首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The 'All Sky Automated Survey' (ASAS) photometric observations of LS 1135, an O-type single-lined binary (SB1) system with an orbital period of 2.7 d, show that the system is also eclipsing performing a numerical model of this binary based on the Wilson–Devinney method. We obtained an orbital inclination     . With this value of the inclination, we deduced masses   M 1∼ 30 ± 1 M  and   M 2∼ 9 ± 1 M  , and radii   R 1∼ 12 ± 1 R  and   R 2∼ 5 ± 1 R  for primary and secondary components, respectively. Both the components are well inside their respective Roche lobes. Fixing the T eff of the primary to the value corresponding to its spectral type (O6.5V), the T eff obtained for the secondary component corresponds approximately to a spectral type of B1V. The mass ratio   M 2/ M 1∼ 0.3  is among the lowest known values for spectroscopic binaries with O-type components.  相似文献   

2.
We report on Two-Micron All-Sky Survey (2MASS) J01542930+0053266, a faint eclipsing system composed of two M dwarfs. The variability of this system was originally discovered during a pilot study of the 2MASS Calibration Point Source Working Data base. Additional photometry from the Sloan Digital Sky Survey yields an eight-passband light curve from which we derive an orbital period of  2.639 0157 ± 0.000 0016  d. Spectroscopic followup confirms our photometric classification of the system, which is likely composed of M0 and M1 dwarfs. Radial velocity measurements allow us to derive the masses  (M1= 0.66 ± 0.03 M; M2= 0.62 ± 0.03 M)  and radii  (R1= 0.64 ± 0.08 R; R2= 0.61 ± 0.09 R)  of the components, which are consistent with empirical mass–radius relationships for low-mass stars in binary systems. We perform Monte Carlo simulations of the light curves which allow us to uncover complicated degeneracies between the system parameters. Both stars show evidence of Hα emission, something not common in early-type M dwarfs. This suggests that binarity may influence the magnetic activity properties of low-mass stars; activity in the binary may persist long after the dynamos in their isolated counterparts have decayed, yielding a new potential foreground of flaring activity for next generation variability surveys.  相似文献   

3.
We report the results of a spectroscopic and polarimetric study of the massive, hydrogen-rich WN6h stars R144 (HD 38282 = BAT99-118 = Brey 89) and R145 (HDE 269928 = BAT99-119 = Brey 90) in the Large Magellanic Cloud. Both stars have been suspected to be binaries by previous studies (R144: Schnurr et al.; R145: Moffat). We have combined radial-velocity (RV) data from these two studies with previously unpublished polarimetric data. For R145, we were able to establish, for the first time, an orbital period of 158.8 d, along with the full set of orbital parameters, including the inclination angle i , which was found to be   i = 38°± 9°  . By applying a modified version of the shift-and-add method developed by Demers et al., we were able to isolate the spectral signature of the very faint line companion star. With the RV amplitudes of both components in R145, we were thus able to estimate their absolute masses. We find minimum masses   M WRsin3 i = 116 ± 33 M  and   M Osin3 i = 48 ± 20 M  for the WR and the O component, respectively. Thus, if the low-inclination angle were correct, resulting absolute masses of the components would be at least 300 and  125 M  , respectively. However, such high masses are not supported by brightness considerations when R145 is compared to systems with known very high masses such as NGC 3603-A1 or WR20a. An inclination angle close to  90°  would remedy the situation, but is excluded by the currently available data. More and better data are thus required to firmly establish the nature of this puzzling, yet potentially very massive and important system. As to R144, however, the combined data sets are not sufficient to find any periodicity.  相似文献   

4.
We investigate why the spectral type of most cataclysmic variable (CV) secondaries is significantly later than that of a zero-age main-sequence (ZAMS) star with the same mean density. Using improved stellar input physics, tested against observations of low-mass stars at the bottom of the main sequence, we calculate the secular evolution of CVs with low-mass donors. We consider sequences with different mass transfer rates and with a different degree of nuclear evolution of the donor prior to mass transfer.
Systems near the upper edge of the gap ( P ∼3–6 h) can be reproduced by models with a wide range of mass transfer rates from 1.5×10−9 M yr−1 to 10−8 M yr−1. Evolutionary sequences with a small transfer rate and donors that are substantially evolved off the ZAMS (central hydrogen content 0.05–0.5) reproduce CVs with late spectral types above P ≳6 h. Systems with the most discrepant (late) spectral type should have the smallest donor mass at any given P .
Consistency with the period gap suggests that the mass transfer rate increases with decreasing donor mass for evolved sequences above the period gap. In this case, a single-parameter family of sequences with varying X c and increasing mass transfer rate reproduces the full range of observed spectral types. This would imply that CVs with such evolved secondaries dominate the CV population.  相似文献   

5.
The amount of mass contained in low-mass objects is investigated anew. Instead of using a mass–luminosity relation to convert a luminosity function to a mass function, I predict the mass–luminosity relation from assumed mass functions and the luminosity functions of Jahreiss & Wielen and Gould, Bahcall & Flynn. Comparison of the resulting mass–luminosity relations with data for binary stars constrains the permissible mass functions. If the mass function is assumed to be a power law, the best-fitting slope lies either side of the critical slope, α =−2, below which the mass in low-mass objects is divergent, depending on the luminosity function adopted. If these power-law mass functions are truncated at 0.001 M, the contribution to the local density from stars lies between 0.013 and 0.10 M pc−3 depending on the mass at which the mass function is normalized and the adopted value of α . Recent dynamical estimates of the local mass density rule out stellar mass densities above ∼0.05 M pc−3. Hence, power laws steeper than α =−2 that extend down to 0.001 M are allowed only if one adopts an implausible normalization of the mass function. If the mass function is generalized from a power law to a low-order polynomial in log( M ), the mass in stars with M <0.1 M is either negligible or strongly divergent, depending on the order of the polynomial adopted.  相似文献   

6.
We present our findings based on a detailed analysis of the binaries of the Hyades, in which the masses of the components are well known. We fit the models of the components of a binary system to observations so as to give the observed total V and B − V of that system and the observed slope of the main sequence in the corresponding parts. According to our findings, there is a very definite relationship between the mixing-length parameter and the stellar mass. The fitting formula for this relationship can be given as  α= 9.19( M /M− 0.74)0.053− 6.65  , which is valid for stellar masses greater than  0.77 M  . While no strict information is gathered for the chemical composition of the cluster, as a result of degeneracy in the colour–magnitude diagram, by adopting   Z = 0.033  and using models for the components of 70 Tau and θ2 Tau we find the hydrogen abundance to be   X = 0.676  and the age to be 670 Myr. If we assume that   Z = 0.024  , then   X = 0.718  and the age is 720 Myr. Our findings concerning the mixing-length parameter are valid for both sets of the solution. For both components of the active binary system V818 Tau, the differences between radii of the models with   Z = 0.024  and the observed radii are only about 4 per cent. More generally, the effective temperatures of the models of low-mass stars in the binary systems studied are in good agreement with those determined by spectroscopic methods.  相似文献   

7.
We have used the radial velocity variations of two sdB stars previously reported to be binaries to establish their orbital periods. They are PG 0940+068 ( P =8.33 d) and PG 1247+554 ( P =0.599 d). The minimum masses of the unseen companions, assuming a mass of 0.5 M for the sdB stars, are 0.090±0.003 M. for PG 1247+554 and 0.63±0.02 M for PG 0940+068. The nature of the companions is not constrained further by our data.  相似文献   

8.
High-resolution spectroscopic observations around the Hα line and BVRI photometry of the eclipsing short-period RS CVn star UV Leo are presented. The simultaneous light-curve solution and radial velocity-curve solution led to the following values of the global parameters of the binary: temperatures   T 1= 6000 ± 100 K  and   T 2= 5970 ± 20 K  ; masses   M 1= 0.976 ± 0.067 M  and   M 2= 0.931 ± 0.052 M  ; separation   a = 3.716 ± 0.048 R  ; orbital inclination     ; radii   R 1= 1.115 ± 0.052 R  and   R 2= 1.078 ± 0.051 R  ; equatorial velocities   V 1= 98.8 ± 2.3 km s−1  and   V 2= 89.6 ± 2.7 km s−1  . These results lead to the conclusion that the two components of UV Leo are slightly oversized for their masses and lie within the main-sequence band on the mass–radius diagram, close to the isochrone 9 × 1010 yr.  相似文献   

9.
We present a Roche tomography reconstruction of the secondary star in the cataclysmic variable AE Aqr. The tomogram reveals several surface inhomogeneities that are due to the presence of large, cool star-spots. In addition to a number of lower latitude spots, the maps also show the presence of a large, high-latitude spot similar to that seen in Doppler images of rapidly rotating isolated stars, and a relative paucity of spots at a latitude of 40°. In total, we estimate that some 18 per cent of the Northern hemisphere of AE Aqr is spotted.
We have also applied the entropy landscape technique to determine accurate parameters for the binary system. We obtain optimal masses   M 1= 0.74 M, M 2= 0.50 M  , a systemic velocity  γ=−63 km s−1  and an orbital inclination   i = 66°  .
Given that this is the first study to successfully image star-spots on the secondary star in a cataclysmic variable, we discuss the role that further studies of this kind may play in our understanding of these binaries.  相似文献   

10.
We have performed high-speed UBV photometric observations on the peculiar binary V Sagittae. Using three new eclipse timings we update the orbital ephemeris and convert it to a dynamical time-scale (TDB). We also searched for quasi-periodic oscillations but did not detect them. Using the Wilson–Devinney algorithm we have modelled the light curve to find the stellar parameters of V Sge. We find that the system is a detached binary but that the primary star is very close to filling its Roche lobe, while the secondary star fills 90 per cent of its Roche lobe volume. We find temperatures of the primary and the secondary star to be T 1=41 000 K and T 2=22 000 K. We find i =72° and masses of 0.8 M and 3.3 M for the primary and secondary stars respectively. De-archived Hubble Space Telescope ( HST ) spectroscopy of V Sge shows evidence of mass loss via a wind or winds. In addition we report radio observations of V Sge during an optical high state at 2 cm, 3.6 cm and 6 cm wavelengths. The 3.6 cm emission is increased by a factor of more than six compared with an earlier detection in a previous optical high state.  相似文献   

11.
A spectroscopic study of the binary Wolf–Rayet (WR)+O system WR 145 is performed, in order to determine the radial velocity orbits of the individual stars, the angle of orbital inclination and the stellar masses. The emission and absorption components are separated from the original spectra, allowing us to confirm the spectral classification WN 7o/CE of the hybrid WR component and to derive a spectral classification O7V((f)) for the O star. A study of the wind-collision properties is performed. Fitting the radial velocity and full width at half-maximum of the excess emission with Lührs' model results in an inclination angle of   i = 63°  , leading to estimates of the stellar masses:   M WR= 18 M  and   M O= 31 M  . Both of these masses are compatible with those of other stars of similar types.  相似文献   

12.
We investigate the behaviour of asymptotic giant branch (AGB) stars between metallicities   Z = 10−4  and 10−8. We determine which stars undergo an episode of flash-driven mixing, where protons are ingested into the intershell convection zone, as they enter the thermally pulsing AGB phase and which undergo third dredge-up. We find that flash-driven mixing does not occur above a metallicity of   Z = 10−5  for any mass of star and that stars above  2 M  do not experience this phenomenon at any metallicity. We find carbon ingestion (CI), the mixing of carbon into the tail of hydrogen-burning region, occurs in the mass range  2 M  to around  4 M  . We suggest that CI may be a weak version of the flash-driven mechanism. We also investigate the effects of convective overshooting on the behaviour of these objects. Our models struggle to explain the frequency of Carbon-Enhanced Metal-Poor (CEMP) stars that have both significant carbon and nitrogen enhancement. Carbon can be enhanced through flash-driven mixing, CI or just third dredge-up. Nitrogen can be enhanced through hot bottom burning and the occurrence of hot dredge-up also converts carbon into nitrogen. The C/N ratio may be a good indicator of the mass of the primary AGB stars.  相似文献   

13.
We have developed a detailed stellar evolution code capable of following the simultaneous evolution of both stars in a binary system, together with their orbital properties. To demonstrate the capabilities of the code, we investigate potential progenitors for the Type IIb Supernova 1993J, which is believed to have been an interacting binary system prior to its primary exploding. We use our detailed binary stellar evolution code to model this system to determine the possible range of primary and secondary masses that could have produced the observed characteristics of this system, with particular reference to the secondary. Using the luminosities and temperatures for both stars (as determined by Maund et al.) and the remaining mass of the hydrogen envelope of the primary at the time of explosion, we find that if mass transfer is 100 per cent efficient, the observations can be reproduced by a system consisting of a  15 M  primary and a  14 M  secondary in an orbit with an initial period of 2100 days. With a mass transfer efficiency of 50 per cent, a more massive system consisting of a  17 M  primary and a  16 M  secondary in an initial orbit of 2360 days is needed. We also investigate some of the uncertainties in the evolution, including the effects of tidal interaction, convective overshooting and thermohaline mixing.  相似文献   

14.
There is an apparent dichotomy between the metal-poor  ([Fe/H]≤−2)  yet carbon-normal giants and their carbon-rich counterparts. The former undergo significant depletion of carbon on the red giant branch after they have undergone first dredge-up, whereas the latter do not appear to experience significant depletion. We investigate this in the context that the extra mixing occurs via the thermohaline instability that arises due to the burning of  3He  . We present the evolution of [C/Fe], [N/Fe] and  12C/13C  for three models: a carbon-normal metal-poor star, and two stars that have accreted material from a  1.5 M  AGB companion, one having received  0.01 M  of material and the other having received  0.1 M  . We find the behaviour of the carbon-normal metal-poor stars is well reproduced by this mechanism. In addition, our models also show that the efficiency of carbon-depletion is significantly reduced in carbon-rich stars. This extra-mixing mechanism is able to reproduce the observed properties of both carbon-normal and carbon-rich stars.  相似文献   

15.
We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variable V347 Pup (=LB 1800). There is evidence of irradiation on the inner hemisphere of the secondary star, which we correct for using a model to give a secondary-star radial velocity of   K R= 198 ± 5 km s−1  . The rotational velocity of the secondary star in V347 Pup is found to be   v sin  i = 131 ± 5 km s−1  and the system inclination is   i = 840 ± 23  . From these parameters we obtain masses of   M 1= 0.63 ± 0.04 M  for the white dwarf primary and   M 2= 0.52 ± 0.06 M  for the M0.5V secondary star, giving a mass ratio of   q = 0.83 ± 0.05  . On the basis of the component masses, and the spectral type and radius of the secondary star in V347 Pup, we find tentative evidence for an evolved companion. V347 Pup shows many of the characteristics of the SW Sex stars, exhibiting single-peaked emission lines, high-velocity S-wave components and phase-offsets in the radial velocity curve. We find spiral arms in the accretion disc of V347 Pup and measure the disc radius to be close to the maximum allowed in a pressureless disc.  相似文献   

16.
We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary  50–100 M  star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of  ≳200–400 km s−1  (typical of pulsars), while  3–4 M  stars can attain velocities of  ≳300–400 km s−1  (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.  相似文献   

17.
We have evaluated the likely progenitor masses M PG of nebulae having elliptical, circular and bipolar morphologies, using observed ratios between the populations of these sources, and deduced central star mass functions. We find that most bipolar nebulae (BPNe) are likely to arise from progenitors having mass M PG>2.3 M and spectral types earlier than A3.2, whilst circular sources are associated with progenitors of mass 1.0 M< M PG<1.2 M and spectral range G1.9–F7.8 . Elliptical sources arise from intermediate-mass progenitors. The procedures employed to determine these values are relatively insensitive to uncertainties in scaleheights and population ratios, and completely insensitive to uncertainties in the distance scale. They are, however, dependent upon the precise forms adopted for the initial–final and central star mass functions, and we discuss the sensitivity of M PG to uncertainties in these functions.  相似文献   

18.
We study the full evolution of low-mass white dwarfs with helium and oxygen cores. We revisit the age dichotomy observed in many white dwarf companions to millisecond pulsar on the basis of white dwarf configurations derived from binary evolution computations. We evolve 11 dwarf sequences for helium cores with final masses of 0.1604, 0.1869, 0.2026, 0.2495, 0.3056, 0.3333, 0.3515, 0.3844, 0.3986, 0.4160 and  0.4481 M  . In addition, we compute the evolution of five sequences for oxygen cores with final masses of 0.3515, 0.3844, 0.3986, 0.4160 and  0.4481 M  . A metallicity of   Z = 0.02  is assumed. Gravitational settling, chemical and thermal diffusion are accounted for during the white dwarf regime. Our study reinforces the result that diffusion processes are a key ingredient in explaining the observed age and envelope dichotomy in low-mass helium-core white dwarfs, a conclusion we arrived at earlier on the basis of a simplified treatment for the binary evolution of progenitor stars. We determine the mass threshold where the age dichotomy occurs. For the oxygen white dwarf sequences, we report the occurrence of diffusion-induced, hydrogen-shell flashes, which, as in the case of their helium counterparts, strongly influence the late stages of white dwarf cooling. Finally, we present our results as a set of white dwarf mass–radius relations for helium and oxygen cores.  相似文献   

19.
To measure the onset of mass transfer in eccentric binaries, we have developed a two-phase smoothed particle hydrodynamics (SPH) technique. Mass transfer is important in the evolution of close binaries, and a key issue is to determine the separation at which mass transfer begins. The circular case is well understood and can be treated through the use of the Roche formalism. To treat the eccentric case, we use a newly developed two-phase system. The body of the donor star is made up from high-mass water particles, whilst the atmosphere is modelled with low-mass oil particles. Both sets of particles take part fully in SPH interactions. To test the technique, we model circular mass-transfer binaries containing a  0.6 M  donor star and a  1 M  white dwarf; such binaries are thought to form cataclysmic variable (CV) systems. We find that we can reproduce a reasonable CV mass-transfer rate, and that our extended atmosphere gives a separation that is too large by approximately 16 per cent, although its pressure scale height is considerably exaggerated. We use the technique to measure the semimajor axis required for the onset of mass transfer in binaries with a mass ratio of   q = 0.6  and a range of eccentricities. Comparing to the value obtained by considering the instantaneous Roche lobe at pericentre, we find that the radius of the star required for mass transfer to begin decreases systematically with increasing eccentricity.  相似文献   

20.
The time sequence of 105 spectra covering one full orbital period of AA Dor has been analysed. Direct determination of   V  sin  i   for the sdOB component from 97 spectra outside of the eclipse for the lines Mg  ii 4481 Å and Si  iv 4089 Å clearly indicated a substantially smaller value than estimated before. Detailed modelling of line-profile variations for eight spectra during the eclipse for the Mg  ii 4481 Å line, combined with the out-of-eclipse fits, gave   V  sin  i = 31.8 ± 1.8 km s−1  . The previous determinations of   V  sin  i   , based on the He  ii 4686 Å line, appear to be invalid because of the large natural broadening of the line. With the assumption of the solid-body, synchronous rotation of the sdOB primary, the measured values of the semi-amplitude K 1 and   V  sin  i   lead to the mass ratio   q = 0.213 ± 0.013  which in turn gives K 2 and thus the masses and radii of both components. The sdOB component appears to be less massive than assumed before,   M 1= 0.25 ± 0.05 M  , but the secondary has its mass–radius parameters close to theoretically predicted for a brown dwarf,   M 2= 0.054 ± 0.010 M  and   R 2= 0.089 ± 0.005 R  . Our results do not agree with the recent determination of Vŭcković et al. based on a K 2 estimate from line-profile asymmetries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号