首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Dissakisites from Trimouns dolomite mine, France, have two kinds of single crystals: chemical-zoned and homogeneous types. Back-scattered electron microprobe (BSE) images of these dissakisites reveal both Ca–Al rich dark zones and Fe-ΣREE rich bright zones. Crystal structures of three dark and two bright zones in a chemical-zoned dissakisite and of a homogeneous zone in unzoned dissakisite were refined to individual R indices (about 3.0–5.0%) based on 1,400 observed [|F 0| > 4σF 0] reflections measured with MoKα X-radiation using the single crystal diffractometer. The differences in brightness between their BSE images arise from those in coupled substitutions of the elements occupying A2 and M3 sites. The main reason for these differences is that ten-coordinated A2 polyhedra and M3 octahedra are directly linked through their shared edge, which creates a great potential for making this coupled substitution. This zoning indicates that formation of the whole zoned crystal, where each zone could be grown steadily with its crystallographic axes mutually parallel to each other, may be identified as autoepitaxy.  相似文献   

2.
Eclogite inclusions from kimberlitic diatremes on the Colorado Plateau contain intricately zoned garnet and pyroxene and unusual textures. Detailed electron microprobe traverses for a clinopyroxene-garnet-phengite-lawsonite-rutile assemblage show garnet zoning from Alm69Gr21Py10 (core) to Alm61Gr13Py26 (rim) and pyroxene zoning from Jd50 (core) through Jd77 to Jd55 (rim). Pyroxene cores are Cr-rich in another rock. Sharp compositional discontinuities and zoning reversals are preserved in garnet and pyroxene. Oscillatory zoning occurs in both phases on a 10–20 m scale, with variations of up to 6% Py in garnet and 15% Jd in pyroxene. Phengite is unzoned and contains 74% celadonite endmember.Skeletal, pyroxene-filled garnet crystals are common in some rocks, and garnets in other rocks clearly began growth as shell-like crystals. Some rocks contain domains of coarse, prismatic pyroxene with very fine-grained, interstitial magnesium silicates. The texture appears to have resulted from crystallization in the presence of a fluid phase, and water pressure is inferred to have equalled total pressure during crystallization. Eclogite formation at high water pressure may reflect subcrustal crystallization.An analysis of error propagation shows that ferrous iron calculations from electron probe data are not meaningful for these jadeitic pyroxenes, and temperature differences between core and rim crystallization cannot be documented. The garnet textures and oscillatory zoning are unusual for metamorphic rocks, and they suggest disequilibrium crystallization after overstepping of reaction boundaries. All data fit a model of eclogite formation during cooling and metasomatism of basaltic dikes intruded into a cool upper mantle, but the results here do not preclude other origins, such as subduction zone metamorphism.  相似文献   

3.
Euhedral dissakisites from Trimouns dolomite mine, France, is compositionally zoned. Back-scattered electron (BSE) images reveal that each of the described dissakisite crystals has three distinct compositional zones: normal zoned core (Mg-rich), oscillatory zoned middle (Ca–Al-rich) and homogeneous rim (Fe–ΣREE-rich). The latter zone with Fe2+ > Mg corresponds to allanite-(Ce). Dissakisite-(Ce) also displays pronounced zoning in Fe/Mg which may suggest that the temperature of crystallization continuously decreased from core to rim. Despite a systematic increase in Fe/Mg of the dissakisite with an allanite rim, there is no monotonic decrease in the REE zoning: the normal zoned core and homogeneous rim are rich in La, Ce and Pr, but the relatively REE-poor oscillatory zoned middle is relatively abundant in Y, Sm and Gd. Discontinuous variation in REE content of the dissakisite, with the allanite rim may indicate a localized change in either the relative concentration of various ligands or pH of the crystallizing fluid. Observations under the polarizing microscope confirm that the different zones have simultaneous extinction. These chemical and optical observations suggest that epitaxial crystallization of dissakisite, from Trimouns, passes through three formation stages. The ternary Fe2+–Mg2+–(Al + Fe)3+ diagram illustrates that in general dissakisite can be classified into two groups, (Al + Fe)3+-rich and an Mg-rich; dissakisite from Trimouns belongs to the former group. Chondrite-normalized REE patterns of dissakisites from Trimouns are similar to those of allanites formed by hydrothermal fluids. In conclusion, it is clear from the above two geochemical characteristics that dissakisites from Trimouns are of (Al + Fe)3+-type, and were derived from hydrothermal fluids.  相似文献   

4.
An automated method for the calculation of P–T paths based on garnet zoning is presented and used to interpret zoning in metapelitic schist from the southern Canadian Cordillera. The approach adopted to reconstruct the P–T path is to match garnet compositions along a radial transect with predictions from thermodynamic forward models, while iteratively modifying the composition to account for fractional crystallization. The method is applied to a representative sample of garnet‐ and staurolite‐bearing schist from an amphibolite facies Barrovian belt in the southern Canadian Omineca belt. Garnet zoning in these schists is concentric and largely continuous from core to rim. Three zones are present, the first two of which coincide with sector‐zoned cores of garnet crystals. Similar zoning is developed in rocks that contain or lack staurolite, respectively, suggesting garnet growth was restricted to the initial part of the prograde P–T path prior to the development of staurolite. Growth zoning in large garnet crystals has not been significantly modified by diffusion. This interpretation is based on zoning characteristics of garnet crystals and is further supported by results of a forward model incorporating the effects of simultaneous fractional crystallization and intracrystalline diffusion. The P–T path calculated for this rock includes an initial, linear stage with a high dP/dT, and a later stage dominated by heating. The approach adopted in this study may have application to other garnet‐bearing rocks in which growth zoning is preserved.  相似文献   

5.
The Lower Ordovician, Upper Knox Group rocks (the Kingsport and Mascot formations) in the Copper Ridge district consist predominantly of fine-grained dolostones, medium and coarser grained dolostones, and limestones. Dolomite crystals of medium and coarser grained dolostones show up to eight cathodoluminescent zones of variable width and intensity. Electron microprobe analyses indicate that the zoning is related to variation in Fe/Mn ratios, the brighter luminescent zones corresponding to lower ratios. Superposed on this growth zoning is a compositional zoning characterized by a general increase in Fe from core to rim of individual dolomite crystals.Field and petrographic studies (Churnet, 1979; Churnet et al., 1981) indicate that the fine-grained dolostones formed in supratidal to upper intratidal environments, whereas the precursor lime muds of the limestones as well as of the medium and coarser grained dolostones formed in shallow subtidal to lower intertidal environments. The large areal extent of the dolostones must have required a regionally abundant source of Mg such as marine water. Yet, both limestones and dolostones have low Na and Sr contents suggestive of their formation in solutions more dilute than normal marine water. It is proposed that the fine-grained dolostones formed by aggradation of initially very fine-grained dolostones in presence of fresh water, and that the limestones stabilized and the medium and coarser grained dolostones formed in environments of mixed marine and fresh waters. Considered in the light of ordering of partition coefficients, such a mixing model can account for the observed correlation pattern of trace elements (especially, SMn and SrFe) as well as the Fe distribution in the zoned dolomite crystals. Variation of the partition coefficient of Mn due to fluctuations in the relative proportions of fresh and marine waters in the diagenetic solution may explain the different Fe/Mn ratios observed in the growth zones (luminescence bands) of zoned dolomite crystals.  相似文献   

6.
Phyric basalts recovered from DSDP Legs 45 and 46 contain abundant plagioclase phenocrysts which occur as either discrete single grains (megacrysts) or aggregates (glomerocrysts) and which are too abundant and too anorthitic to have crystallized from a liquid with the observed bulk rock composition. Almost all the plagioclase crystals are complexly zoned. In most cases two abrupt and relatively large compositional changes associated with continuous internal morphologic boundaries divide the plagioclase crystals into three parts: core, mantle and rim. The cores exhibit two major types of morphology: tabular, with a euhedral to slightly rounded outline; or a skeletal inner core wrapped by a slightly rounded homogeneous outer core. The mantle region is characterized by a zoning pattern composed of one to several spikes/plateaus superimposed on a gently zoned base line, with one large plateau always at the outside of the mantle, and by, in most cases, a rounded internal morphology. The inner rim is typically oscillatory zoned. The width of the outer rim can be correlated with the position of the individual crystal in the basalt pillow. The presence of a skeletal inner core and the concentration of glass inclusions in low-An zones in the mantle region suggest that the liquid in which these parts of the crystals were growing was undercooled some amount. The resorption features at the outer margins of low-An zones indicate superheating of the liquid with respect to the crystal.It is proposed that the plagioclase cores formed during injection of primitive magma into a previously existing magma chamber, that the mantle formed during mixing of a partially mixed magma and the remaining magma already in the chamber, and that the inner rim formed when the mixed magma was in a sheeted dike system. The large plateau at the outside of the mantle may have formed during the injection of the next batch of primitive magma into the main chamber, which may trigger an eruption. This model is consistent with fluid dynamic calculations and geochemically based magma mixing models, and is suggested to be the major mechanism for generating the disequilibrium conditions in the magma.  相似文献   

7.
Oscillatory zoning is a common feature in zircons from acid igneous rocks and is believed to form during crystallisation of zircons from a magma by a mechanism which is not yet understood. Many zircons with oscillatory zoning also show a patchwork replacement of zoned by unzoned zircon. The unzoned zircon occurs as rounded, transgressive patches distributed throughout the zoned zircon and as areas of transitional replacement where zoned zircon is progressively replaced by unzoned zircon such that only faint traces of original zones remain. This structure is interpreted as a progressive recrystallisation of the oscillatory zoned zircon made unstable by the incorporation of high concentrations of contaminant elements during magmatic crystallisation. Recrystallisation overprints oscillatory zones and appears to have occurred after completion of primary crystallisation. It is accompanied by loss of U, Th and Pb and the removal of oscillatory zones. The recrystallised unzoned zircon is extremely stable with respect to later Pb loss and tends to retain a concordant or slightly discordant U–Pb age. Recrystallisation provides a mechanism for resetting zircon U–Pb ages which is independent of the degree of radiation damage of the zircon lattice. This differs from other models of discordance which involve a leaching of radiogenic Pb as a consequence of a progressive breakdown of the zircon structure through time-integraded radiation damage further enhanced by high concentrations of trace-element contaminants. The U–Pb age of the unzoned zircon may date the recrystallisation event, which may be close to the age of primary crystallisation or reflect a later metamorphism.Dedicated to Borwin Grauert on the occasion of his sixtieth birthday  相似文献   

8.
Internal structures in zircons from granitoids from the late Archaean Darling Range Batholith show secondary features revealed by HF etching, which record reconstitution of the zircons and modification of the distribution of trace elements during post crystallisation cooling of the granitoid. Zircons from the granites commonly contain unzoned to weakly zoned cores surrounded by rims showing oscillatory zoning which has been modified by recrystallisation. The most striking feature is the development of high trace element concentration areas found in zircons from a number of granites. These structures range from enhanced trace element concentrations in primary zones to a single accumulation of most trace elements in one band, about half way between the outer edge and the centre of the zircon. In any zircon the extent of the concentration of trace elements towards the formation of a single trace element band appears to be inversely related to the fading and broadening of primary oscillatory zones in the outer rim. This suggests that the trace element bands formed by migration of trace elements from the outer primary zones to new concentration sites on an inner set of primary zones. This explanation is supported by the formation of multiple curved trace element bands that transgress primary zoning and the determination of younger SHRIMP ages on depleted zircon outer rims compared to remnant primary oscillatory zoned areas of the zircon and unzoned centres. Also observed in some granite zircons is a finely convoluted zoning which overprints oscillatory zoning in parts of a zoned zircon and in rare cases occurs throughout the zircon. This structure is explained in terms of secondary migration and reconcentration of trace elements in curved bands. All structures can be transgressed by generally rounded lobes and patches of low U, weakly nebulously zoned zircon. This is interpreted as a late stage interaction between the zircon and fluids formed during cooling and crystallisation of the granitoid, resulting in recrystallisation of affected parts of the zircon with accompanying loss of trace elements from the zircon. Received: 6 January 1998 / Accepted: 8 May 1998  相似文献   

9.
Textural and compositional zoning in plagioclase phenocrysts in a sample from Parinacota volcano (Chile) was investigated using backscattered electron images and electron microprobe analysis of major and trace elements. Large (2 mm) oscillatory zoned crystals (type I) with resorption surfaces of moderate An discontinuities (Ⲓ% An) and decreasing trace-element contents (Sr, Mg, Ti) towards the rim reflect melt differentiation and turbulent convection in the main magma body. Early recharge with a low-Sr mafic magma is seen in the core. Small-scale Sr variations in the core indicate limited diffusion and thus residence and differentiation times of the magma shorter than a few thousand years. Smaller crystals (type II) with low trace-element/An ratio reflect the influence of an H2O-rich melt probably from a differentiated boundary layer. Closed-system in-situ crystallisation, mafic magma recharge and the role of a water-rich differentiated boundary layer can be distinguished from the An-trace element relationships. Crystals apparently move relatively freely between different parts and regimes in the magma chamber, evidence for "convective crystal dispersion". High-Sr type II crystals indicate an earlier input of Sr-rich mafic magma. Recharge of two distinct mafic magma types is thus identified (high-Sr and low-Sr), which must have been present - at increasing recharge rates with time - in the plumbing system throughout the volcano's history.  相似文献   

10.
Chemical and Sr isotopic zoning patterns in plagioclase megacrysts from gabbroic dykes in the Gardar Province can be used to elucidate magma-chamber and emplacement processes. The megacrysts occur either as single crystals or assembled as anorthosite xenoliths. The size of the megacrysts varies from <1 cm to 1 m. They consist of a large core with variable zonation (An58-39) and a relatively small (<600 µm), normally zoned rim (An62-27). The contact between core and rim is sharp and marked by a sharp increase in anorthite content which can reach 11 mol% An. This gap is interpreted as having formed during dyke emplacement due to a sudden pressure release. Some of the megacryst cores show a fairly constant composition whereas others exhibit an unusual wavy-oscillatory zoning which has not been reported elsewhere to our knowledge. The oscillatory zoning has wavelengths of up to 2,500 µm and a maximum amplitude of 7 mol% An. It is interpreted as reflecting movements of the crystals in the magma reservoir. The Sr isotopic composition of one crystal shows a radiogenic inner core ((87Sr/86Sr)i=0.7044) and a less radiogenic outer core ((87Sr/86Sr)i=0.7039-0.7036). The lack of a significant change between outer core and rim ((87Sr/86Sr)i=0.7037) is consistent with formation of the more An-rich rim due to pressure release. Variations in the core may be related to movements of the crystal and/or magma mixing. A trace-element profile across a megacryst shows a small increase in Sr and small decreases in Ba and La contents of the recalculated melt composition across the core-rim boundary, whereas P, Ce, Nd and Eu remain constant. Melt compositional changes upon emplacement are therefore considered to be of minor importance. Constant ratios of incompatible trace elements in the megacryst cores indicate a dominant influence of a lower crustal source on trace-element budgets.  相似文献   

11.
X‐ray composition maps and quantitative analyses for Mn, Ca and Cr have been made for six pelitic and calc‐pelitic garnet crystals and Al, Fe and Cr analyses maps have been made for two kyanite crystals, from lower and mid/upper amphibolite facies rocks from the Grenville Province of western Labrador, using an electron microprobe analyser and a laser ablation ICP‐MS. Garnet with spiral (‘snowball’) internal fabrics (Si) has spiral zoning in major elements, implying that growth was concentrated in discrete regions of the crystal at any one time (spiral zoning). Cr zoning is parallel to Si in low amphibolite facies garnet with both straight and spiral internal fabrics, indicating that the garnet overprinted a fabric defined by Cr‐rich (mica±chlorite±epidote) and Cr‐poor (quartz±plagioclase) layers during growth (overprint zoning) and that Cr was effectively immobile. In contrast, in mid/upper amphibolite facies garnet porphyroblasts lacking Si, Cr zoning is concentric, implying that Cr diffusion occurred. Cr zoning in kyanite porphyroblasts appears superficially similar to oscillatory zoning, with up to three or four annuli of Cr enrichment and/or depletion present in a single grain. However, the variable width, continuity, Cr concentration and local bifurcation of individual annuli suggest that an origin by overprint zoning may be more likely. The results of this study explain previously observed nonsystematic Cr zoning in garnet and irregular partitioning of Cr between coexisting metamorphic mineral pairs. In addition, this study points to the important role of crystal growth rate in determining the presence or absence of inclusions and the type of zoning exhibited by both major and trace elements. During fast growth, inclusions are preferentially incorporated into the growing porphyroblast and slow diffusing elements such as Cr are effectively immobile, whereas during slow growth, inclusions are not generally included in the porphyroblast and Cr zoning is concentric.  相似文献   

12.
U–Th–Pb monazite dating by electron microprobe has been applied to three peraluminous granitic intrusions of the western Montes de Toledo batholith (MTB). Back scattered electron images of monazite crystals reveal a variety of internal textures: patchy zoning, overgrowths around older cores and unzoned crystals. On the basis of their zoning pattern and chemical composition, two monazite domains can be distinguished: (1) corroded cores and crystals with patchy zoning, exhibiting relatively constant Th/U ratios and broadly older ages, and (2) unzoned grains and monazite rims, with variable Th/U ratios and younger ages. The first monazite group represents inherited domains from metamorphic sources, which accounts for pre‐magmatic monazite growth events. Two average ages from Torrico and Belvís de Monroy granites (333 ± 18 and 333 ± 5 Ma, respectively) relate these cores to a Viséan extensional deformation phase. The second group represents igneous monazites which have provided the following crystallization ages for the host granite: 298 ± 11 Ma (Villar del Pedroso), 303 ± 6 Ma (Torrico) and 314 ± 3 Ma (Belvís de Monroy). Two main magmatic pulses, the first about 314 Ma and the second at the end of the Carboniferous (303–298 Ma), might be envisaged in the western MTB. While Belvís de Monroy leucogranite is likely a syn‐ to late‐tectonic intrusion, the Villar del Pedroso and Torrico plutons represent post‐tectonic magmas with emplacement ages similar to those of equivalent intrusions from nearby Variscan magmatic sectors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This study presents Lu–Hf geochronology of zoned garnet in high‐P eclogites from the North Qilian orogenic belt. Selected samples have ~mm‐sized garnet grains that have been sampled with a micro‐drill and analysed for dating. The Lu–Hf dates of bulk garnet separates, micro‐drilled garnet cores and the remnant, rim‐enriched garnet were determined by two‐point isochrons, with cores being consistently older than the bulk‐ and rim‐enriched garnet. The bulk garnet separates of each sample define identical garnet–whole rock isochron date of c. 457 Ma. Consistent U–Pb zircon dates of 455 ± 8 Ma were obtained from the eclogite. The Lu–Hf dates of the drilled cores and rim‐rich separates suggest a minimum garnet growth interval of 468.9 ± 2.4 and 452.1 ± 1.6 Ma. Major and Lu element profiles in the majority of garnet grains show well‐preserved Rayleigh‐style fractionated bell‐shaped Mn and Lu zoning profiles, and increasing Mg from core to rim. Pseudosection modelling indicates that garnet grew along a P–T path from ~470–525°C and ~2.4–2.6 GPa. The exceptional high‐Mn garnet core in one sample indicates an early growth during epidote–blueschist facies metamorphism at <460°C and <0.8 GPa. Therefore, the Lu–Hf dates of drilled cores record the early prograde garnet growth, whereas the Lu–Hf dates of rim‐rich fractions provide a maximum age for the end of garnet growth. The microsampling approach applied in this study can be broadly used in garnet‐bearing rocks, even those without extremely large garnet crystals, in an attempt to retrieve the early metamorphic timing recorded in older garnet cores. Given a proper selection of the drill bit size and a detailed crystal size distribution analysis, the cores of the mm‐sized garnet in most metamorphic rocks can be dated to yield critical constraints on the early timing of metamorphism. This study provides new crucial constraints on the timing of the initial subduction (before c. 469 Ma) and the ultimate closure (earlier than c. 452 Ma) of the fossil Qilian oceanic basin.  相似文献   

14.
Apatites from the Shap Granite, northern England, are strongly zoned, reflecting multiple generations of growth and dissolution. Such chemical zoning is most readily displayed in cathodoluminescence images and correlates well with trace element variation determined using LA-ICP-MS analyses. The zoned apatites provide a detailed record of the changing scales of permeability during progressive crystallisation within the magma chamber. Early periods of apatite growth are preserved within cores and represent both early growth within a magma chamber dominated by vigorous mixing processes and inherited grains with significantly different chemistries. The main phase of apatite growth within the magma was strongly controlled by the presence of adjacent biotite phenocrysts and is characterised by fine scale oscillatory zoning, followed by the growth of a thin rim of relatively uniform composition. The chemical evolution of the later phases of apatite growth and the stratigraphy of the zoning appear to record late stage crystallisation within progressively more isolated interstitial melt pockets.Editorial responsibility: I. Parsons  相似文献   

15.
Fifty wolframite crystals from San Cristobal (Peru) were analysed with the electron microprobe for Fe, Mn, and W. Detailed studies of several samples reveal complex compositional zoning within individual crystals. One sample contains two crystals with contrasting zoning: one crystal has a high-Fe core and an Fe-poor rim, whereas the other has an Fe-poor core and a high-Fe rim. This suggests that these two crystals formed at different moments and that the wolframite composition did not change monotonically with time. The full range of wolframite compositions measured is from 28 to 97 mol% ferberite (FeWO4). Although a range of 59 mol% was determined for one sample, the average range for all fifty samples is 10 mol%. Samples with average compositions in the range of 84–92 mol% ferberite have relatively small compositional variations, whereas those with average compositions in the range of 61–84 mol% are quite variable. On a vertical longitudinal section of the Main Vein of San Cristobal it appears that the low ferberite values correspond spatially with high tungsten grades. The iron content of the wolframite goes through a minimum across its depositional interval. This may be due to a change in the Fe/Mn ratio of the mineralizing solution with either distance or time.  相似文献   

16.
The origin of fine‐grained dolomite in peritidal rocks has been the subject of much debate recently and evidence is presented here for a microbial origin of this dolomite type in the Norian Dolomia Principale of northern Calabria (southern Italy). Microbial carbonates there consist of stromatolites, thrombolites, and aphanitic dolomites. High‐relief thrombolites and stromatolites characterize sub‐tidal facies, and low‐relief and planar stromatolites, with local oncoids, typify the inter‐supratidal facies. Skeletal remains are very rare in the latter, whereas a relatively rich biota of skeletal cyanophycea, red algae and foraminifera is present in the sub‐tidal facies. Some 75% of the succession consists of fabric‐preserving dolomite, especially within the microbial facies, whereas the rest is composed of coarse dolomite with little fabric preservation. Three end‐members of dolomite replacement fabric are distinguished: type 1 and type 2, fabric retentive, with crystal size <5 and 5–60 μm, respectively; and type 3, fabric destructive, with larger crystals, from 60 to several hundred microns. In addition, there are dolomite cements, precipitated in the central parts of primary cavities during later diagenesis. Microbialite textures in stromatolites are generally composed of thin, dark micritic laminae of type 1 dolomite, alternating with thicker lighter‐coloured laminae of the coarser type 2 dolomite. Thrombolites are composed of dark, micritic clotted fabrics with peloids, composed of type 1 dolomite, surrounded by coarser type 2 dolomite. Marine fibrous cement crusts are also present, now composed of type 2 dolomite. Scanning electron microscope observations of the organic‐rich micritic laminae and clots of the inter‐supratidal microbialites reveal the presence of spherical structures which are interpreted as mineralized bacterial remains. These probably derived from the fossilization of micron‐sized coccoid bacteria and spheroidal–ovoidal nanometre‐scale dwarf‐type bacterial forms. Furthermore, there are traces of degraded organic matter, probably also of bacterial origin. The microbial dolomites were precipitated in a hypersaline environment, most likely through evaporative dolomitization, as suggested by the excess Ca in the dolomites, the small crystal size, and the positive δ18O values. The occurrence of fossilized bacteria and organic matter in the fabric‐preserving dolomite of the microbialites could indicate an involvement of bacteria and organic matter degradation in the precipitation of syn‐sedimentary dolomite.  相似文献   

17.
Siderophile element distributions within individual metal grains in two CH chondrites, Allan Hills 85085 and Pecora Escarpment 91467, were measured by laser ablation inductively coupled plasma mass spectrometry. Those metal grains that are zoned in Ni were also found to be zoned in other refractory siderophile elements, such as Ru, but not in Pd, which is not refractory but is highly siderophile. This pattern is consistent with an origin by condensation from a gas of approximately solar composition, but not with an origin by redox processes or fractional crystallization. The unzoned metal grains in CH chondrites were found to be frequently depleted in Ru but not in Pd, consistent with later stage condensation from a solar gas after removal of the zoned metal. Gold is inversely correlated with Ni in the unzoned metal grains, and mean Au abundances in zoned metal are always low. Both zoned and unzoned metal in CH chondrites could plausibly be produced from a thermostatically regulated nebula, followed by rapid removal of the zoned metal, and slower removal of the unzoned metal, both at temperatures near or above the condensation temperature of Au (∼1250 K). This is also consistent with the isolation temperatures inferred from silicate grains in CH chondrites by previous workers based on their volatile element inventories. The volatile siderophile Cu is enriched in the rims relative to the interiors of both zoned and unzoned grains, and is interpreted as the product of diffusion during low-grade thermal processing. The similarity of Cu distributions, and degree of kamacite/taenite exsolution, between zoned and unzoned metal in CH chondrites suggests that the two populations of metal experienced modest thermal metamorphism after they were brought together in the same environment, probably on the CH parent body. Fragmentation and size-sorting of the metal must have post-dated the Cu zoning, and may have occurred in a regolith on the CH parent body. The compositions of CH metal, like that of metal from QUE 94411 and HH 237, are consistent with a nebular origin, and may be the most primitive nebular materials (as distinct from presolar grains) sampled by chondrites.  相似文献   

18.
通过薄片、阴极发光、背散射和扫描电镜等特征分析,根据白云石的晶体颗粒的形态、大小、晶面、接触关系等特征,兼顾白云石的成因信息,将羌塘盆地昂达尔错地区古油藏中白云石划分为粉-细晶曲面它形结构、粉-细晶曲面它形雾心亮边结构、细-中晶直面半自形-自形结构、细-中晶直面半自形-自形雾心亮边结构、细-中晶直面半自形-自形环带结构、中-粗晶曲面它形结构。成岩结构特征反映了成岩期不同成岩流体作用叠加的多成因模式,包括准同生阶段蒸发咸化海水成因、浅埋藏阶段蒸发咸化海水的回流或下渗扩散交代成因、中-深埋藏阶段埋藏白云石化成因以及深埋藏阶段与构造运动相关的热液交代成因。白云岩中常见的残余粒屑结构和藻纹层结构反映出原始的浅滩相、潮坪相及生屑滩相等高能沉积环境更有利于该区白云岩的形成,原始的沉积微相控制着白云岩化作用的发育和白云岩的空间展布。  相似文献   

19.
刘福来  许志琴  宋彪 《地质学报》2003,77(4):533-539
通过隐藏在锆石微区矿物包体激光拉曼的系统鉴定和阴极发光图像特征的详细研究,配合相应的锆石微区SHRIMP U-Pb定年测试,发现苏鲁地体超高压变质带中确实存在非超高压变质的花岗质片麻岩。该类岩石中的锆石晶体自核部到边部所保存的矿物包体以不含超高压矿物为特征,相应的阴极发光图像具有典型岩浆结晶锆石的核部和幔部,以及变质的再生边的特点。其中岩浆结晶锆石微区记录的~(238)U-~(206)Pb年龄为404~748Ma,表明原岩中部分锆石可能经历了Pb丢失,也不排除后期热事件因素的影响,原岩的形成年龄应大于748 Ma;而锆石的再生边所记录的~(238)U-~(206)Pb。年龄为204~214 Ma,与研究区经历超高压变质的副片麻岩和花岗质片麻岩锆石微区所记录的苏鲁地体快速折返过程中角闪岩相退变质年龄(~(238)U-~(206)Pb年龄的平均值为211±4 Ma,刘福来等,2003a)十分相似。上述特征表明,苏鲁地体超高压变质带中的部分花岗质片麻岩在超高压变质事件之前就已经形成,但并未“参与”深俯冲—超高压的变质演化过程,而是在苏鲁地体快速折返的角闪岩相退变质过程中与超高压岩片“拼贴”在一起。该项成果不仅为正确识别非超高压变质岩石提供了一个新的研究方法,而且对进一步深入探讨苏鲁地体超高压和非超高压岩片的“拼贴”机制有着重  相似文献   

20.
Various petrographic features and geochemical characteristics indicative of disequilibrium are preserved in plagioclase phenocrysts from basaltic to andesitic lavas in East Junggar, northwest China. These characteristics indicate that they crystallized in a magma chamber, which was replenished by less differentiated and high-temperature magmas. The petrographic and geochemical features of the plagioclase phenocrysts are interpreted to record responses to changes in temperature, composition and mechanical effect during magma replenishment. Distinct rare earth element(REE) patterns between cores and rims of the same plagioclase crystal suggest derivation from two end-member magmas. From core to rim, plagioclase phenocrysts commonly display sharp fluctuations of anorthite(An) content up to 20, which either correspond to reverse zoning associated with ovoidal cores and resorption surface(PI), or normal zoning with euhedral form and no resorption surface(P2). Plagioclase crystals with diverse textures and remarkably different An content coexist on the scale of a thin-section. Cores of these plagioclases in each sample display a bimodal distribution of An content. From core to rim in PI, concentrations o f FeOT and Sr increase remarkably as An content increases. During magma replenishment, pre-existing plagioclase phenocrysts in the andesitic magma, which were immersed into hotter and less differentiated magmas, were heated and resorbed to form ovoidal cores, and then were overgrown by a thin rim with much higher contents of An, FeO~T and Sr. However, pre-existing plagioclase phenocrysts in the basaltic magma were injected into cooler and more evolved magmas, and were remained as euhedral cores, which were later enclosed by oscillatory zoned rims with much lower contents of An, Sr and Ba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号