首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperate carbonates and mixed siliciclastics-carbonates of Upper Tortonian age were deposited on a narrow platform along the southeastern margin of the Sierra de los Filabres on the western side of the Vera Basin. The temperate carbonates were unlithified or were only weakly lithified on the seafloor and so were easily prone to synsedimentary removal. Part of the shelf sediments were eroded, reworked and redeposited in submarine lobes, up to 40 m thick and 1 km wide. The lobes consist of turbiditic carbonates (calcarenites and calcirudites) and mixed siliciclastics-carbonates, which contain up to 30% siliciclasts, derived from the Sierra de los Filabres to the northwest, and abundant bioclasts of coralline algae, bivalves and bryozoans. In the inner platform, the feeder channels of the lobes cross-cut beach and shoal deposits, and are filled by strings of debris flow conglomerates (up to 3 m thick and a few metres wide). These channels presumably developed as the continuation of river courses entering the sea. Further towards the outer platform, they pass into large channels (up to several hundred metres wide and 20 m deep) steeply cutting into the horizontally bedded strata of the platform. Significant quantities of platform sediment were removed by erosion during their excavation. Once abandoned, they were filled by new platform sediments. Further towards the basin, the channels associated with the lobes exhibit lateral accretion and internal cut-and-fill structures, and are intercalated between hemipelagic deposits. The channel-filling sediments are in this latter case coarse-grained carbonates and mixed siliciclastics-carbonates. Lobe development concentrated first at Cortijo Grande on the western side of the study area, and then to the east at Mojácar. This migration may relate to the uplift of the Sierra Cabrera, a major high occurring immediately to the south of the channel and lobe outcrops.  相似文献   

2.
The mordenite ore deposit of Los Escullos has a surface area of 106 m2 with an average thickness of 5 m and estimated reserves of 7,500,000 tons of mordenite–bentonite. It is made up of horizontal layers of interbedded epiclastic tuffs with volcanic bentonitised materials which have been subjected to hydromagmatic activity. The layers are essentially composed of bentonite and mordenite with lesser amounts of quartz, cristobalite, biotite, plagioclase, chlorite, amphiboles, titanomagnetite, ilmenite and calcite. The harder layers display a higher proportion of plagioclase crystals and are enriched in Al2O3, CaO, Fe2O3, TiO2, P2O5, Cu, Zn, Co, Cr, Ni and V, while the more altered layers contain larger contents of SiO2, K2O and Y. The amount of sodium increases (from 2% to 4%) relative to depth. Alteration processes resulted in a reduction in the contents of CaO, K2O and MnO and increase in Na2O and MgO. The beds of volcanic ash-tuffs have been devitrified by hydrothermal solutions giving rise to bentonites and sodium- and silica-rich residual fluids which have partly crystallized as mordenite and cristobalite. The raw material (mordenite–bentonite) can be improved removing biotite (magnetic separation) and plagioclase and quartz (by floating methods); however, the mordenite–bentonite mineral assemblage is practically impossible to separate due to the size of the crystals (average 0.5 μm under SEM–EDAX). In turn, this upgraded raw material has very useful properties (total area=520 m2/g and cation exchange capacity=70 meq/100 g) which may make it suitable for use in absorption processes (e.g. deodorization, cationic exchange), catalysis and molecular sieving.  相似文献   

3.
The Saumane‐Venasque compound palaeovalley succession accumulated in a strongly tide‐influenced embayment or estuary. Warm‐temperate normal marine to brackish conditions led to deposition of extensive cross‐bedded biofragmental calcarenites. Echinoids, bryozoans, coralline algae, barnacles and benthic foraminifera were produced in seagrass meadows, on rocky substrates colonized by macroalgae and within subaqueous dune fields. There are two sequences, S1 and S2, the first of which contains three high‐frequency sequences (S1a, S1b and S1c). Sequence 1 is largely confined to the palaeovalley with its upper part covering interfluves. Each of these has a similar upward succession of deposits that includes: (i) a basal erosional surface that is bored and glauconitized; (ii) a discontinuous lagoonal lime mudstone or wackestone; (iii) a thin conglomerate generated by tidal ravinement; (iv) a transgressive systems tract series of cross‐bedded calcarenites; (v) a maximum flooding interval of argillaceous, muddy quartzose, open‐marine limestones; and (vi) a thin highstand systems tract of fine‐grained calcarenite. Tidal currents during stages S1a, S1b and S1c were accentuated by the constricted valley topography, whereas basin‐scale factors enhanced tidal currents during the deposition of S2. The upper part of the succession in all but S1c has been removed by later erosion. There is an overall upward temporal change with quartz, barnacles, encrusting corallines and epifaunal echinoids decreasing but bryozoans, articulated corallines and infaunal echinoids increasing. This trend is interpreted to be the result of changing oceanographic conditions as the valley was filled, bathymetric relief was reduced, rocky substrates were replaced as carbonate factories by seagrass meadows and subaqueous dunes, and the setting became progressively less confined and more open marine. These limestones are characteristic of a suite of similar cool‐water calcareous sand bodies in environments with little siliciclastic or fresh water input during times of high‐amplitude sea‐level change wherein complex inboard antecedent topography was flooded by a rising ocean.  相似文献   

4.
This study investigates the controls on three-dimensional stratigraphic geometries and facies of shallow-water carbonate depositional sequences. A 15 km2 area of well-exposed Mid to Late Miocene carbonates on the margin of the Níjar Basin of SE Spain was mapped in detail. An attached carbonate platform and atoll developed from a steeply sloping basin margin over a basal topographic unconformity and an offshore dacite dome (Late Miocene). The older strata comprise prograding bioclastic (mollusc and coralline algae) dominated sediments and later Messinian Porites reefs form prograding and downstepping geometries (falling stage systems tract). Seven depositional sequences, their systems tracts and facies have been mapped and dated (using Sr isotopes) to define their morphology, stratigraphic geometries, and palaeo-environments. A relative sea-level curve and isochore maps were constructed for the three Messinian depositional sequences that precede the late Messinian evaporative drawdown of the Mediterranean. The main 3D controls on these depositional sequences are interpreted as being: (i) local, tectonically driven relative sea-level changes; (ii) the morphology of the underlying sequence boundary; (iii) the type of carbonate producers [bioclastic coralline algal and mollusc-dominated sequences accumulated in lows and on slopes of < 14° whereas the Porites reef-dominated sequence accumulated on steep slopes (up to 25°) and shallow-water highs]. Further controls were: (iv) the inherited palaeo-valleys and point-sourced clastics; (v) the amount of clastic sediments; and (vi) erosion during the following sequence boundary development. The stratigraphy is compared with that of adjacent Miocene basins in the western Mediterranean to differentiate local (tectonics, clastic supply, erosion history, carbonate-producing communities) versus regional (climatic, tectonic, palaeogeographic, sea-level) controls.  相似文献   

5.
《Sedimentology》2018,65(2):517-539
Enhanced aridification of Central Asia driven by the combined effects of orogenic surface uplift, Paratethys retreat, changes in atmospheric moisture transport and global cooling is one of the most prominent Cenozoic climate change events of the Northern Hemisphere. Deciphering regional long‐term patterns of Central Asian hydrology is, therefore, a key element in understanding the role of Northern Hemisphere mid‐latitude drying in the global hydrological system. This study characterizes long‐term palaeoenvironmental conditions between the late Oligocene and early Miocene in south‐eastern Kazakhstan based on stable isotopes, elemental geochemistry and laser ablation uranium–lead geochronology from alluvial, fluvial and pedogenic deposits. Sedimentary facies and geochemical weathering indices suggest an increased surface and groundwater discharge fed by orographically enhanced precipitation in the Tien Shan hinterland. In contrast, pedogenic stable isotope data and elevated rates of magnesium fixation in clay minerals mirror enhanced rates of evaporation in the vadose zone due to protracted aridification. This study posits that pronounced surface uplift of the Tien Shan Mountains during the Oligocene–Miocene transition promoted regionally increased orographic precipitation and the development of fluvial discharge systems.  相似文献   

6.
Coastal dune systems consisting of allochemical grains are important sedimentary archives of Pleistocene age in both of the hemispheres between the latitudes of 20° to 40°. The south Saurashtra coast in western India exhibits a large section of Middle Pleistocene aeolianites in the form of coastal cliffs, which is famous as ‘Miliolite’. Miliolites of Gopnath in south‐east Saurashtra are the oldest known coastal aeolianite deposits (age >156 ka which corresponds to Marine Isotope Stage 6) in western India. Aeolian deposits of similar ages have also been reported from the Thar Desert in north‐west India and from Southern Arabia which were largely controlled by the south‐west monsoon wind system that affects the entire belt corresponding to Sahara–Sahel, the Arabian Peninsula and north‐western India. Miliolite deposits in Gopnath are characterized by grainfall, grainflow and wind ripple laminations. At least three types of aeolian bounding surfaces have been identified. Five major facies have been identified which represent the dune and interdune relationship within the coastal aeolian system. The major dune bodies are identified as transverse dune types. The Gopnath aeolianites were deposited under dominantly dry aeolian conditions. Facies association reveals two different phases of aeolian accumulation, namely initiation of aeolian sedimentation after a prolonged hiatus and the establishment of a regularized aeolian sedimentation system. While initiation of aeolian sedimentation is marked by vast stretches of sheet sand with occasional dune bodies, the overlying thick, tabular, laterally extensive cross‐stratified units manifest regular aeolian sedimentation. However, the dune building events in Gopnath were interrupted by development of laterally extensive palaeosol horizons. Eustasy and climate exerted the major allogenic controls on the aeolian sedimentation by affecting the sediment budget as well as influencing the sedimentation pattern.  相似文献   

7.
During the early Pliocene, subaqueous delta‐scale clinoforms developed in the Águilas Basin, in a mixed temperate carbonate–siliciclastic system. The facies distribution is consistent with the infralittoral prograding wedge model. Stacking patterns and bounding surfaces indicate that the clinoforms formed during the highstand and falling sea‐level stages of a high rank cycle. Twenty‐two prograding clinothems were recognized over a distance of ≥1 km. Biostratigraphic data indicate a time span shorter than 700 kyr for the whole unit (MPl3 biozone of the Mediterranean Pliocene). Cyclic skeletal concentrations and occasional biostromes of suspension feeders (terebratulid brachiopods, modiolid bivalves and adeoniform bryozoan colonies), slightly evolved glauconite and occasional Glossifungites ichnofacies formed on the clinoforms during high‐frequency pulses of relative sea‐level rise. During such stages, increased accommodation space in the topsets of the clinoforms caused a strong reduction of terrigenous input into the foresets and bottomsets. This provided favourable conditions for the development of these suspension feeder palaeocommunities. During stillstand stages, however, reduced accommodation space in the topsets eventually resumed progradation in the foresets. There, the abundance of Ditrupa tubes indicates frequent siltation events that extirpated the terebratulid populations and other epifaunal suspension feeders in the foreset and bottomset subenvironments. The occurrence of shell beds on the clinoforms suggests that this case study represents lower progradation rates than standard examples where shell beds bound the clinobedded units at their base and top only. Importantly, the distributions of biofacies and ichnoassemblage associations contribute significantly to the understanding of the effects of relative sea‐level fluctuations on the evolution of subaqueous delta‐scale clinoform systems.  相似文献   

8.
During the Late Tortonian, platform‐margin‐prograding clinoforms developed at the south‐western margin of the Guadix Basin. Large‐scale wedge‐shaped deposits here comprise 26 rhythms of mixed carbonate–siliciclastic bedset packages and marl beds. These sediments were deposited on a shallow‐water, temperate‐carbonate distally steepened ramp. A downslope‐migrating sandwave field developed in this ramp, with sandwaves moving progressively down the ramp to the ramp‐slope, where they destabilized, folded and occasionally collapsed. Downslope sandwave migration was induced by currents flowing basinwards. During the Late Tortonian, the Guadix Basin was open north to the Atlantic Ocean via the Dehesas de Guadix Strait and connected east to the Mediterranean Sea through the Almanzora Corridor. According to the proposed current circulation model for the Guadix Basin for this time, surface marine currents from the Atlantic entered the basin from the northern seaway. These currents moved counter‐clockwise and shifted the sediment on the ramp, forming sandwaves that migrated downslope. The development of platform‐margin prograding clinoforms by the basinward sediment‐transport mechanisms inferred here is known relatively poorly in the ancient sedimentary record. Moreover, these wedge‐shaped geometries are similar to those found in some shelves in the Western Mediterranean Sea and could represent an outcrop analogue to (sub)‐recent, platform‐margin clinoforms revealed by high‐resolution seismic studies.  相似文献   

9.
The intramontane basins of the Betic Cordilleras (SE Spain) formed subsequent to the main phase of orogenic deformation during the middle Miocene in a close genetic relation to the Trans-Alboran Shear zone. Left lateral movements along a local branch (Carboneras fault zone, CF; strike NE–SW) of this zone played a major role in controlling the formation and dynamics of the Nijar-Carboneras Basin. To the south of the fault, a major phase of strike-slip faulting is recorded during the late Tortonian. The expression of this event is the Brèche Rouge de Carboneras (BRC), which seals a deep denudational surface on top of dislocated fault blocks formed by volcanics of the Cabo de Gata complex and early Tortonian shallow marine calcarenite. The sedimentary facies of this widely distributed unit in the Carboneras-Subbasin mirror the submarine topography and the distribution of the fault zones. Along strike-slip fault zones, autoclastic breccias and neptunian dikes preferentially oriented NW–SE and NE–SW occur, which are interpreted to represent the near-surface expression of the faults. Red limestone forms the groundmass of the autoclastic breccia and infills of neptunian dikes, which exhibit multiple phases of opening of fissures, gravitational sedimentary infill, lithification, and renewed creation of cracks. Steep relief, probably along fault scarps, was mantled by epiclastic volcanic conglomerate with a red carbonate matrix. Well-lithified coarse skeletal limestone rich in planktonic foraminifera formed pavements along sediment starved rocky surfaces in deep water. Laterally, within topographic depressions, the pavement limestone grades into thick accumulations of skeletal rudstone composed of fragmented azooxanthellate corals and stylasterid hydrozoans, which were concentrated by powerful bottom currents and gravitiy flows. Within the shallow water zone of dip slope ramps, cross-bedded calcarenite and calcirudite formed. Based on textures, fabrics and biota, rocks of the BRC were grouped into nine genetic lithofacies which document cryptic, deep-aphotic and shallow-photic environments typical of a sediment starved extensional basin.  相似文献   

10.
《Sedimentology》2018,65(5):1631-1666
Detailed logging and analysis of the facies architecture of the upper Tithonian to middle Berriasian Aguilar del Alfambra Formation (Galve sub‐basin, north‐east Spain) have made it possible to characterize a wide variety of clastic, mixed clastic–carbonate and carbonate facies, which were deposited in coastal mudflats to shallow subtidal areas of an open‐coast tidal flat. The sedimentary model proposed improves what is known about mixed coastal systems, both concerning facies and sedimentary processes. This sedimentary system was located in an embayed, non‐protected area of a wide C‐shaped coast that was seasonally dominated by wave storms. Clastic and mixed clastic–carbonate muds accumulated in poorly drained to well‐drained, marine‐influenced coastal mudflat areas, with local fluvial sandstones (tide‐influenced fluvial channels and sheet‐flood deposits) and conglomerate tsunami deposits. Carbonate‐dominated tidal flat areas were the loci of deposition of fenestral‐laminated carbonate muds and grainy (peloidal) sediments with hummocky cross‐stratification. Laterally, the tidal flat was clastic‐dominated and characterized by heterolithic sediments with hummocky cross‐stratification and local tidal sandy bars. Peloidal and heterolithic sediments with hummocky cross‐stratification are the key facies for interpreting the wave (storm) dominance in the tidal flat. Subsidence and high rates of sedimentation controlled the rapid burial of the storm features and thus preserved them from reworking by fair‐weather waves and tides.  相似文献   

11.
During the Late Tortonian, shallow‐water temperate carbonates were deposited in a small bay on a gentle ramp linked to a small island (Alhama de Granada area, Granada Basin, southern Spain). A submarine canyon (the ‘Alhama Submarine Canyon’) developed close to the shoreline, cross‐cutting the temperate‐carbonate ramp. The Alhama Submarine Canyon had an irregular profile and steep slopes (10° to 30°). It was excavated in two phases reflected by two major erosion surfaces, the lowermost of which was incised at least 50 m into the ramp. Wedge‐shaped and trough‐shaped, concave‐up beds of calcareous (terrigenous) deposits overlie these erosional surfaces and filled the canyon. A combination of processes connected to sea‐level changes is proposed to explain the evolution of the Alhama Submarine Canyon. During sea‐level fall, part of the carbonate ramp became exposed and a river valley was excavated. As sea‐level rose, river flows continued along the submerged, former river‐channel, eroding and deepening the valley and creating a submarine canyon. At this stage, only some of the transported conglomerates were deposited locally. As sea‐level continued to rise, the river mouth became detached from the canyon head; littoral sediments, transported by longshore and storm currents, were now captured inside the canyon, generating erosive flows that contributed to its excavation. Most of the canyon infilling took place later, during sea‐level highstand. Longshore‐transported well‐sorted calcarenites/fine‐grained calcirudites derived from longshore‐drift sandwaves poured into and fed the canyon from the south. Coarse‐grained, bioclastic calcirudites derived from a poorly sorted, bioclastic ‘factory facies’ cascaded into the canyon from the north during storms.  相似文献   

12.
Subaqueous sand dunes are common bedforms on continental shelves dominated by tidal and geostrophic currents. However, much less is known about sand dunes in deep‐marine settings that are affected by strong bottom currents. In this study, dune fields were identified on drowned isolated carbonate platforms in the Mozambique Channel (south‐west Indian Ocean). The acquired data include multibeam bathymetry, multi‐channel high‐resolution seismic reflection data, sea floor imagery, a sediment sample and current measurements from a moored current meter and hull‐mounted acoustic Doppler current profiler. The dunes are located at water depths ranging from 200 to 600 m on the slope terraces of a modern atoll (Bassas da India Atoll) and within small depressions formed during tectonic deformation of drowned carbonate platforms (Sakalaves Seamount and Jaguar Bank). Dunes are composed of bioclastic medium size sand, and are large to very large, with wavelengths of 40 to 350 m and heights of 0·9 to 9·0 m. Dune migration seems to be unidirectional in each dune field, suggesting a continuous import and export of bioclastic sand, with little sand being recycled. Oceanic currents are very intense in the Mozambique Channel and may be able to erode submerged carbonates, generating carbonate sand at great depths. A mooring located at 463 m water depth on the Hall Bank (30 km west of the Jaguar Bank) showed vigorous bottom currents, with mean speeds of 14 cm sec?1 and maximum speeds of 57 cm sec?1, compatible with sand dune formation. The intensity of currents is highly variable and is related to tidal processes (high‐frequency variability) and to anticyclonic eddies near the seamounts (low‐frequency variability). This study contributes to a better understanding of the formation of dunes in deep‐marine settings and provides valuable information about carbonate preservation after drowning, and the impact of bottom currents on sediment distribution and sea floor morphology.  相似文献   

13.
The Cariatiz section lies at the toe of the palaeoslope of the Messinian Cariatiz fringing reef, at the northern margin of the Neogene Sorbas Basin in SE Spain. Distal-slope reef deposits in the upper part of the section can be traced laterally to the reef core of the last episodes of reef progradation. The underlying deposits are alternating diatomitic marl, marl and silty marl that intercalate with sandstone beds. Combined lithological changes, variations in proportions of warm-water planktic foraminifera and δ 18O values suggest that at least seven, probably precessional, cycles are recorded throughout the Cariatiz section. The correlation of seven cycles in the pelagic deposits to seven reef progradation cycles, and associated vertical shifts in reef facies, indicates relative sea-level oscillations of several tens of metres. Biostratigraphic and palaeomagnetic data suggest that both the Cariatiz section and the fringing reef formed during the reverse polarity Chron C3r. Surface-water temperatures seem to be the major factor controlling carbonate production in the reef system. Deposition of bioclastic calcirudite and calcarenite, with no active coral growth, took place at the lowest sea-level within each reef cycle during temperature minima within each precessional cycle. Porites framework and reef-slope deposits with Halimeda gravel, in contrast, formed during temperature rises and thermal maxima within precessional cycles.  相似文献   

14.
《Sedimentology》2018,65(1):235-262
Chemostratigraphic studies on lacustrine sedimentary sequences provide essential insights on past cyclic climatic events, on their repetition and prediction through time. Diagenetic overprint of primary features often hinders the use of such studies for palaeoenvironmental reconstruction. Here the potential of integrated geochemical and petrographic methods is evaluated to record freshwater to saline oscillations within the ancient marginal lacustrine carbonates of the Miocene Ries Crater Lake (Germany). This area is critical because it represents the transition from shoreline to proximal domains of a hydrologically closed system, affected by recurrent emergent events, representing the boundaries of successive sedimentary cycles. Chemostratigraphy targets shifts related to subaerial exposure and/or climatic fluctuations. Methods combine facies changes with δ 13C–δ 18O chemostratigraphy from matrix carbonates across five closely spaced, temporally equivalent stratigraphic sections. Isotope composition of ostracod shells, gastropods and cements is provided for comparison. Cathodoluminescence and back‐scatter electron microscopy were performed to discriminate primary (syn‐)depositional, from secondary diagenetic features. Meteoric diagenesis is expressed by substantial early dissolution and dark blue luminescent sparry cements carrying negative δ 13C and δ 18O. Sedimentary cycles are not correlated by isotope chemostratigraphy. Both matrix δ 13C and δ 18O range from ca −7·5 to +4·0‰ and show clear positive covariance (R  = 0·97) whose nature differs from that of previous basin‐oriented studies on the lake: negative values are here unconnected to original freshwater lacustrine conditions but reflect extensive meteoric diagenesis, while positive values probably represent primary saline lake water chemistry. Noisy geochemical curves relate to heterogeneities in (primary) porosity, resulting in selective carbonate diagenesis. This study exemplifies that ancient lacustrine carbonates, despite extensive meteoric weathering, are able to retain key information for both palaeoenvironmental reconstruction and the understanding of diagenetic processes in relation to those primary conditions. Also, it emphasizes the limitation of chemostratigraphy in fossil carbonates, and specifically in settings that are sensitive for the preservation of primary environmental signals, such as lake margins prone to meteoric diagenesis.  相似文献   

15.
The Sorbas Member is a late Messinian complex sedimentary system that formed immediately following deposition of the Messinian evaporites in the Sorbas Basin (South‐east Spain). This work describes the sequence architecture and facies organization of a continuous kilometre long, alluvial fan to open platform transect near the village of Cariatiz in the north‐east of the basin. The post‐evaporitic Cariatiz platform was a mixed carbonate‐siliciclastic system composed of four intermediate‐frequency, fifth‐order depositional sequences (Depositional Sequences 1 to 4) arranged in an overall prograding trend. The intense fracturing and brecciation of these deposits is attributed to the deformation and dissolution of an evaporite body measuring several tens of metres in thickness. The four sequences display significant spatial–temporal variability in both architecture and facies distribution, with two main phases: (i) Depositional Sequences 1 and 2 are ooid and oobioclastic dominated, and show normal marine faunas; and (ii) Depositional Sequences 3 and 4 show a higher siliciclastic contribution and are microbialite dominated. These important changes are interpreted as modifications of the primary controlling factors. Following an initial 70 m drowning, possibly linked to increased oceanic input, Depositional Sequences 1 to 3 were controlled mainly by eustatic variations and inherited topography; their progradation destabilized the evaporite body near the end of the Depositional Sequence 2 period. During the second phase, Depositional Sequences 3 and 4 recorded a progressive restriction of the Sorbas Basin related to a 30 to 40 m fall in water level that was driven mainly by regional factors. These regional factors were dissolution and gravity‐induced deformation of the evaporites and correlative evaporative fluid circulation associated with the contrasted arid/humid regional climate that, respectively, controlled sequence geometry and fluctuating water salinity which caused a microbialite bloom.  相似文献   

16.
Autochthonous red algal structures known as coralligène de plateau occur in the modern warm‐temperate Mediterranean Sea at water depths from 20 to 120 m, but fossil counterparts are not so well‐known. This study describes, from an uplifted coastal section at Plimiri on the island of Rhodes, a 450 m long by 10 m thick Late Pleistocene red algal reef (Coralligène Facies), interpreted as being a coralligène de plateau, and its associated deposits. The Coralligène Facies, constructed mainly by Lithophyllum and Titanoderma, sits unconformably upon the Plio‐Pleistocene Rhodes Formation and is overlain by a Maerl Facies (2 m), a Mixed Siliciclastic‐Carbonate Facies (0·2 m) and an Aeolian Sand Facies (2·5 m). The three calcareous facies, of Heterozoan character, are correlated with established members in the Lindos Acropolis Formation in the north of the island, while the aeolian facies is assigned to the new Plimiri Aeolianite Formation. The palaeoenvironmental and genetic‐stratigraphic interpretations of these mixed siliciclastic‐carbonate temperate water deposits involved consideration of certain characteristics associated with siliciclastic shelf and tropical carbonate shelf models, such as vertical grain‐size trends and the stratigraphic position of zooxanthellate coral growths. Integration of these results with electron spin resonance dates of bivalve shells indicates that the Coralligène Facies was deposited during Marine Isotope Stage 6 to 5e transgressive event (ca 135 to 120 ka), in water depths of 20 to 50 m, and the overlying Maerl Facies was deposited during regression from Marine Isotope Stage 5e to 5d (ca 120 to 110 ka), at water depths of 25 to 40 m. The capping Aeolian Sand Facies, involving dual terrestrial subunits, is interpreted as having formed during each of the glacial intervals Marine Isotope Stages 4 (71 to 59 ka) and 2 (24 to 12 ka), with soil formation during the subsequent interglacial periods of Marine Isotope Stages 3 and 1, respectively. Accumulation rates of about 0·7 mm year?1 are estimated for the Coralligène Facies and minimum accumulation rates of 0·2 mm year?1 are estimated for the Maerl Facies. The existence of older red algal reefs in the Plimiri region during at least Marine Isotope Stages 7 (245 to 186 ka) and 9 (339 to 303 ka) is inferred from the occurrence of reworked coralligène‐type lithoclasts in the basal part of the section and from the electron spin resonance ages of transported bivalve shells.  相似文献   

17.
A number of Palaeogene to Early Neogene gypsum units are located along the southern margins of the Ebro Basin (North‐east Spain). These marginal units, of Eocene to Lower Miocene age, formed and accumulated deposits of Ca sulphates (gypsum and anhydrite) in small, shallow saline lakes of low ionic concentration. The lakes were fed mainly by ground water from deep regional aquifers whose recharge areas were located in the mountain chains bounding the basin, and these aquifers recycled and delivered Ca sulphate and Na chloride from Mesozoic evaporites (Triassic and Lower Jurassic). In outcrop, the marginal sulphate units are largely secondary gypsum after anhydrite and exhibit meganodules (from 0·5 to >5 m across) and large irregular masses. In the sub‐surface these meganodules and masses are mostly made of anhydrite, which replaced the original primary gypsum. The isotopic composition (11·1 to 17·4‰ for δ18OVSMOW; 10·7 to 15·3‰ for δ34SVCDT) of secondary gypsum in this meganodular facies indicates that the precursor anhydrite derived from in situ replacement of an initial primary gypsum. As a result of ascending circulation of deep regional fluid flows through the gypsum units near the basin margins, the gypsum was partly altered to anhydrite within burial conditions from shallow to moderate depths (from some metres to a few hundred metres?). At such depths, the temperatures and solute contents of these regional flows exceeded those of the ground water today. These palaeoflows became anhydritizing solutions and partly altered the subsiding gypsum units before they became totally transformed by deep burial anhydritization. The characteristics of the meganodular anhydritization (for example, size and geometry of the meganodules and irregular masses, spatial arrangement, relations with the associated lithologies and the depositional cycles, presence of an enterolithic vein complex and palaeogeographic distribution) are compared with those of the anhydritization generated both in a sabkha setting or under deep burial conditions, and a number of fundamental differences are highlighted.  相似文献   

18.
An aeolian dune field migrating to the east encroached on the toes of alluvial fans in the Teruel Basin (eastern Spain) during a short interval in the Late Pliocene (ca 2·9 to 2·6 Ma), when Northern Hemisphere glaciation and strong glacial–interglacial cycles began. Preservation of the dune field was controlled by syn‐sedimentary activity of a normal fault. Ephemeral water discharge eroded aeolian sands and formed V‐shaped channels in which aeolian sandstone blocks accumulated. The incorporation of loose aeolian sand in wadi waters modified the sediment/water ratio, changing the physical properties of the flows as they penetrated the aeolian dune field. The erosion and cover of aeolian dune foresets by sheetflood deposits suggest that dune‐damming caused the intermittent ponding of water behind the dunes and its flashy release. The arid climate in the Late Pliocene western Mediterranean realm favoured the transport of windblown sediments from northern Africa and western Mediterranean land masses into the Mediterranean. The formation of the studied aeolian dune field (2·9 to 2·6 Ma) and possibly others (for example, the Atacama, Namib and Sahara deserts) correlates with a strong increase of the influence of obliquity, which can be attributed to the combination of a regional expression related to the reduced effect of precession due to a minimum in the long‐period (2·3 Ma) eccentricity cycle and a remote expression of the onset of the Northern Hemisphere glaciation.  相似文献   

19.
The Lake Afourgagh sediment record and facies successions provide an outstanding example of environmentally controlled carbonate sedimentation. Afourgagh is a small, shallow permanent lake located in the Middle‐Atlas Mountains in Morocco in a karstic context. It is fed by ground waters that are relatively enriched in Mg resulting from the leaching of the Jurassic dolomitic bedrock of the catchment. This eutrophic lake is episodically restricted and characterized by alkaline waters with a fluctuating high Mg/Ca ratio. The maximum extension of the Holocene shoreline coincides with evidence of a lake stabilization level corresponding to the outflow of the lake through a wadi. Lakeshore terrace sediments deposited on an alluvial fan siltstone during the past ca 2500 cal yr bp comprise four main facies: a littoral crust, palaeosols, palustrine silts and charophyte tufas, which reflect different environments from the shoreline toward the deeper water. In the more distal parts, the charophyte tufas display a well‐expressed lamination punctuated by the development of microstromatolites on algae thalli. The mineralogical composition of the carbonates is linked to the facies. While the charophyte tufas are characterized by a relatively high content in aragonite, in addition to low‐Mg calcite, the littoral crust is mainly composed of magnesite. This pattern is related to the evolving chemistry of water due to the influence of charophyte proliferation during dry summers. Calcium‐carbonate precipitation on algae thalli (both bioinduced and microbially mediated) progressively induces an increase in the Mg/Ca ratio of the lake water, while the capillary evaporation of shallow ground waters causes precipitation of a magnesite precursor on the shoreline, producing magnesite during early diagenesis. This effect is characteristic of two episodes: part of the Roman Warm Period and the beginning of the Dark Age Cold Period. The carbonate mineralogy of the different depositional sequences at Afourgagh indicates lake‐level and water‐chemistry fluctuations under a climatic influence. Therefore, among other regional records, the Lake Afourgagh sedimentary record provides useful evidence for reconstructing these environmental changes.  相似文献   

20.
Quartz geodes and nodular chert have been found within middle–upper Campanian carbonate sediments from the Laño and Tubilla del Agua sections of the Basque‐Cantabrian Basin, northern Spain. The morphology of geodes together with the presence of anhydrite laths included in megaquartz crystals and spherulitic fibrous quartz (quartzine‐lutecite), suggest an origin from previous anhydrite nodules. The anhydrite nodules at Laño were produced by the percolation of marine brines, during a period corresponding to a sedimentary gap, with δ34S and δ18O mean values of 18.8‰ and 13.6‰ respectively, consistent with Upper Cretaceous seawater sulphate values. Higher δ34S and δ18O mean values of 21.2‰ and 21.8‰ recorded in the Tubilla del Agua section are interpreted as being due to a partial bacterial sulphate reduction process in a more restricted marine environment. The idea that sulphates may have originated from the leaching of previously deposited Keuper sulphate evaporites with subsequent precipitation as anhydrite, is rejected because the δ34S, δ18O and 87Sr/86Sr values of anhydrite laths observed at both the Tubilla del Agua and Laño sections suggest an origin from younger marine brines. Later calcite replacement and precipitation of geode‐filling calcite is recorded in both sections, with δ13C and δ18O values indicating the participation of meteoric waters. Synsedimentary activity of the Peñacerrada diapir, which lies close to the Laño section, played a significant role in the local shallowing of the basin and the formation of quartz geodes. In contrast, eustatic shallowing of the inner marine series of the Tubilla del Agua section led to the generation of morphologically similar quartz geodes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号