there is a clear downstream fining trend, but local variability is consistently high due to within‐bar variations. The surface median grain‐size range on individual bars is, on average, 25% of that along the entire 50 km reach but is 68% on one bar. While the overall fining trend yields a downstream change in surface median size of 0·76 mm km?1, the average value for ‘head‐to‐tail’ size reduction on individual bars is 6·3 mm km?1, an order of magnitude difference that highlights the effectiveness of bar‐scale sorting processes in gravel‐bed rivers. Possibilities for modelling bar‐scale variability and the interaction of the different controls that are identified are discussed.  相似文献   

14.
Alluvial fans are relatively simple depositional systems, due to the direct coupling of sediment sources and adjacent accumulation areas. Nonetheless, general models of alluvial‐fan evolution and stratigraphy remain elusive, due to the great sensitivity of such systems to allogenic controls and their strongly case‐specific responses. Autogenic processes intrinsic to alluvial‐fan dynamics can complicate stratigraphic architectures, with effects not easily distinguishable from those of allogenic forcing. A distinction is made here between lateral autogenic dynamics, tied to spatial sediment distribution over fan surfaces, and vertical autogenic dynamics, related to independent incision‐aggradation cycles. Autogenic mechanisms have been highlighted recently by modelling studies, but remain poorly constrained in field‐based studies. Examples are presented here from the margins of the Cenozoic Teruel and Ebro basins (Spain), where alluvial fans accumulated thick successions during phases of basin topographic closure and endorheic drainage which promoted forced aggradation. Fan successions consist of conformable architectures of stacked clastic sheets, laterally continuous and with no evidence of internal unconformities, inset architectures, fan segmentation or preserved incised channels. Continuous aggradation in these closed basins strongly inhibited ‘vertical’ autogenic dynamics in the form of fan head and through fan incision, due to the forced rise in geomorphic base level and the creation of positive accommodation. Furthermore, the lack of incised channels favoured widespread sediment transport and aggradation over broad fan sectors in relatively short time spans, in contrast to the typical occurrence of active lobes and abandoned fan surfaces caused by ‘lateral’ autogenic dynamics. Stratigraphic records of alluvial fans developed in endorheic basins are essentially complete and largely unaffected by autogenic processes. The latter characteristic implies that they can be more unambiguously interpreted in terms of allogenic forcing, because stratigraphic signatures are not complicated by the effects of complex fan autodynamics.  相似文献   

15.
The links between large‐scale turbulence and the suspension of sediment over alluvial bedforms have generated considerable interest in the last few decades, with past studies illustrating the origin of such turbulence and its influence on flow resistance, sediment transport and bedform morphology. In this study of turbulence and sediment suspension over large sand dunes in the Río Paraná, Argentina, time series of three‐dimensional velocity, and at‐a‐point suspended sediment concentration and particle‐size, were measured with an acoustic Doppler current profiler and laser in situ scattering transmissometer, respectively. These time series were decomposed using wavelet analysis to investigate the scales of covariation of flow velocity and suspended sediment. The analysis reveals an inverse relationship between streamwise and vertical velocities over the dune crest, where streamwise flow deceleration is linked to the vertical flux of fluid towards the water surface in the form of large turbulent fluid ejections. Regions of high suspended sediment concentration are found to correlate well with such events. The frequencies of these turbulent events have been assessed from wavelet analysis and found to concentrate in two zones that closely match predictions from empirical equations. Such a finding suggests that a combination and interaction of vortex shedding and wake flapping/changing length of the lee‐side separation zone are the principal contributors to the turbulent flow field associated with such large alluvial sand dunes. Wavelet analysis provides insight upon the temporal and spatial evolution of these coherent flow structures, including information on the topology of dune‐related turbulent flow structures. At the flow stage investigated, the turbulent flow events, and their associated high suspended sediment concentrations, are seen to grow with height above the bed until a threshold height (ca 0·45 flow depth) is reached, above which they begin to decay and dissipate.  相似文献   

16.
Better methods for interpreting grain‐size spectra will enhance current understanding of past transport–depositional processes. A high‐resolution inorganic grain‐size dataset has been measured from a freeze core extracted from ‘Alberta Lake E’ a boreal fresh water lake 40 km east of the Athabasca Oil Sands in north‐eastern Alberta, Canada. The grain‐size spectra are remarkably consistent throughout the core, exhibiting a structure comprising six persistent grain‐size distributions below ca 250 μm, plus a rare medium‐sand distribution. Automated deconvolution of the grain‐size spectra produced poor results. Constraining the modes of two of the distributions produced deconvolution solutions that were statistically excellent and consistent with the structure of each spectrum. Statistical analysis of the ‘constrained’ solutions indicates that deconvolution successfully extracted independent grain‐size populations. Conversely, the multimodal spectra generate traditional measures (for example, mean grain size) that are inconsistent combinations of different individual populations and thus are poor proxies of transport–depositional processes. Alberta Lake E is situated in a boreal wetland landscape where sediment delivery is dominated by overland flow transport during spring melt. This context means that the Alberta Lake E grain‐size spectra can be interpreted to reflect: (i) a bedload component transported during short‐duration high discharge events that reflect the intensity of the melt; and (ii) a finer suspended load component representing material whose magnitude is controlled by the volume of the spring melt. Stratigraphically, bedload and suspended load populations demonstrate different short‐wavelength and long‐wavelength cyclicity, suggesting that spring melt is likely to be driven by cyclic external forcing factors. The links between the grain‐size spectra and spring melt have potential for generating proxy records that better capture the external controls over spring melt in boreal systems and the risks associated with these energetic hydrodynamics. This is exemplified by the coarsest Alberta Lake E distributions, which indicate that more intense spring‐melt dynamics occurred in pre‐historical times.  相似文献   

17.
Point bars formed by meandering river systems are an important class of sedimentary deposit and are of significant economic interest as hydrocarbon reservoirs. Standard point‐bar models of how the internal sedimentology varies are based on the structure of small‐scale systems with little information about the largest complexes and how these might differ. Here a very large point bar (>25·0 m thick and 7·5 × 13·0 km across) on the Mississippi River (USA) was examined. The lithology and grain‐size characteristics at different parts of the point bar were determined by using a combination of coring and electrical conductivity logging. The data confirm that there is a general fining up‐section along most parts of the point bar, with a well‐defined transition from massive medium‐grained sands below about 9 to 11 m depth up into interbedded silts and fine–medium sand sediment (inclined heterolithic strata). There is also a poorly defined increase in sorting quality at the transition level. Massive medium sands are especially common in the region of the channel bend apex and regions upstream of that point. Downstream of the meander apex, there is much less evidence for fining up‐section. Finer sediment accumulated more readily after the establishment of a compound bar in the later stages of construction, at the terminal apex and in the bar tail. This work implies that the best reservoir sands are likely to be located in the centre of the point bar, deposited in a simple bar system. Reservoir quality decreases towards the bar edge. The early‐stage channel plug is largely composed of coarsening‐upward cycles of silt to clay and is dominated by clay and clayey silt material with poor reservoir characteristics.  相似文献   

18.
Sediments contained in the river bed do not necessarily contribute to morphological change. The finest part of the sediment mixture often fills the pores between the larger grains and can be removed without causing a drop in bed level. The discrimination between pore‐filling load and bed‐structure load, therefore, is of practical importance for morphological predictions. In this study, a new method is proposed to estimate the cut‐off grain size that forms the boundary between pore‐filling load and bed‐structure load. The method evaluates the pore structure of the river bed geometrically. Only detailed grain‐size distributions of the river bed are required as input to the method. A preliminary validation shows that the calculated porosity and cut‐off size values agree well with experimental data. Application of the new cut‐off size method to the river Rhine demonstrates that the estimated cut‐off size decreases in a downstream direction from about 2 to 0·05 mm, covariant with the downstream fining of bed sediments. Grain size fractions that are pore‐filling load in the upstream part of the river thus gradually become bed‐structure load in the downstream part. The estimated (mass) percentage of pore‐filling load in the river bed ranges from 0% in areas with a unimodal river bed, to about 22% in reaches with a bimodal sand‐gravel bed. The estimated bed porosity varies between 0·15 and 0·35, which is considerably less than the often‐used standard value of 0·40. The predicted cut‐off size between pore‐filling load and bed‐structure load (Dc,p) is fundamentally different from the cut‐off size between wash‐load and bed‐material load (Dc,w), irrespective of the method used to determine Dc,p or Dc,w. Dc,w values are in the order of 10?1 mm and mainly dependent on the flow characteristics, whereas Dc,p values are generally much larger (about 100 mm in gravel‐bed rivers) and dependent on the bed composition. Knowledge of Dc,w is important for the prediction of the total sediment transport in a river (including suspended fines that do not interact with the bed), whereas knowledge of Dc,p helps to improve morphological predictions, especially if spatial variations in Dc,p are taken into account. An alternative to using a spatially variable value of Dc,p in morphological models is to use a spatially variable bed porosity, which can also be predicted with the new method. In addition to the morphological benefits, the new method also has sedimentological applications. The possibility to determine quickly whether a sediment mixture is clast‐supported or matrix‐supported may help to better understand downstream fining trends, sediment entrainment thresholds and variations in hydraulic conductivity.  相似文献   

19.
Siliciclastic intervals in Lower Permian carbonate–siliciclastic cyclothems in western Kansas record climate control on facies progression, deposition and preservation. The 26 000 km2 study area comprises seven marine‐continental (carbonate–siliciclastic) cyclothems caused by glacioeustasy. Core data and a three‐dimensional geological model provide a detailed view of the sub‐surface on a gently sloping ramp. Siliciclastic intervals in the cyclothems are fine‐grained red beds with extensive pedogenic features, indicating a continental origin. Bed geometry (sheet‐like deposits that thin to the east), lateral grading, grain size (very fine‐grained sand to silt) and grain angularity (sub‐angular to angular) suggest that the sediment is loess sourced from the west, probably the Ancestral Rocky Mountains. There is a repeated record of glacial‐cycle‐scale, climate‐controlled cyclicity within siliciclastic intervals that has not been recognized previously. Aeolian silt grain size coarsens upward towards the middle, then fines upward in each siliciclastic interval. When sea‐level was high (interglacial) and carbonate production flourished, aeolian sedimentation nearly ceased, suggesting increased vegetation and rainfall at the source. As sea‐level fell, fine‐grained siliciclastic sediments were deposited under relatively dry, but seasonally wet conditions on an exposed ramp. Laterally graded coarser grained siliciclastic sediments with diagnostic fabrics indicate drier conditions with seasonal rainfall during a continued relative fall in sea‐level. The coarsest siliciclastic sediments were deposited during the lowest sea‐level and driest conditions, but still with sufficient seasonal moisture to allow vegetative cover and bioturbation. Subsequent upward fining is correlated with sedimentological indications of wetter conditions during relative sea‐level rise. Unlike common sequence stratigraphic models that relate siliciclastic sediment accumulation to base‐level rise, continental deposits were preserved because plants and pedogenesis stabilized aeolian sediment. The aggradational landscape formed by this process had several metres of positive relief that reduced accommodation for overlying marine carbonate strata. Thus, this mechanism for continental siliciclastic aggradation has a significant effect on sequence stratigraphic architecture.  相似文献   

20.
Continental ‘overfilled’ conditions during rift initiation are conventionally explained as due to low creation of accommodation compared with sediment supply. Alternatively, sediment supply can be relatively high from the onset of rifting due to an antecedent drainage system. The alluvial Lower Group of the western Plio–Pleistocene Corinth rift is used to investigate the interaction of fluvial sedimentation with early rifting. This rift was obliquely superimposed on the Hellenide mountain belt from which it inherited a significant palaeorelief. Detailed sedimentary logging and mapping of the well‐exposed syn‐rift succession document the facies distributions, palaeocurrents and stratigraphic architecture. Magnetostratigraphy and biostratigraphy are used to date and correlate the alluvial succession across and between fault blocks. From 3·2 to 1·8 Ma, a transverse low sinuosity braided river system flowed north/north‐east to east across east–west‐striking active fault blocks (4 to 7 km in width). Deposits evolved downstream from coarse alluvial conglomerates to fine‐grained lacustrine deposits over 15 to 30 km. The length scale of facies belts is much greater than, and thus not directly controlled by, the width of the fault blocks. At its termination, the distributive river system built small, stacked deltas into a shallow lake margin. The presence of a major antecedent drainage system is supported by: (i) a single major sediment entry point; (ii) persistence of a main channel belt axis; (iii) downstream fining at the scale of the rift basin. The zones of maximum subsidence on individual faults are aligned with the persistent fluvial axis, suggesting that sediment supply influenced normal fault growth. Instead of low accommodation rate during the early rift phase, this study proposes that facies progradation can be controlled by continuous and high sediment supply from antecedent rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号