首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at forested sites in the Andes Mountains (Ecuador), the southern Appalachian Mountains (USA), and the Luquillo Mountains (Puerto Rico). Using a portable rainfall simulator–infiltrometer (all three areas), and a single ring infiltrometer (Andes), we determined infiltration rates, even on steep slopes. Based on these results, we examine the spatial variability of infiltration, the relationship of rainfall runoff and infiltration to landscape position, the influence of vegetation on infiltration rates on slopes, and the implications of this research for better understanding erosional processes and landscape change.Infiltration rates ranged from 6 to 206 mm/h on lower slopes of the Andes, 16 to 117 mm/h in the southern Appalachians, and 0 to 106 mm/h in the Luquillo Mountains. These rates exceed those of most natural rain events, confirming that surface runoff is rare in montane forests with deep soil/regolith mantles. On well-drained forested slopes and ridges, apparent steady-state infiltration may be controlled by the near-surface downslope movement of infiltrated water rather than by characteristics of the full vertical soil profile. With only two exceptions, the local variability of infiltration rates at the scale of 10° m overpowered other expected spatial relationships between infiltration, vegetation type, slope position, and soil factors. One exception was the significant difference between infiltration rates on alluvial versus upland soils in the Andean study area. The other exception was the significant difference between infiltration rates in topographic coves compared to other slope positions in the tabonuco forest of one watershed in the Luquillo Mountains. Our research provides additional evidence of the ability of forests and forest soils to preserve geomorphic features from denudation by surface erosion, documents the importance of subsurface flow in mountain forests, and supports the need for caution in extrapolating infiltration rates.  相似文献   

3.
珠穆朗玛峰北坡东绒布冰川成冰作用的新认识   总被引:4,自引:3,他引:4  
冰川成冰作用的研究对于选择冰芯钻取点具有重要的科学意义。前人对珠穆朗玛峰北坡冰川成冰作用的研究,由于缺少高海拔区域的实测资料而具有一定的局限性。文章通过1998年东绒布冰川垭口处(6 500 m a. s. l.)11 m冰芯和海拔6 450 m处20 m冰芯剖面的成冰作用过程研究,认识到由于水、热条件的逐年波动,冰川成冰作用也处于变化之中。珠穆朗玛峰北坡东绒布冰川高海拔区域,在一定的水、热条件下(如气温较低和降水量较大等),再冻结-重结晶作用依然占主导地位,该成冰作用至少在垭口部位是有分布的。而一般在气温较高或降水量较少等条件下,冰川的成冰作用则以冷渗浸-重结晶作用为主。  相似文献   

4.
Light may be an important limiting resource that influences community structure of chenopod shrublands. As part of a larger study that aimed to determine the factors that influence chenopod community structure, the focus of this study was the influence of plant canopy on the growth and establishment of smaller plants. We therefore measured the height and cover of three chenopods (Enchylaena tomentosa, Maireana brevifolia and Maireana georgei) when growing within and outside of the canopy of Atriplex bunburyana under field conditions. All three chenopods had lower cover and E. tomentosa was taller when growing within the canopy of A. bunburyana in comparison to those growing outside of the canopy. The chenopods were then grown under three artificial shade regimes. Plant height, cover, biomass, relative leaf area and photosynthetic surface area measurements showed that each species responded differently to shade. E. tomentosa biomass was facilitated by shade. This was inferred by an increase in total plant biomass. M. brevifolia, in contrast, tolerated shade by increasing above-ground biomass allocation. M. georgei was adversely affected by the shade regimes: root biomass decreased in response to shade. Competition for light is, therefore, likely to influence chenopod community structure of semi-arid and arid environments.  相似文献   

5.
近50 a来祁连山及河西走廊极端气候的时空变化研究   总被引:1,自引:0,他引:1       下载免费PDF全文
贾文雄 《干旱区地理》2012,35(4):559-567
 在全球变暖背景下,极端气候发生的频率增大,气象灾害造成的损失也随之增加。利用20个气象站1960-2009年的日平均气温和日降水量资料,运用线性趋势法、Spline空间插值法、Morlet小波分析法,对祁连山及河西走廊极端气候的时空变化特征进行了研究。结果表明:极端高温天数呈显著增加趋势,年际变化率为0.79d/a,20世纪90年代中后期之后极端高温天气发生的频率较高;极端低温天数呈显著减少趋势,年际变化率为-0.54d/a, 80年代中后期以来极端低温天气发生的频率较低;极端降水天数也呈显著增加趋势,年际变化率为0.02d/a,70年代中后期之后极端降水天气发生的频率较高。极端气温和降水的年际变化幅度存在区域差异,南部山区比走廊平原对全球气候变暖的响应敏感。极端高温天数和极端低温天数在8a、22a左右周期变化明显,其中22a是第一主周期;极端降水天数在6a、10a、22a左右周期变化明显,其中22a是第一主周期;从22a的周期变化推测,2010年以后11a左右极端高温天数偏少,极端低温天数偏多,极端降水天数偏少。  相似文献   

6.
Glaciers are one of the most important land covers in alpine regions and especially sensitive to global climate change. Remote sensing has proved to be the best method of investigating the extent of glacial variations in remote mountainous areas. Using Landsat thematic mapping (TM) and multi-spectral-scanner (MSS) images from Mt. Qomolangma (Everest) National Nature Preserve (QNNP), central high Himalayas for 1976, 1988 and 2006, we derived glacial extent for these three periods. A combination of object-oriented image interpretation methods, expert knowledge rules and field surveys were employed. Results showed that (1) the glacial area in 2006 was 2710.17 ± 0.011 km2 (about 7.41% of the whole study area), and located mainly to the south and between 4700 m to 6800 m above sea level; (2) from 1976 to 2006, glaciers reduced by 501.91 ± 0.035 km2 and glacial lakes expanded by 36.88 ± 0.035 km2; the rate of glacier retreat was higher in sub-basins on the southern slopes (16.79%) of the Himalayas than on the northern slopes (14.40%); most glaciers retreated, and mainly occurred at an elevation of 4700–6400 m, and the estimated upper limit of the retreat zone is between 6600 m and 6700 m; (3) increase in temperature and decrease in precipitation over the study period are the key factors driving retreat.  相似文献   

7.
Glaciers are one of the most important land covers in alpine regions and especially sensitive to global climate change. Remote sensing has proved to be the best method of investigating the extent of glacial variations in remote mountainous areas. Using Landsat thematic mapping (TM) and multi-spectral-scanner (MSS) images from Mt. Qomolangma (Everest) National Nature Preserve (QNNP), central high Himalayas for 1976, 1988 and 2006, we derived glacial extent for these three periods. A combination of object-oriented image interpretation methods, expert knowledge rules and field surveys were employed. Results showed that (1) the glacial area in 2006 was 2710.17 ± 0.011 km2 (about 7.41% of the whole study area), and located mainly to the south and between 4700 m to 6800 m above sea level; (2) from 1976 to 2006, glaciers reduced by 501.91 ± 0.035 km2 and glacial lakes expanded by 36.88 ± 0.035 km2; the rate of glacier retreat was higher in sub-basins on the southern slopes (16.79%) of the Himalayas than on the northern slopes (14.40%); most glaciers retreated, and mainly occurred at an elevation of 4700–6400 m, and the estimated upper limit of the retreat zone is between 6600 m and 6700 m; (3) increase in temperature and decrease in precipitation over the study period are the key factors driving retreat.  相似文献   

8.
The self-organization of step-pools in mountain streams   总被引:2,自引:0,他引:2  
Spontaneous, autogenic self-organization has been described in numerous geomorphic systems, but it has not been investigated in detail with respect to coarse bedforms in general or step-pools in particular. In this paper, we review the spatial organization of step-pool systems and present example evidence of step-pool development as an autogenic self-organization process. We then outline the mathematical language for defining spatially divergent self-organization and test these ideas using two unique field examples from Oregon (Andrews Experimental Forest) and California (Baxter Creek), where step-pools developed from planar beds in artificially manipulated channels. Results show that step-pool development is consistent with a spatially divergent self-organization phenomenon. Entropy increases as initially undifferentiated planar channels diverge into steps and pools, then declines when a series of steps and pools of consistent size and spacing is established, signifying stability in the system. The self-organization process is accompanied by increasing flow resistance and decreasing slope (through increasing the “vertical sinuosity” of the step-pool profile and creation of low- or negative gradient pool areas), suggesting a minimization of stream power. The self-adjustment of the step-pool bed profile over time represents another manifestation of a general process that results in rhythmic patterns on the surface of Earth.  相似文献   

9.
Sierra Nevada is a protected mountain in the Iberian Peninsula classified as a Biosphere Reserve (1986), Natural Park (1989) and National Park (1999). All these environmental protection programmers are a consequence of its unique landscape in the context of the mid-latitude semiarid mountains, with enclaves of exceptional scientific and cultural value. Thanks to its high altitude, Sierra Nevada held the southernmost Quaternary glaciers in Europe, as well as it happened during the Little Ice Age. In turn, Sierra Nevada is also singular thanks to its vast cultural heritage, since very early societies settled on its slopes and valleys and accommodate their lifestyles and economy to the characteristics of this mountain environment. Currently, Sierra Nevada has become an important tourist centre and receives a large amount of visitors. This process of change has conditioned the implementation of a different economic model: it brings benefits to the populations but it involves changes in the landscape as well, sometimes questionable. From this perspective, a critical revision of the legislation is required balancing the sustainable economic development of the population and the preservation and safeguarding of the heritage values of the landscape. With this goal, we suggest creating and implementing the Sites of Geomorphological Interest.  相似文献   

10.
Using three key areas as an example we examine the tendencies toward changes of the mountain geosystems in southern Siberia caused by fluctuations of climate. Presented are the quantitative parameters of the dynamics of nival-glacial geosystems (glaciers, perennial snow clusters, icings, and stony glaciers). Portions of large-scale maps for the key areas generated for a subsequent monitoring of the mountain geosystems are presented.  相似文献   

11.
This paper compares the palaeolimnological evidence for climate change over the last 200 years with instrumental climate data for the same period at seven European remote mountain lakes. The sites are Øvre Neådalsvatn (Norway), Saanajärvi (Finland), Gossenköllesee (Austria), Hagelseewli (Switzerland), Jezero v Ledvici (Slovenia), Estany Redó (Spain, Pyrenees), and Niné Terianske Pleso (Slovakia). We used multiple regression analysis to transfer homogenised lowland air temperature records to each of the sites, and these reconstructions were validated using data from on-site automatic weather stations. These data showed that mean annual temperature has varied over the last 200 years at each site by between 1 and 2 °C, typical of the high frequency variability found throughout the Holocene, and appropriate, therefore, to test the sensitivity of the various proxy methods used. Sediment cores from each site were radiometrically dated using 210Pb, 137Cs and 241Am and analysed for loss-on-ignition, C, N, S, pigments, diatoms, chrysophytes, Cladocera and chironomids. Comparisons between the proxy data and the instrumental data were based on linear regression analysis with the proxy data treated as response variables and the instrumental data (after smoothing using LOESS regressions) as predictor variables. The results showed few clear or consistent patterns with generally low or very low r2 values. Highest values were found when the data were compared after smoothing using a broad span, indicating that some of the proxy data were capturing climate variability but only at a relatively coarse time resolution. Probable reasons for the weak performance of the methods used include inaccurate dating, especially for earlier time periods, the influence of confounding forcing factors at some sites e.g., air pollution, earthquakes, and the insensitivity of some methods to low amplitude climate forcing. Nevertheless, there were trends in some proxy records at a number of sites that had a relatively unambiguous correspondence with the instrumental climate records. These included organic matter and associated variables (C and N) and planktonic diatom assemblages at the majority of sites and chrysophytes and chironomids at a few sites. Overall for longer term studies of the Holocene, these results indicate the need to be cautious in the interpretation of proxy records, the importance of proxy method validation, the continuing need to use reinforcing multi-proxy approaches, and the need for careful site and method selection.  相似文献   

12.
山体效应是地理地带性之外,在大尺度上影响垂直带分布的主要因素,山体基面高度则是山体效应的第一影响因子。青藏高原及其周边地区,雪线呈现出中心高、周围低,与山体基面高度相一致的环状分布模式。为分析山体基面高度对雪线分布的影响,本文共收集青藏高原及周边地区雪线数据142个,采用纬度、经度和基面高度为自变量的三元一次方程拟合研究区雪线分布,计算各自的标准回归系数和相对贡献率,再将基面高度划分成5个子集(0~1000 m、1001~2000 m、2001~3000 m、3001~4000 m和4001~5000 m),分析基面高度不同的山地对雪线的影响差异。结果表明:① 在青藏高原,纬度、经度和基面高度对雪线高度分布的相对贡献率分别为51.49%、16.31%和32.20%;② 随着基面高度的增高,各子集模型的决定系数虽有逐渐降低的趋势,但仍保持在较高的值域(R2=0.895~0.668),说明模型的有效性;③ 随基面高度的抬升,纬度和山体基面高度对雪线分布高度的相对贡献率分别表现出降低(92.6%~48.99%,R2=0.855)和增大(3.33%~31.76%,R2=0.582)的趋势,表明基面高度越高,其对雪线分布高度的影响越大。  相似文献   

13.
山体效应是地理地带性之外,在大尺度上影响垂直带分布的主要因素,山体基面高度则是山体效应的第一影响因子。青藏高原及其周边地区,雪线呈现出中心高、周围低,与山体基面高度相一致的环状分布模式。为分析山体基面高度对雪线分布的影响,本文共收集青藏高原及周边地区雪线数据142个,采用纬度、经度和基面高度为自变量的三元一次方程拟合研究区雪线分布,计算各自的标准回归系数和相对贡献率,再将基面高度划分成5个子集(0~1000 m、1001~2000 m、2001~3000 m、3001~4000 m和4001~5000 m),分析基面高度不同的山地对雪线的影响差异。结果表明:① 在青藏高原,纬度、经度和基面高度对雪线高度分布的相对贡献率分别为51.49%、16.31%和32.20%;② 随着基面高度的增高,各子集模型的决定系数虽有逐渐降低的趋势,但仍保持在较高的值域(R2=0.895~0.668),说明模型的有效性;③ 随基面高度的抬升,纬度和山体基面高度对雪线分布高度的相对贡献率分别表现出降低(92.6%~48.99%,R2=0.855)和增大(3.33%~31.76%,R2=0.582)的趋势,表明基面高度越高,其对雪线分布高度的影响越大。  相似文献   

14.
To determine for how long a landslide affects sediment discharge, the sediment yields of 15 check-dam basins were compared with the time series of landslide distributions in a mountain basin in the Tanzawa region, central Japan. The distribution of sediment yield was quantitatively estimated from deposition in the sediment pools of check dams. The relationship between the landslide history and sediment discharge in the Nakagawa River basin was examined for an approximately 80-year period. Two major landslide events occurred during this period: the 1923 Kanto Earthquake and the 1972 disaster caused by heavy rainfall. The resulting trend in sediment discharge of the whole basin, estimated using reservoir sedimentation in the Miho Dam at its base, was nearly constant, with high sediment discharge (2897 m3 km− 2 yr− 1) in the intervening quarter-century, despite the recovery of vegetation on landslide areas in this period. Comparisons of the landslide distributions resulting from the two disasters, the sediment yields of check-dam basins, and the sediment discharge of the whole basin indicate that recent sediment discharge contains landslide debris that was originated by the Kanto Earthquake that occurred over 80 years ago. Thus, to understand high sediment discharge, it is essential to investigate not only the current basin condition and recent events, but also the landslide history of the basin for at least the previous 100 years.  相似文献   

15.
A palaeoecological study of an oligotrophic alpine lake, Paione Superiore (Italy), provided a record of historical changes in water quality. Historical trends in lake acidification were reconstructed by means of calibration and regression equations from diatoms, chrysophycean scales and pigment ratios. The historical pH was inferred by using two different diatom calibration data sets, one specific to the alpine region. These pH trends, together with the record of sedimentary carbonaceous particles and chironomid remains, indicate a recent acidification of this low alkalinity lake.Concentration of total organic matter, organic carbon, nitrogen, biogenic silica (BSiO2), chlorophyll derivatives (CD), fucoxanthin, diatom cell concentration and number of chironomid head capsules increased during the last 2–3 decades. When expressed as accumulation rates, most of these parameters tended to decrease from the past century to c. 1950, then all except P increased to the present day. A marked increase in sedimentary nitrogen may be related to atmospheric pollution and to the general increases in output of N in Europe. High C/N ratios indicate a prevailing allochthonous source of organic matter.Finally, the increase in measured air temperature from the mid-1800's appeared to be related to lake water pH before industrialization: cold periods generally led to lower pH and vice-versa. The more recent phenomenon of anthropogenic acidification has apparently decoupled this climatic-water chemistry relationship.  相似文献   

16.
汪学军 《山地学报》2012,30(4):425-430
暴雨是灾害性天气,它出现的时间、地点及强度除与天气因子有关外,受到地形的影响非常显著.利用九华山风景区和邻近地区的气象观测资料及区域自动气象站的探测资料,分析山地地形对九华山大暴雨的影响.结果表明:迎风坡的强迫抬升、喇叭口地形的辐合和局地热力冲击作用是触发九华山大暴雨天气的重要机制,局地涡漩环流对大暴雨也有加强作用.  相似文献   

17.
18.
Joanna Korpak   《Geomorphology》2007,92(3-4):166
The purpose of this paper is to explain the influence of river training on channel changes in mountain rivers. Also considered are the causes of failure of different training schemes. The research was conducted on the regulated Mszanka and Porębianka Rivers, belonging to the Raba River drainage basin in the Polish Flysh Carpathian Mountains. Channel mapping carried out in 2004 drew attention to the contemporary morphology of the channels and the development of their dynamic typology. General changes in channel morphometry and land cover were identified by comparing cartographic sources from various years. Archive material from Cracow's Regional Water Management Authority (RZGW) was used to analyse the detailed channel changes caused by each regulation structure. The material consisted of technical designs of individual training works, as well as plans, longitudinal profiles and cross-sections of trained channel reaches. A series of minimum annual water stages at the Mszana Dolna gauging station was used to determine the tendency of channel bed degradation over 53 years. During the first half of the 20th century, the middle and lower courses of the Mszanka and Porębianka Rivers had braided patterns. The slopes, mostly covered with crops, were an important source of sediment delivery to the river channels. Today, both channels are single-threaded, narrow and sinuous. Downcutting is the leading process transforming the channels. They cut down to bedrock along about 60% of their lengths. The main type of channel is an erosion channel, which occurs also in the middle and lower courses of the rivers. The channel sediment deficit is an important cause for river incision. Sediment supply to the channels was reduced after a replacement of crops on the slopes by meadows or forests. Gravel mining has also caused channel downcutting. The rapid channel changes began after 1959, as systematic training was introduced. Channel regulation seems therefore to be a major factor determining channel adjustment. Debris dams and groynes were built before 1980 and these caused the greatest change of channel pattern, increase of channel gradient and magnitude of river incision. After that date the measures mostly involved drop structures. From then on, the rate of downcutting decreased considerably, but has not ceased. The rivers continued to incise until bedrock was exposed or training structures were destroyed. After that, a tendency to lateral migration and local braiding were observed in the deepened channel. The channels displayed a tendency to return to their morphology and dynamic from before the training. The results demonstrate that river training distorts the equilibrium of channel systems. A channel becomes divided into artificial reaches, which later follow different evolutionary patterns. Most training schemes on mountain channels are ineffective in the long term, as river managers seem to consider a channel at a reach scale only. Individual channel reaches, however, are not independent but rather form a system that must be managed at the entire channel scale.  相似文献   

19.
The flood at Mount Fulufjället, 30-31 August 1997 was caused by the most furious rainstorm ever documented in Sweden. Private measurements on the mountain show not less than 276 mm over 24 hours, and the distribution of severe damage suggests even higher amounts in other parts of the mountain. The precipitation was connected to a front attacking a high pressure that had been dominating the weather in Sweden for several weeks, but orographic lifting on the east-facing slopes of the mountain may partly have caused the extreme intensity. In River Fulan, one of the upper branches of River Dalälven, the discharge peaked at a diurnal mean value of 233 m 3/s;, the highest since measurements began in 1913. At the stream Tangån and the new common outlet of the streams Stora and Lilla Göljån, both locations with a normal discharge of only around 1 m 3/s, instantaneous values of approximately 300 m 3/s have been estimated, corresponding to values close to the normal discharge at the mouth of River Dalälven on the coast of the Sea of Bothnia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号