首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The significance of stromatolites as depositional environmental indicators and the underlying causes of lamination in the lacustrine realm are poorly understood. Stromatolites in a ca 600 m thick Miocene succession in the Ebro Basin are good candidates to shed light on these issues because they are intimately related to other lacustrine carbonate and sulphate facies, grew under variable environmental conditions and show distinct lamination patterns. These stromatolites are associated with wave‐related, clastic‐carbonate laminated limestones. Both facies consist of calcite and variable amounts of dolomite. Thin planar stromatolites (up to 10 cm thick and less than 6 m long) occurred in very shallow water. These stromatolites represented first biological colonization after: (i) subaerial exposure in the palustrine environment (i.e. at the beginning of deepening cycles); or (ii) erosion due to surge action, then coating very irregular surfaces on laminated limestones (i.e. through shallowing or deepening cycles). Sometimes they are associated with evaporative pumping. Stratiform stromatolites (10 to 30 cm high and tens of metres long) and domed stromatolites (10 to 30 cm high and long) developed in deeper settings, between the surge periods that produced hummocky cross‐stratification and horizontal lamination offshore. Changes in stromatolite lamina shape, and thus in the growth forms through time, can be attributed to changes in water depth, whereas variations in lamina continuity are linked to water energy and sediment supply. Growth of the stromatolites resulted from in situ calcite precipitation and capture of minor amounts of fine‐grained carbonate particles. Based on texture, four types of simple laminae are distinguished. The simple micrite and microsparite laminae can be grouped into light and dark composite laminae, which represent, respectively, high and low Precipitation/Evaporation ratio periods. Different lamination patterns provide new ideas for the interpretation of microbial laminations as a function of variations in climate‐dependent parameters (primarily the Precipitation/Evaporation ratio) over variable timescales.  相似文献   

2.
Well-preserved siliciclastic domal stromatolites, up to 2 m wide and 1·5 m high, are found in a 10 to 15 m thick interval within the Late Ordovician Eureka Quartzite of Southern Nevada and Eastern California, USA. These stromatolites appear as either isolated features or patchy clusters that contain more than 70% by volume quartz grains; their association with planar, trough and herringbone cross-bedding suggests that they were formed in an upper shoreface environment with high hydraulic energy. In this environment, sand bars or dunes may have provided localized shelter for initial microbial mat colonization. Biostabilization and early lithification of microbial mats effectively prevented erosion during tidal flushing and storm surges, and the prevalence of translucent quartz sand grains permitted light penetration into the sediment, leading to thick microbial mat accretion and the formation of domal stromatolites. Decimetre-scale to metre-scale stromatolite domes may have served as localized shelter and nucleation sites for further microbial mat colonization, forming patchy stromatolite clusters. Enrichment of iron minerals, including pyrite and hematite, within dark internal laminae of the stromatolites indicates anaerobic mineralization of microbial mats. The occurrence of stromatolites in the Eureka Quartzite provides an example of microbial growth in highly stressed, siliciclastic sedimentary environments, in which microbial communities may have been able to create microenvironments promoting early cementation/lithification essential for the growth and preservation of siliciclastic stromatolites.  相似文献   

3.
Accumulation of microbial mats and stromatolites dominate in the crystallization ponds of solar salt works west of Alexandria, Egypt. These microbial mats are laminar in the permanent submerged part of the ponds. The microbial mats commonly form sites for growth of gypsum crystals during periods having higher salinity. In the dominant submerged part of the pond, domal stromatolites are common around groundwater seepage holes. In the shallow, intermittent margin of the ponds, the laminated microbial structure forms laterally close-linked hemispheroidal stromatolite type, with unidirectional and multidirectional ripple mark-like morphology on their surface. The microbial laminite and stromatolite types in the modern solar salt works are similar to the organic-rich Miocene gypsum beds of El-Barqan (west Alexandria, Egypt) and Rabigh (north Jeddah, Saudi Arabia). The Miocene organic-rich beds consist of interlayered dark-colored microbial laminae and light-colored gypsum laminae. These beds may have three different variations: regular even lamination, laterally closed-linked hemispheroidal stromatolites, and/or discrete hemispheroidal stromatolites. Petrographic examination of the microbial laminites and stromatolites in the solar salt works and the Miocene gypsum beds indicate that the dark-colored, organic-rich laminae are composed of micritized microbial laminae and/or brown organic filaments. In El-Barqan area, the light-colored gypsum-rich laminae are composed of either gypsum crystal fragments, or lenticular and prismatic gypsum. These gypsum crystals are either entrapped within the microbial filaments or are nucleated at the surface of the microbial laminae to form a radial pattern, whereas in Rabigh area, the light-colored gypsum-rich laminae are composed of secondary porphyrotopic, poikilotopic, or granular gypsum crystals. By comparison of the microbial structure in the Miocene gypsum beds with the recent occurrence of the microbial laminites and stromatolites in the solar salt works, it is demonstrated that the organic-rich Miocene gypsum beds were formed in a very shallow salina with slightly fluctuating brine levels.  相似文献   

4.
The origin and environmental dependencies of lamination in stalagmites from Katerloch, common in speleothems from other cave sites, are examined in detail. Petrographic observations and chemical analyses (including isotopes) of stalagmites and modern calcite were combined with multi‐annual cave monitoring. All investigated stalagmites are composed of low‐Mg calcite and show white, porous laminae and typically thinner, translucent dense laminae. The binary lamination pattern results from changes in the calcite fabric: white, porous laminae are characterized by a high porosity and abundant fluid inclusions and also by enhanced vertical growth and thinning towards the flanks. Translucent, dense laminae exhibit a compact fabric and constant thickness of individual growth layers. U‐Th dating supports an annual origin of the lamination and the seasonally changing intensity of cave ventilation provides a robust explanation for the observed relationships between lamination, stable C isotopic compositions and trace elements (Mg, Sr and Ba). The seasonally variable air exchange, driven by temperature contrasts between the cave interior and outside atmosphere, modulates the rate and amount of CO2 degassing from the drip water and affects the hydrochemistry and consequently the fabric of the precipitating calcite. Although cave air composition and drip rate are both major variables in controlling CO2 degassing from the drip water, the seasonally changing ventilation in Katerloch exerts the primary control and the results suggest a secondary (amplifying/attenuating) influence of the drip rate. Drip rate, however, might be the controlling parameter for lamina development at cave sites experiencing only small seasonal cave air exchange. Importantly, the seasonally variable composition of drip water does not reflect the seasonal cycle of processes in the soil zone, but results from exchange with the cave atmosphere. The alternating porous and dense calcite fabric is the expression of a variable degree of lateral coalescence of smaller crystallites forming large columnar crystals. The white, porous laminae represent partial coalescence and form during the warm season: low calcite δ13C values are linked to low δ13C values of cave air and drip water during that time. This observation corresponds to times of reduced cave ventilation, high pCO2 of cave air, low drip water pH, lower calcite supersaturation and typically high drip rates. In contrast, the translucent, dense laminae represent more or less complete lateral coalescence (inclusion‐free) during the cold season (high calcite, drip water and cave air δ13C values), i.e. times of enhanced cave ventilation, low cave air pCO2, increased drip water pH, relatively high calcite supersaturation and typically low drip rates. In essence, the relative development of the two lamina types reflects changes in the seasonality of external air temperature and precipitation, with a strong control of the winter air temperature on the intensity of cave‐air exchange. Thick translucent, dense laminae are favoured by long, cold and wet winters and such conditions may be related closely to the North Atlantic Oscillation mode (weak westerlies) and enhanced Mediterranean cyclone activity during the cold season. Studies of speleothem lamination can thus help to better understand (and quantify) the role of seasonality changes, for example, during rapid climate events.  相似文献   

5.
The Mississippian (Early Carboniferous) is generally a period of scarce carbonate buildups in South China. This study documents outcrops of stromatolite mounds at Mengcun and Helv villages, in Laibin City, Guangxi Province, South China. The stromatolite mounds contain various stromatolite morphologies including laminar, wavy-laminar, domal or hemispheroidal, bulbous, and flabellate-growth columns. Intramound rocks are brachiopod floatstone and dark thin-bedded laminated micrite limestone. Individual stromatolites at Mengcun village are generally 3–6 cm thick and morphologically represent relatively shallow-water laminar (planar and wavy-undulated stromatolites) and deeper-water domal, bulbous and columnar forms. Where mounds were formed, the stromatolites continued growing upward up to 60 cm thick. Thrombolitic fabrics also occur but are not common. Stromatolite microscopic structure shows the bulk of the lamination to consist of wavy microbialite and discrete thin micritic laminae. These mounds are intercalated in deep-water fore-reef talus breccia, packstone formed as a bioclastic debris flow and thin-bedded limestone containing common chert layers of the Tatang Formation (late Viséan). Further evidence supporting the deep-water setting of the stromatolite mounds are: (1) a laterally thinning horizon of brachiopod floatstone containing deep-water, small, thin-shelled brachiopods, peloidal micritic sediments and low-diversity, mixed fauna (e.g., thin-shelled brachiopods, tube-like worms and algae) that have been interpreted as storm deposits, (2) common fore-reef talus breccias, (3) lack of sedimentary structures indicating current action, (4) preservation of lamination with sponge spicules, and (5) lack of bioturbation suggesting that the stromatolites grew in a relatively low energy, deep-water setting. The stromatolite mounds are the first described stromatolite mounds in Mississippian strata of South China and contain evidence that supports interpretations of (1) growth history of Mississippian microbial buildups and (2) environmental controls on stromatolite growth and lithification.  相似文献   

6.
《Sedimentology》2018,65(5):1611-1630
This study focuses on recent debate over the value of stable isotope‐based environmental proxies recorded in riverine tufa stromatolites. A twelve‐year record (1999 to 2012) of river‐bed tufa stromatolites in the River Piedra (north‐east Spain) was recovered in this study, along with a partly overlapping fifteen‐year record (1994 to 2009) of accumulations in a drainage pipe: both deposits formed in water with near identical physico/chemical parameters. Measured water temperature data and near‐constant δ 18Owater composition allowed selection of an ‘equilibrium’ palaeotemperature equation that best replicated actual temperatures. This study, as in some previous studies, found that just two published formulas for water temperature calculation from equilibrium calcite δ 18O compositions were appropriate for the River Piedra, where tufa deposition rates are high, with means between 5·6 mm and 10·8 mm in six months. The δ 18Ocalcite in both the river and the pipe deposits essentially records the full actual seasonal water temperature range. Only the coldest times (water temperature <10°C), when calcite precipitation mass decreased to minimum, are likely to be unrepresented, an effect most noticeable in the pipe where depositional masses are smaller and below sample resolution. While kinetic effects on δ 18Ocalcite‐based calculated water temperature cannot be ruled out, the good fit between measured water temperature and δ 18Ocalcite‐calculated water temperature indicates that temperature is the principal control. Textural and deposition rate variability between the river and pipe settings are caused by differences in flow velocity and illumination. In the river, calcification of growing cyanobacterial mat occurred throughout the year, producing composite dense and porous laminae, whereas in the pipe, discontinuous cyanobacterial growth in winter promoted more abiogenic calcification. High‐resolution δ 18Ocalcite data from synchronous pipe and river laminae show that reversals in water temperature occur within laminae, not at lamina boundaries, a pattern consistent with progressive increase in calcite precipitation rate as cyanobacterial growth re‐established in spring.  相似文献   

7.
The Mesoproterozoic Tieling Formation, near Jixian, northern China, contains thick beds of vertically branched, laterally elongate, columnar stromatolites. Carbonate mud is the primary component of both the stromatolites and their intervening matrix. Mud abundance is attributed to water column ‘whiting’ precipitation stimulated by cyanobacterial photosynthesis. Neomorphic microspar gives the stromatolites a ‘streaky’ microfabric and small mud flakes are common in the matrix. The columns consist of low‐relief, mainly non‐enveloping, laminae that show erosive truncation and well‐defined repetitive lamination. In plan view, the columns form disjunct elongate ridges <10 cm wide separated by narrow matrix‐filled runnels. The stromatolite surfaces were initially cohesive, rather than rigid, and prone to scour, and are interpreted as current aligned microbial mats that trapped carbonate mud. The pervasive ridge–runnel system suggests scale‐dependent biophysical feedback between: (i) carbonate mud supply; (ii) current duration, strength and direction; and (iii) growth and trapping by prolific mat growth. Together, these factors determined the size, morphology and arrangement of the stromatolite columns and their laminae, as well as their branching patterns, alignment and ridge–runnel spacing. Ridge–runnel surfaces resemble ripple mark patterns, but whether currents were parallel and/or normal to stromatolite alignment remains unclear. The formation and preservation of Tieling columns required plentiful supply of carbonate mud, mat‐building microbes well‐adapted to cope with this abundant sediment, and absence of both significant early lithification and bioturbation. These factors were time limited, and Tieling stromatolites closely resemble coeval examples in the Belt‐Purcell Supergroup of Laurentia. The dynamic interactions between mat growth, currents and sediment supply that determined the shape of Tieling columns contributed to the morphotypical diversity that characterizes mid–late Proterozoic branched stromatolites.  相似文献   

8.
Thrombolites are a common component of carbonate buildups throughout the Phanerozoic. Although they are usually described as microbialites with an internally clotted texture, a wide range of thrombolite textures have been observed and attributed to diverse processes, leading to difficulty interpreting thrombolites as a group. Interpreting thrombolitic textures in terms of ancient ecosystems requires understanding of diverse processes, specifically those due to microbial growth and metazoan activity. Many of these processes are reflected in thrombolites in the Cambrian Carrara, Bonanza King, Highland Peak and Nopah formations, Great Basin, California, USA; they comprise eight thrombolite classes based on variable arrangements and combinations of depositional and diagenetic components. Four thrombolite classes (hemispherical microdigitate, bushy, coalescent columnar and massive fenestrated) contain distinct mesoscale microbial growth structures that can be distinguished from surrounding detrital sediments and diagenetic features. By contrast, mottled thrombolites have mesostructures that dominantly reflect post‐depositional processes, including bioturbation. Mottled thrombolites are not bioturbated stromatolites, but rather formed from disruption of an originally clotted growth structure. Three thrombolite classes (arborescent digitate, amoeboid and massive) contain more cryptic textures. All eight of the thrombolite classes in this study formed in similar Cambrian depositional environments (marine passive margin). Overall, this suite of thrombolites demonstrates that thrombolites are diverse, in both internal fabrics and origin, and that clotted and patchy microbialite fabrics form from a range of processes. The diversity of textures and their origins demonstrate that thrombolites should not be used to interpret a particular ecological, evolutionary or environmental shift without first identifying the microbial growth structure and distinguishing it from other depositional, post‐depositional and diagenetic components. Furthermore, thrombolites are fundamentally different from stromatolites and dendrolites in which the laminae and dendroids reflect a primary growth structure, because clotted textures in thrombolites do not always reflect a primary microbial growth structure.  相似文献   

9.
The Maastrichtian chalk of the southern Central Graben, Danish North Sea, is a homogeneous pure white coccolithic chalk mudstone deposited in a deep epeiric shelf sea, which covered large parts of northern Europe. The sediment displays a pronounced cyclicity marked by decimetre‐thick bioturbated beds alternating with slightly thinner non‐bioturbated, mainly laminated beds. The laminated half‐cycles consist of alternating millimetre‐thick, graded, high‐porosity laminae and non‐graded, low‐porosity laminae. The cyclicity has been interpreted previously as caused by periods of slow background sedimentation and bioturbation interrupted by periods of rapid deposition of laminated beds, with the latter reflecting random and local resedimentation processes. Based on textural and structural analysis, the millimetre‐scale, non‐graded laminae are interpreted as having been deposited directly from pelagic rain of pelleted coccoliths representing the primary production. The graded laminae were deposited from small‐volume, low‐density turbidity currents and suspension clouds. The sedimentation rates of the cyclical chalk are similar to those known elsewhere, and the lamination is interpreted as having been preserved from destruction through bioturbation by anoxic conditions at the seafloor. Bioturbated–laminated cycles are thus formed by slow sedimentation during alternating seafloor redox conditions probably on a Milankovitch scale. A direct implication of this interpretation is that the cycles are areally widespread, probably extending throughout the southern Central Graben area and may be useful for correlation and high‐resolution cyclostratigraphy in the chalk fields of the Danish North sea. If the laminated half‐cycles represent a few rapid resedimentation events, with a high sedimentation rate as suggested by most workers, then the sediment would not be truly cyclic, but would represent event sedimentation within a pelagic background represented by the bioturbated beds. In this case, the cycles would have very limited potential for correlation.  相似文献   

10.
青藏高原北部渐新统雅西措组湖相地层中的叠层石,具有典型的毫米级暗色富有机质纹层与浅色富碎屑纹层交替的生长节律,纹层形态呈穹窿状产出。为了探索湖湘叠层石纹层的成因和时间意义,我们采用激光微区采样技术分别对单个暗色纹层和浅色纹层进行了碳氧同位素分析。结果表明,每一个共轭纹层对中,暗色纹层相对于浅色纹层明显富集δ18O和δ13C,而且δ18O和δ13C之间具有正向变化关系,即δ18O和δ13C显示同步亏损和富集,反映季节性气候变化是影响纹层同位素信号周期性波动的主要因素,支持叠层石的对偶纹层为年纹层成因,它可以为气候和环境变化研究提供一种高分辨率地质材料。  相似文献   

11.
Pleistocene fibrous aragonite fabrics, including crusts and spherules, occur in the Danakil Depression (Afar, Ethiopia) following the deposition of two distinctive Middle and Late Pleistocene coralgal reef units and pre‐dating the precipitation of evaporites. Crusts on top of the oldest reef unit (Marine Isotope Stage 7) cover and fill cavities within a red algal framework. The younger aragonite crusts directly cover coralgal bioherms (Marine Isotope Stage 5) and associated deposits. Their stratigraphic position between marine and evaporitic deposits, and their association to euryhaline molluscs, suggest that the crusts and spherules formed in restricted semi‐enclosed conditions. The availability of hard substrate controls crust formation with crusts more often found on steep palaeo‐slopes, from sea level up to at least 80 m depth, while spherules mainly occur associated with mobile substrate. Crusts reach up to 30 cm in thickness and can be microdigitate, columnar (branching and non‐branching) or non‐columnar, with laminated and non‐laminated fabrics. Two different lamination types are found within the crystalline fabrics: (i) isopachous lamination; and (ii) irregular lamination. These two types of lamination can be distinguished by the organization of the aragonite fibres, as well as the lateral continuity of the laminae. Scanning electron microscopy with energy dispersive X‐ray spectroscopy analyses on well‐preserved samples revealed the presence of Mg‐silicate laminae intercalated with fibrous aragonite, as well as Mg‐silicate aggregates closely associated with the fibrous aragonite crusts and spherules. The variety of observed fabrics results from a continuum of abiotic and microbial processes and, thus, reflects the tight interaction between microbially mediated and abiotic mineralization mechanisms. These are the youngest known isopachously laminated, digitate and columnar branching fibrous crusts associated with a transition from marine to evaporitic conditions. Understanding the context of formation of these deposits in Afar can help to better interpret the depositional environment of the widespread Precambrian sea‐floor precipitates.  相似文献   

12.
  rgen Schieber 《Sedimentary Geology》1998,120(1-4):105-124
It has been suspected for some time that microbial mats probably colonized sediment surfaces in many terrigenous clastic sedimentary environments during the Proterozoic. However, domination of mat morphology by depositional processes, post-depositional compaction, and poor potential for cellular preservation of mat-building organisms make their positive identification a formidable challenge. Within terrigenous clastics of the Mid-Proterozoic Belt Supergroup, a variety of sedimentary structures and textural features have been observed that can be interpreted as the result of microbial colonization of sediment surfaces. Among these are: (a) domal buildups resembling stromatolites in carbonates; (b) cohesive behaviour of laminae during soft-sediment deformation, erosion, and transport; (c) wavy–crinkly character of laminae; (d) bed surfaces with pustular–wrinkled appearance; (e) rippled patches on otherwise smooth surfaces; (f) laminae with mica enrichment and/or randomly oriented micas; (g) irregular, curved–wrinkled impressions on bedding planes; (h) uparched laminae near mud-cracks resembling growth ridges of polygonal stromatolites; and (i) lamina-specific distribution of certain early diagenetic minerals (dolomite, ferroan carbonates, pyrite). Although in none of the described examples can it irrefutably be proven that they are microbial mat deposits, the observed features are consistent with such an interpretation and should be considered indicators of possible microbial mat presence in other Proterozoic sequences.  相似文献   

13.
Many Recent and fossil freshwater tufa stromatolites contain millimetre‐scale, alternating laminae of dense micrite and more porous or sparry crystalline calcites. These alternating laminae have been interpreted to represent seasonally controlled differences in the biotic activity of microbes, and/or seasonally controlled changes in the rate of calcification. Either way, couplets of these microbially mediated alternating calcified laminae are generally agreed to represent annual seasonality. Combined stable isotope (δ18O and δ13C) and trace element (Mg, Sr, Ba) geochemistry from Recent tufa stromatolites show that seasonal climatic information is available from these calcites. Variability in δ18O (and in one case Mg concentration) has been shown to be controlled primarily by stream temperature change, usually driven by solar insolation. In arid climates, seasonal evaporation can also cause δ18O enrichment by at least 1‰. Variability in δ13C results potentially from: (1) seasonal change in plant uptake of 12C‐enriched CO2; (2) seasonal change in degassing of 12C‐enriched CO2 in the aquifer system; and (3) precipitation of calcite along the aquifer or river flow path, a process that increases δ13C of dissolved inorganic carbon (DIC) in the remaining water. Mechanisms 2 and 3 are linked because calcite precipitates in aquifers where degassing occurs, e.g. air pockets. The latter mechanism for δ13C enrichment has also been shown to cause sympathetic variation between trace element/Ca ratios and δ13C because trace elements with partition coefficients much greater than 1 (e.g. Sr, Ba) remain preferentially in solution. Since degassing in air pockets will be enhanced during decreased recharge when water saturation of the aquifer is lowest, sympathetic variation in trace element/Ca ratios and δ13C is a possible index of recharge and therefore precipitation intensity. High‐resolution geochemical data from well‐dated tufa stromatolites have great potential for Quaternary palaeoclimate reconstructions, possibly allowing recovery of annual seasonal climatic information including water temperature variation and change in rainfall intensity. However, careful consideration of diagenetic effects, particularly aggrading neomorphism, needs to be the next step. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A sloping travertine mound, approximately 85 m across and a few metres thick is actively forming from cool temperature waters issuing out of Crystal Geyser, east‐central Utah, USA. Older travertine deposits exist at the site, the waters having used the Little Grand Wash Fault system as conduits. In contrast, the present Crystal Geyser travertine mound forms from 18°C waters which have been erupting for the last 80 years from an abandoned oil well. The present Crystal Geyser travertine accumulation forms from a ‘man‐made’ cool temperature geyser system; nevertheless, the constituents are an analogue for ancient geyser‐fed carbonate deposits. The travertine primary fabric is composed of couplets of highly porous, thin micritic laminae intercalated with thicker iron oxide rich laminae. Low Mg‐calcite is the dominant mineralogy; however, aragonite is a major constituent in deposits proximal to the vent and decreases in abundance distally. Cements exhibit a variety of fabrics, isopachous being common. Constituents include micro‐stromatolites, clasts, pisoids and the common occurrence of Frutexites‐like iron oxide precipitates. Leptothrix, a common iron‐oxidizing bacterium, is believed to be responsible for the production of the dense iron‐rich laminae. Pisoids litter the ground around the vent and rapidly decrease distally in abundance and size.  相似文献   

15.
The origin of fine‐grained dolomite in peritidal rocks has been the subject of much debate recently and evidence is presented here for a microbial origin of this dolomite type in the Norian Dolomia Principale of northern Calabria (southern Italy). Microbial carbonates there consist of stromatolites, thrombolites, and aphanitic dolomites. High‐relief thrombolites and stromatolites characterize sub‐tidal facies, and low‐relief and planar stromatolites, with local oncoids, typify the inter‐supratidal facies. Skeletal remains are very rare in the latter, whereas a relatively rich biota of skeletal cyanophycea, red algae and foraminifera is present in the sub‐tidal facies. Some 75% of the succession consists of fabric‐preserving dolomite, especially within the microbial facies, whereas the rest is composed of coarse dolomite with little fabric preservation. Three end‐members of dolomite replacement fabric are distinguished: type 1 and type 2, fabric retentive, with crystal size <5 and 5–60 μm, respectively; and type 3, fabric destructive, with larger crystals, from 60 to several hundred microns. In addition, there are dolomite cements, precipitated in the central parts of primary cavities during later diagenesis. Microbialite textures in stromatolites are generally composed of thin, dark micritic laminae of type 1 dolomite, alternating with thicker lighter‐coloured laminae of the coarser type 2 dolomite. Thrombolites are composed of dark, micritic clotted fabrics with peloids, composed of type 1 dolomite, surrounded by coarser type 2 dolomite. Marine fibrous cement crusts are also present, now composed of type 2 dolomite. Scanning electron microscope observations of the organic‐rich micritic laminae and clots of the inter‐supratidal microbialites reveal the presence of spherical structures which are interpreted as mineralized bacterial remains. These probably derived from the fossilization of micron‐sized coccoid bacteria and spheroidal–ovoidal nanometre‐scale dwarf‐type bacterial forms. Furthermore, there are traces of degraded organic matter, probably also of bacterial origin. The microbial dolomites were precipitated in a hypersaline environment, most likely through evaporative dolomitization, as suggested by the excess Ca in the dolomites, the small crystal size, and the positive δ18O values. The occurrence of fossilized bacteria and organic matter in the fabric‐preserving dolomite of the microbialites could indicate an involvement of bacteria and organic matter degradation in the precipitation of syn‐sedimentary dolomite.  相似文献   

16.
Two ca 8000 year long sediment cores from the Gotland Deep, the central sub‐basin of the Baltic Sea, were studied by means of digital images, X‐radiographs and scanning electron microscopy–energy‐dispersive X‐ray mineralogical analysis to gain understanding of the physicochemical and biological influences on sedimentary‐fabric formation in modern and ancient seas with a high flux of organic carbon, and associated oxygen stress and depauperate ichnofauna. Four lithofacies were recognized: (i) sharply laminated mud; (ii) biodeformed mud; (iii) burrow‐mottled mud; and (iv) sedimentation‐event bed. The sharply laminated and burrow‐mottled facies dominate the cores as alternating long intervals, whereas the biodeformed and sedimentation‐event facies occur as thin interbeds within the sharply laminated intervals. The sharply laminated mud comprises alternating diatom‐rich and lithic laminae, with occasional Mn‐carbonate laminae. Lamination discontinuity horizons within the laminites, where the regular lamination is overlain sharply by gently inclined lamination, challenge the traditional view of mud accumulation by settling from suspension, but indicate localized accumulation by particle‐trapping microbial mats and, potentially, by the rapid lateral accretion of mud from bedload transport. The biodeformed interbeds record brief (few years to few decades) oxic–dysoxic conditions that punctuated the anoxic background conditions and permitted sediment‐surface grazing and feeding by a very immature benthic community restricted to the surface mixed tier. The likely biodeformers were meiofauna and nectobenthic pioneers passively imported with currents. The sedimentation‐event interbeds are distal mud turbidites deposited from turbidity currents probably triggered by severe storms on the adjacent coastal areas. The turbidite preservation was favoured by the anoxic background conditions. The long burrow‐mottled intervals are characterized by intensely bioturbated fabrics with discrete Planolites, rare Arenicolites/Polykladichnus and very rare Lockeia trace fossils, as well as bivalve biodeformational structures which represent shallowly penetrating endobenthic feeding and grazing strategies and permanent dwellings. These burrowed intervals represent longer periods (several years to few centuries) of oxic–dysoxic conditions that permitted maturation in the benthos by means of larval settling of opportunistic worm‐like macrofauna and bivalves, resulting in the development of a transition tier. These observations imply more dynamic and oxic depositional conditions in Gotland Deep than previously thought. Comparison to previous zoobenthic studies in the area allowed discussion of the benthic dynamics, and the identification of probable biodeforming and trace‐producing species. Implications for current biofacies and trace‐fossil models are discussed.  相似文献   

17.
Blackband iron formations are essentially thin (approximately 0·75 m thick) siderite-rich (total iron up to 40%), carbonaceous, laminated mudrocks which commonly occur in grey coal bearing sequences in close proximity to coal seams. They exhibit a conspicuous laminated macrotexture made up of carbonaceous and siderite-rich laminae together with primary textures such as root-disturbed laminae, sideritized unflattened spores and preservation of plant cell detail. These all point to formation of siderite soon after deposition, in some cases before significant compaction. Their enclosing sediments clearly show that they were deposited in environments intermediate between delta top alluvial floodplains and coastal plain swamps in which small areas were subjected to periods of lacustrine deposition. The presence of varved mudrocks and oil shales in the beds directly above many of the blackband iron formations and the distinctive fine lamination of the blackbands are evidence of such depositional environments. The blackband iron formations are considered to have been formed in a similar way to Recent bog iron ores and are therefore interpreted as fossil bog iron ores. A model for their mode of formation is presented.  相似文献   

18.
Lower Messinian stromatolites of the Calcare di Base Formation at Sutera in Sicily record periods of low sea‐level, strong evaporation and elevated salinity, thought to be associated with the onset of the Messinian Salinity Crisis. Overlying aragonitic limestones were precipitated in normal to slightly evaporative conditions, occasionally influenced by an influx of meteoric water. Evidence of bacterial involvement in carbonate formation is recorded in three dolomite‐rich stromatolite beds in the lower portion of the section that contain low domes with irregular crinkly millimetre‐scale lamination and small fenestrae. The dominant microfabrics are: (i) peloidal and clotted dolomicrite with calcite‐filled fenestrae; (ii) dolomicrite with bacterium‐like filaments and pores partially filled by calcite or black amorphous matter; and (iii) micrite in which fenestrae alternate with dark thin wispy micrite. The filaments resemble Beggiatoa‐like sulphur bacteria. Under scanning electron microscopy, the filaments consist of spherical aggregates of dolomite, interpreted to result from calcification of bacterial microcolonies. The dolomite crystals are commonly arranged as rounded grains that appear to be incorporated or absorbed into developing crystal faces. Biofilm‐like remains occur in voids between the filaments. The dolomite consistently shows negative δ13C values (down to ?11·3‰) and very positive δ18O (mean value 7·9‰) that suggest formation as primary precipitate with a substantial contribution of organic CO2. Very negative δ13C values (down to ?31·6‰) of early diagenetic calcite associated with the dolomite suggest contribution of CO2 originating by anaerobic methane oxidation. The shale‐normalized rare earth element patterns of Sutera stromatolites show features similar to those in present‐day microbial mats with enrichment in light rare earth elements, and M‐type tetrad effects (enrichment around Pr coupled to a decline around Nd and a peak around Sm and Eu). Taken together, the petrography and geochemistry of the Sutera stromatolites provide diverse and compelling evidence for microbial influence on carbonate precipitation.  相似文献   

19.
The Lower Ordovician La Silla Formation of the Precordillera of west‐central Argentina is part of the west‐facing early Palaeozoic, tropical carbonate platform succession that comprises the core of the Cuyania terrane. Up to 360 m thick, it is exposed in several thrust sheets over a distance of some 250 km along and across depositional strike over a palinspastically unrestored distance of about 35 km. La Silla Formation is a strikingly pure limestone with subordinate finely crystalline dolomite and rare chert. It accumulated on a more or less uniformly subsiding passive margin. Copious precipitation of microcrystalline calcite, probably influenced by microbial activity to varying degrees, led to the generation of peloids, ooids and aggregates of these grains, as well as small amounts of lime mud, intraclasts, stromatolites and thrombolites. Rare bioclasts are limited mostly to scattered gastropods and trilobite sclerites; bioturbation is present locally. The array of carbonate rock types is grouped into eight recurring lithofacies, in order of decreasing abundance: (i) peloidal grainstone; (ii) laminated dolostone; (iii) intraclastic rudstone; (iv) microbial laminite; (v) peloidal packstone; (vi) ooidal grainstone; (vii) thrombolite boundstone; and (viii) mudstone. These facies represent sediments that formed solely in a shallow subtidal marine environment, with no evidence of restricted conditions, hypersalinity or subaerial exposure. No events of eustatic sea‐level change are recorded. By far the dominant facies is grainstone composed of well‐sorted, fine sand‐sized peloids and peloidal aggregates in homogeneous, tabular to gently undulating, medium to thick beds; cross‐lamination is scarce. Clusters of sub‐metre‐sized microbial patch reefs developed sporadically. The shallow platform is envisaged to have been covered by extensive peloidal sand flats and low‐relief banks, and little lime mud was generated. The setting was probably microtidal and may not have been affected by strong trade winds. It was washed by frequent, relatively gentle wave action but without experiencing powerful storms. In the middle member, anomalous lenses of intraclastic rudstone and laminated dolostone occur as graded beds overlying sharply downcut scoured surfaces up to 20 cm deep; these are interpreted to indicate a phase when accretion was punctuated occasionally by tsunamis generated from rift‐faulting seaward of the platform margin. The remarkably uniform peloidal grainstone composition over a broad area shows that, given the appropriate combination of climate, environmental and ecological factors, large portions of some early Palaeozoic platforms were dominated by grainy sediment and remained under well‐agitated conditions within fair‐weather wave‐base, without distinct lateral facies differentiation or tidal‐flat aggradation.  相似文献   

20.
Microbial mats, mainly dominated by filamentous algae Calothrix and Oscillatoria, are well developed in Tibetan hot springs. A great number of fossil microorganisms, which existed as algae lamination in thermal depositional cesium-bearing geyserite in this area, are identified as Calothrix and Oscillatoria through microexamination and culture experiments. These microbial mats show the ability to accumulate cesium from spring water to the extent of cesium concentration of 0.46–1.03% cell dry weight, 900 times higher than that in water, and capture large numbers of cesium-bearing opal grain. Silicon dioxide colloid in spring water replaces and fills with the organism and deposits on it to form algae laminated geyserite after dehydration and congelation. Cesium in the microbial mats and opal grain is then reserved in the geyserite. Eventually, cesium-bearing algae laminated geyserite is formed. Study on cesium distribution in geyserite also shows that cesium content in algae lamination, especially in heavily compacted algae lamination, is higher than in the opal layer. For geyserite with no algae lamination or other organism structure, which is generally formed in spring water with low silicon content, cesium accumulation and cesium-bearing opal grain assembled by the microbial mats are also indispensable. After the microbial mats accumulating cesium from spring water, silicon dioxide colloid poorly replaces and fills with the organism to form opal grain-bearing tremellose microbial mats. The shape and structure of the organisms are then destroyed, resulting in cesium-bearing geyserite with no algae lamination structure after dehydration and congelation. It is then concluded that microbial mats in the spring area contribute to the enrichment of cesium in the formation of cesium-bearing geyserite, and a biological genesis of the geyserite, besides of the physical and chemical genesis, is likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号