首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geodinamica Acta》2001,14(1-3):3-30
Turkey forms one of the most actively deforming regions in the world and has a long history of devastating earthquakes. The better understanding of its neotectonic features and active tectonics would provide insight, not only for the country but also for the entire Eastern Mediterranean region. Active tectonics of Turkey is the manifestation of collisional intracontinental convergence- and tectonic escape-related deformation since the Early Pliocene (∼5 Ma). Three major structures govern the neotectonics of Turkey; they are dextral North Anatolian Fault Zone (NAFZ), sinistral East Anatolian Fault Zone (EAFZ) and the Aegean–Cyprean Arc. Also, sinistral Dead Sea Fault Zone has an important role. The Anatolian wedge between the NAFZ and EAFZ moves westward away from the eastern Anatolia, the collision zone between the Arabian and the Eurasian plates. Ongoing deformation along, and mutual interaction among them has resulted in four distinct neotectonic provinces, namely the East Anatolian contractional, the North Anatolian, the Central Anatolian ‘Ova’ and the West Anatolian extensional provinces. Each province is characterized by its unique structural elements, and forms an excellent laboratory to study active strike-slip, normal and reverse faulting and the associated basin formation.  相似文献   

2.
Abstract

Turkey forms one of the most actively deforming regions in the world and has a long history of devastating earthquakes. The belter understanding of its neotectonic features and active tectonics would provide insight, not only for the country but also for the entire Eastern Mediterranean region. Active tectonics of Turkey is the manifestation of collisional intracontinental convergence- and tectonic escape-related deformation since the Early Pliocene (~5 Ma). Three major structures govern the neotectonics of Turkey; they are dextral North Anatolian Fault Zone (NAFZ), sinistral East Anatolian Fault Zone (EAFZ) and the Aegean–Cyprean Arc. Also, sinistral Dead Sea Fault Zone has an important role. The Anatolian wedge between the NAFZ and EAFZ moves westward away from the eastern Anatolia, the collision zone between the Arabian and the Eurasian plates. Ongoing deformation along, and mutual interaction among them has resulted in four distinct neotectonic provinces, namely the East Anatolian contractional, the North Anatolian, the Central Anatolian ‘Ova’ and the West Anatolian extensional provinces. Each province is characterized by its unique structural elements, and forms an excellent laboratory to study active strike-slip, normal and reverse faulting and the associated basin formation. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

3.
High-resolution palynological analysis of a 38-cm long core collected from Lake Sapanca, northwest Turkey, reveals large earthquakes that occurred during the second half of the 20th century along the North Anatolian Fault Zone. Four events have disturbed the lacustrine sedimentary sequence. Three of the four events are historical earthquakes in 1999 in Izmit, 1967 in Mudurnu and 1957 in Abant. These events are recorded in the core by turbiditic deposits and reworked sediment and by low overall palynomorph concentrations but high values of thick-exined pollen, fern spores and fungal spores. Palynomorphs in the event beds have been grouped based on their associations in modern moss, river and lake samples. The inferred mechanisms of transport and sources for the palynomorphs are: 1- lake sediment displaced by slump, 2- collapsed shoreline sediment owing to seiche, waves and sudden lake level changes, 3- subsidence of deltas and 4- river-transported soil and sediment from upland areas. The 1999 Izmit earthquake is only weakly recorded by palynomorphs, probably due to recent engineering control on the rivers. The 1967 Mudurnu earthquake had the strongest effect on the lake, introducing successive packages of sediment to the centre of the lake from underwater slopes, the lakeshore and rivers.  相似文献   

4.
5.
《Sedimentology》2018,65(5):1777-1799
Sequences of lake sediments often form long and continuous records that may be sensitive recorders of seismic shaking. A multi‐proxy analysis of Lake Bohinj sediments associated with a well‐constrained chronology was conducted to reconstruct Holocene seismic activity in the Julian Alps (Slovenia). A seismic reflection survey and sedimentological analyses identified 29 homogenite‐type deposits related to mass‐wasting deposits. The most recent homogenites can be linked to historical regional earthquakes (i.e. 1348 ad , 1511 ad and 1690 ad ) with strong epicentral intensity [greater than ‘damaging’ (VIII ) on the Medvedev–Sponheuer–Karnik scale]. The correlation between the historical earthquake data set and the homogenites identified in a core isolated from local stream inputs, allows interpretation of all similar deposits as earthquake related. This work extends the earthquake chronicle of the last 6600 years in this area with a total of 29 events recorded. The early Holocene sedimentary record is disturbed by a seismic event (6617 ± 94 cal yr bp ) that reworked previously deposited sediment and led to a thick sediment deposit identified in the seismic survey. The period between 3500 cal yr bp and 2000 cal yr bp is characterized by a major destabilization in the watershed by human activities that led to increases in erosion and sedimentation rates. This change increased the lake's sensitivity to recording an earthquake (earthquake‐sensitivity threshold index) with the occurrence of 72 turbidite‐type deposits over this period. The high turbidite frequency identified could be the consequence of this change in lake earthquake sensitivity and thus these turbidites could be triggered by earthquake shaking, as other origins are discarded. This study illustrates why it is not acceptable to propose a return period for seismic activity recorded in lake sediment if the sedimentation rate varies significantly.  相似文献   

6.
Parke  Minshull  erson  White  McKenzie  Ku&#;çu  Bull  Görür  & &#;engör 《地学学报》1999,11(5):223-227
Turkey is moving westward relative to Eurasia, thereby accommodating the collision between Arabia and Eurasia. This motion is mostly taken up by strike-slip deformation along the North and East Anatolian Faults. The Sea of Marmara lies over the direct westward continuation of the North Anatolian Fault zone. Just east of the Sea of Marmara, the North Anatolian Fault splits into three strands, two of which continue into the sea. While the locations of the faults are well constrained on land, it has not yet been determined how the deformation is transferred across the Sea of Marmara, onto the faults on the west coast of Turkey. We present results from a seismic reflection survey undertaken to map the faults as they continue through the three deep Marmara Sea basins of Çlnarclk, Central Marmara and Tekirdag, in order to determine how the deformation is distributed across the Sea of Marmara, and how it is taken up on the western side of the sea. The data show active dipping faults with associated tilting of sedimentary layers, connecting the North Anatolian Fault to strike-slip faults that cut the Biga and Gallipoli Peninsulas.  相似文献   

7.
The East Anatolian Fault Zone is a continental transform fault accommodating westward motion of the Anatolian fault. This study aims to investigate the source properties of two moderately large and damaging earthquakes which occurred along the transform fault in the last two decades using the teleseismic broadband P and SH body waveforms. The first earthquake, the 27 June 1998 Adana earthquake, occurred beneath the Adana basin, located close to the eastern extreme of Turkey’s Mediterranean coast. The faulting associated with the 1998 Adana earthquake is unilateral to the NE and confined to depths below 15 km with a length of 30 km along the strike (53°) and a dipping of 81° SE. The fixed-rake models fit the data less well than the variable-rake model. The main slip area centered at depth of about 27 km and to the NE of the hypocenter, covering a circular area of 10 km in diameter with a peak slip of about 60 cm. The slip model yields a seismic moment of 3.5?×?1018 N-m (Mw???6.4). The second earthquake, the 1 May 2003 Bingöl earthquake, occurred along a dextral conjugate fault of the East Anatolian Fault Zone. The preferred slip model with a seismic moment of 4.1?×?1018 N-m (Mw???6.4) suggests that the rupture was unilateral toward SE and was controlled by a failure of large asperity roughly circular in shape and centered at a depth of 5 km with peak displacement of about 55 cm. Our results suggest that the 1998 Adana earthquake did not occur on the mapped Göksun Yakap?nar Fault Zone but rather on a SE dipping unmapped fault that may be a split fault of it and buried under the thick (about 6 km) deposits of the Adana basin. For the 2003 Bingöl earthquake, the final slip model requires a rupture plane having 15° different strike than the most possible mapped fault.  相似文献   

8.
Historical and archaeological data are used to test geological claims that, in the fourth to sixth centuries AD, the Eastern Mediterranean experienced an unusual clustering of destructive earthquakes (the ‘Early Byzantine Tectonic Paroxsym’). A review of historical accounts of a notable earthquake at this time, that of 21 July AD 365, indicates that this event destroyed nearly all the towns in Crete and was followed by a tsunami which devastated the Nile Delta. The AD 365 event was also probably responsible for reported or observed destruction in ancient towns of west Cyprus and Libya. This earthquake is most likely to be identified with a Hellenic Arc subduction-zone event of ‘great’ (M>8) magnitude, as testified by up to 9 m of uplift in western Crete dated by previous geological studies to around this time. Historical and archaeological data also support the hypothesis that the fourth to sixth centuries AD was a period of abnormally high seismicity in the Eastern Mediterranean. The high seismicity rates of this period may reflect a reactivation of all plate boundaries in the region (Dead Sea Transform, East Anatolian Fault, North Anatolian Fault, Hellenic Arc, Cyprus Arc Fault).  相似文献   

9.
The Manyas fault zone (MFZ) is a splay fault of the Yenice Gönen Fault, which is located on the southern branch of the North Anatolian Fault System. The MFZ is a 38 km long, WNW–ESE-trending and normal fault zone comprised of three en-echelon segments. On 6 October 1964, an earthquake (Ms = 6.9) occurred on the Salur segment. In this study, paleoseismic trench studies were performed along the Salur segment. Based on these paleoseismic trench studies, at least three earthquakes resulting in a surface rupture within the last 4000 years, including the 1964 earthquake have been identified and dated. The penultimate event can be correlated with the AD 1323 earthquake. There is no archaeological and/or historical record that can be associated with the oldest earthquake dated between BP 3800 ± 600 and BP 2300 ± 200 years. Additionally, the trench study performed to the north of the Salur segment demonstrates paleoliquefaction structures crossing each other. The surface deformation that occurred during the 1964 earthquake is determined primarily to be the consequence of liquefaction. According to the fault plane slip data, the MFZ is a purely normal fault demonstrating a listric geometry with a dip of 64°–74° to the NNE.  相似文献   

10.
The Portland metropolitan area historically is the most seismically active region in Oregon. At least three potentially active faults are located in the immediate vicinity of downtown Portland, with the Portland Hills Fault (PHF) extending directly beneath downtown Portland. The faults are poorly understood, and the surface geologic record does not provide the information required to assess the seismic hazards associated with them. The limited geologic information stems from a surface topography that has not maintained a cumulative geologic record of faulting, in part, due to rapid erosion and deposition from late Pleistocene catastrophic flood events and a possible strike-slip component of the faults. We integrated multiple high-resolution geophysical techniques, including seismic reflection, ground penetrating radar (GPR), and magnetic methods, with regional geological and geophysical surveys to determine that the Portland Hills Fault is presently active with a zone of deformation that extends at least 400 m. The style of deformation is consistent with at least two major earthquakes in the last 12–15 ka, as confirmed by a sidehill excavation trench. High-resolution geophysical methods provide detailed images of the upper 100 m across the active fault zone. The geophysical images are critical to characterizing the structural style within the zone of deformation, and when integrated with a paleoseismic trench, can accurately record the seismic history of a region with little surface geologic exposure.  相似文献   

11.
Seismically‐induced event deposits embedded in the sedimentary infill of lacustrine basins are highly useful for palaeoseismic reconstructions. Recent, well‐documented, great megathrust earthquakes provide an ideal opportunity to calibrate seismically‐induced event deposits for lakes with different characteristics and located in different settings. This study used 107 short sediment cores to investigate the sedimentary impact of the 1960 Mw 9·5 Valdivia and the 2010 Mw 8·8 Maule earthquakes in 17 lakes in South‐Central Chile (i.e. lakes Negra, Lo Encañado, Aculeo, Vichuquén, Laja, Villarrica, Calafquén, Pullinque, Pellaifa, Panguipulli, Neltume, Riñihue, Ranco, Maihue, Puyehue, Rupanco and Llanquihue). A combination of image analysis, magnetic susceptibility and grain‐size analysis allows identification of five types of seismically‐induced event deposits: (i) mass‐transport deposits; (ii) in situ deformations; (iii) lacustrine turbidites with a composition similar to the hemipelagic background sediments (lacustrine turbidites type 1); (iv) lacustrine turbidites with a composition different from the background sediments (lacustrine turbidites type 2) and (v) megaturbidites. These seismically‐induced event deposits were compared to local seismic intensities of the causative earthquakes, eyewitness reports, post‐earthquake observations, and vegetation and geomorphology of the catchment and the lake. Megaturbidites occur where lake seiches took place. Lacustrine turbidites type 2 can be the result of: (i) local near‐shore mass wasting; (ii) delta collapse; (iii) onshore landslides; (iv) debris flows or mudflows; or (v) fluvial reworking of landslide debris. On the contrary, lacustrine turbidites type 1 are the result of shallow mass wasting on sublacustrine slopes covered by hemipelagic sediments. Due to their more constrained origin, lacustrine turbidites type 1 are the most reliable type of seismically‐induced event deposits in quantitative palaeoseismology, because they are almost exclusively triggered by earthquake shaking. Moreover, they most sensitively record varying seismic shaking intensities. The number of lacustrine turbidites type 1 linearly increases with increasing seismic intensity, starting with no lacustrine turbidites type 1 at intensities between V½ and VI and reaching 100% when intensities are higher than VII½. Combining different types of seismically‐induced event deposits allows the reconstruction of the complete impact of an earthquake.  相似文献   

12.
Landslides - On January 24, 2020, an earthquake with the Mw of 6.8 occurred on the East Anatolian Fault Zone in Elazig Province, Turkey, and triggered many landslides. Even though Turkey is in a...  相似文献   

13.
Ozer  Caglar 《Natural Hazards》2021,108(2):1901-1917
Natural Hazards - A destructive earthquake (Mw 6.8) occurred at Sivrice-Elaz?? on the East Anatolian Fault Zone (EAFZ) on 24th January, 2020, causing loss of life and property. During the...  相似文献   

14.
The 1200 km-long North Anatolian Transform Fault connects the East Anatolian post-collisional compressional regime in the east with the Aegean back-arc extensional regime to the west. This active dextral fault system lies within a shear zone reaching up to 100 km in width, and consists of southward splining branches. These branches, which have less frequent and smaller magnitude earthquake activity compare to the major transform, cut and divide the shear zone into fault delimited blocks. Comparison of palaeomagnetic data from 46 sites in the Eocene volcanics from different blocks indicate that each fault-bounded block has been affected by vertical block rotations. Although clockwise rotations are dominant as expected from dextral fault-bounded blocks, anticlockwise rotations have also been documented. These anticlockwise rotations are interpreted as due to anticlockwise rotation of the Anatolian Block, as indicated by GPS measurements, and the effects of unmapped faults or pre-North Anatolian Fault tectonic events.  相似文献   

15.
Exhumed fault zones offer insights into deformation processes associated with earthquakes in unparalleled spatial resolution; however it can be difficult to differentiate seismic slip from slow or aseismic slip based on evidence in the rock record. Fifteen years ago, Cowan (1999) defined the attributes of earthquake slip that might be preserved in the rock record, and he identified pseudotachylyte as the only reliable indicator of past earthquakes found in ancient faults. This assertion was based on models of frictional heat production (Sibson, 1975, 1986) providing evidence for fast slip. Significant progress in fault rock studies has revealed a range of reaction products which can be used to detect frictional heating at peak temperatures less than the melt temperature of the rock. In addition, features formed under extreme transient stress conditions associated with the propagating tip of an earthquake rupture can now be recognized in the rock record, and are also uniquely seismic. Thus, pseudotachylyte is no longer the only indicator of fossilized earthquake ruptures.We review the criteria for seismic slip defined by Cowan (1999), and we determine that they are too narrow. Fault slip at rates in the range 10−4−101 m/s is almost certainly dynamic. This implies that features reproduced in experiments at rates as low as 10−4 m/s may be indicators of seismic slip. We conclude with a summary of the rock record of seismic slip, and lay out the current challenges in the field of earthquake geology.  相似文献   

16.
Lake Sapanca is located on a strand of the Northern Anatolian Fault Zone (NAFZ, Turkey), where a series of strong earthquakes (Ms >6.0) have occurred over the past hundred years. Identifying prehistoric earthquakes in and around Lake Sapanca is key to a better understanding of plate movements along the NAFZ. This study contributes to the development of palaeolimnological tools to identify past earthquakes in Lake Sapanca. To this end several promising proxies were investigated, specifically lithology, magnetic susceptibility, grain size (thin-section and laser analysis), geochemistry, pollen concentration, diatom assemblages, 137Cs and 210Pb. Sedimentological indicators provided evidence for reworked, turbidite-like or homogeneous facies (event layers) in several short cores (<45 cm). Other indicators of sediment input and the historical chronicles available for the area suggest that three of these event layers likely originated from the AD 1957, 1967 and 1999 earthquakes. Recent changes in sediment deposition and nutrient levels have also been identified, but are probably not related to earthquakes. This study demonstrates that a combination of indicators can be used to recognize earthquake-related event layers in cores that encompass a longer period of time.  相似文献   

17.
The 1200 km-long North Anatolian Transform Fault connects the East Anatolian post-collisional compressional regime in the east with the Aegean back-arc extensional regime to the west. This active dextral fault system lies within a shear zone reaching up to 100 km in width, and consists of southward splining branches. These branches, which have less frequent and smaller magnitude earthquake activity compare to the major transform, cut and divide the shear zone into fault delimited blocks. Comparison of palaeomagnetic data from 46 sites in the Eocene volcanics from different blocks indicate that each fault-bounded block has been affected by vertical block rotations. Although clockwise rotations are dominant as expected from dextral fault-bounded blocks, anticlockwise rotations have also been documented. These anticlockwise rotations are interpreted as due to anticlockwise rotation of the Anatolian Block, as indicated by GPS measurements, and the effects of unmapped faults or pre-North Anatolian Fault tectonic events.  相似文献   

18.
The NNE-trending Neo-Tethyan suture zone between Ankara and Çanklrl, thrusts eastward onto different stratigraphic levels of the Neogene succession; however, its western side shows a normal fault relationship. This E-vergent tectonic sliver was inactive during the accumulation of the Miocene–Lower Pliocene sedimentary succession and was created by the movement of the North Anatolian Fault Zone and its splay after the late Pliocene, indicating internal deformation of the Anatolian plate. These results are inconsistent with the previous suggestion that intracontinental convergence related to Neo-Tethyan orogeny continued until the Pliocene (Ankara Orogenic Phase).  相似文献   

19.
The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolution. One representative of the syn-sedimentary extension structure is syn-sedimentary boudinage structure, while the typical example of the syn-sedimentary compression structure is compression sand pillows or compression wrinkles. The former shows NW-SE-trendlng contemporaneous extension events related to earthquakes in the rift basin near a famous Fe-Nb-REE deposit in northern China during the Early Paleozoic (or Mesoproterozoic as proposed by some researches), while the latter indicates NE-SW-trending contemporaneous compression activities related to earthquakes in the Middle Triassic in the Nanpanjiang remnant basin covering south Guizhou, northwestern Guangxi and eastern Yunnan in southwestern China. The syn-sedimentary boudinage structure was found in an earthquake slump block in the lower part of the Early Paleozoic Sailinhudong Group, 20 km to the southeast of Bayan Obo, Inner Mongolia, north of China. The slump block is composed of two kinds of very thin layers-pale-gray micrite (microcrystalline limestone) of 1-2 cm thick interbedded with gray muddy micrite layers with the similar thickness. Almost every thin muddy micrite layer was cut into imbricate blocks or boudins by abundant tiny contemporaneous faults, while the interbedded micrite remain in continuity. Boudins form as a response to layer-parallel extension (and/or layer-perpendicular flattening) of stiff layers enveloped top and bottom by mechanically soft layers. In this case, the imbricate blocks cut by the tiny contemporaneous faults are the result of abrupt horizontal extension of the crust in the SE-NW direction accompanied with earthquakes. Thus, the rock block is, in fact, a kind of seismites. The syn-sedimentary boudins indicate that there was at least a strong earthquake belt on the southeast side of the basin during the early stage of the Sailinhudong Group. This may be a good constraint on the tectonic evolution of the Bayan Obo area during the Early Paleozoic time. The syn-sedimentary compression structure was found in the Middle Triassic flysch in the Nanpanjiang Basin. The typical structures are compression sand pillows and compression wrinkles. Both of them were found on the bottoms of sand units and the top surface of the underlying mud units. In other words, the structures were found only in the interfaces between the graded sand layer and the underlying mud layer of the flysch. A deformation experiment with dough was conducted, showing that the tectonic deformation must have been instantaneous one accompanied by earthquakes. The compression sand pillows or wrinkles showed uniform directions along the bottoms of the sand layer in the flysch, revealing contemporaneous horizontal compression during the time between deposition and diagenesis of the related beds. The Nanpanjiang Basin was affected, in general, with SSW-NNE compression during the Middle Triassic, according to the syn-sedimentary compression structure. The two kinds of syn-sedimentary tectonic deformation also indicate that the related basins belong to a rift basin and a remnant basin, respectively, in the model of Wilson Cycle.  相似文献   

20.
The Bekten Fault is 20-km long N55°E trending and oblique-slip fault in the dextral strike-slip fault zone. The fault is extending sub-parallel between Yenice-Gönen and Sar?köy faults, which forms the southern branch of North Anatolian Fault Zone in Southern Marmara Region. Tectonomorphological structures indicative of the recent fault displacements such as elongated ridges and offset creeks observed along the fault. In this study, we investigated palaeoseismic activities of the Bekten Fault by trenching surveys, which were carried out over a topographic saddle. The trench exposed the fault and the trench stratigraphy revealed repeated earthquake surface rupture events which resulted in displacements of late Pleistocene and Holocene deposits. According to radiocarbon ages obtained from samples taken from the event horizons in the stratigraphy, it was determined that at least three earthquakes resulting in surface rupture generated from the Bekten Fault within last ~1300 years. Based on the palaeoseismological data, the Bekten Fault displays non-characteristic earthquake behaviour and has not produced any earthquake associated with surface rupture for about the last 400 years. Additionally, the data will provide information for the role of small fault segments play except for the major structures in strike-slip fault systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号