首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
本文通过对水下物体在波浪力作用下所受的力的分析,运用流体力学和波浪理论的基本知识,建立了物体的运动方程,并借助于数值计算的方法对运动方程进行求解,从而得出物体在波浪力作用下的运动特性,为水下机器人的吊放回收提供了理论依据。  相似文献   

2.
当物体在水中运动时,它所引起的流场变化会调制海水表面的小尺度波动,从而可以被合成孔径雷达(SAR)所探测。本文建立了一个三维半隐式格式,对水下运动物体的绕流问题进行了数值计算。在袁业立有关海波高谱形式及SAR影像原理的理论分析基础上,本文进一步计算了水下运动物体SAR影像的G值分布图,并讨论了物体深度、海水水深、海表面主波方向对水下运动物体SAR影像的影响。  相似文献   

3.
当物体在水中运动时,它所引起的流场变化会调制海水表面的小尺度波动,从而可以被合成孔径雷达(SAR)所探测,本文建立了一个三维半隐式半格式,对水下运动物体的绕流问题进行了数值计算,在袁业立有关海波高谱形式以SAR影像原理的理论分析基础上,本文进一步计算了水下运动物体SAR影像的G值分布图,并讨论了物体深度,海水水深,海表面主波方向对水下运动物体SAR影像的影响。  相似文献   

4.
针对水深6.0 km深海采矿装备,研究其转场工况平台—水下系统耦合动力响应特性。建立深海采矿平台—输浆管—中继站一体化耦合动力模型,其中采用有限元方法离散输浆管,采用势流理论计算平台水动力,基于Kalman滤波对动力定位系统进行参数整定,优化动力定位系统推力。考虑动力定位系统,计算水动力和采矿平台—输浆管—中继站的频域响应和平台—水下系统耦合时域运动响应,计算得到了平台时域运动响应、水下系统动力响应及动力定位系统推力响应。结果表明:建立的一体化耦合动力分析模型是可行的,可以有效预报平台及水下系统响应;转场0°浪向动力定位系统可以有效控制平台运动;中继站运动较小,输浆管轴力较大,建议将输浆管的浮力材料移动到流速较小的水下范围,可降低拖曳力,有利于输浆管的强度性能。  相似文献   

5.
王伟 《海洋学报》1998,20(3):6-11
在小风速条件下,分层水中,水下运动物体所产生的内波,通过改变表面流场,使得风浪中的短波波面斜率分布发生了改变.由此,可以通过观察表面风浪中短波波面斜率分布的变化,识别出水下运动物体的移动轨迹  相似文献   

6.
王伟 《海洋学报》1998,20(3):5-11
在小风速条件下,分层水中,水下运动物体所产生的内波,通过改变表面流场,使得风浪中的短波波面斜率分布发生了改变。由此,可以通过观察表面风浪中短波波面斜率分布的变化,识别出水下运动物体的移动轨迹  相似文献   

7.
水下滑翔器的运动建模与分析   总被引:5,自引:2,他引:5  
介绍了水下滑翔器的工作机理,对其沉浮阶段的滑翔过程进行了动力学分析,推导了滑翔器在垂直剖面上的动力学方程。论文深入分析了水下滑翔器稳态时的运动规律,以水下滑翔器试验模型为例,推导了其稳态运动参数,通过线性化与适当的简化,得到模型在垂直剖面上的运动状态方程,讨论了系统的可控性与可观测性,为水下滑翔器系统的开发设计和控制提供了理论依据,具有重要的指导意义。  相似文献   

8.
基于多体动力分析方法进行FPSO和水下软钢臂系泊系统的运动特性研究。相较于非线性弹簧模拟软钢臂系泊系统或者其他近似模拟方法,多体分析方法可以充分考虑系泊系统具体结构形式及其动力项对FPSO运动性能的影响,更好的预报系统运动响应和系泊力。本文将FPSO和水下钢臂结构模拟成2个具有6自由度的独立结构,两者用系泊链组进行连接。基于三维势流理论应用汇源分布法,首先在频域内进行FPSO的水动力参数分析,进而在时域内对系统进行耦合动力分析。本文重点讨论系泊系统黏性力和二阶波浪力对系统响应的影响,计算结果发现系泊系统黏性力对系泊力有一定影响,而在浅水条件下二阶波浪力的计算对准确预报系统运动及系泊力非常重要。  相似文献   

9.
潜器在水下发射火箭时会产生复杂的运动变化,对其研究很有实际意义。参照格特勒运动方程,建立潜器运动的非线性数学模型。导入实验模型的参数,对其六自由度基本运动进行了仿真,并与水池实验结果相比较,验证了仿真模型的有效性。导入发射火箭时潜器受到的完整载荷,计算分析了不同航速下潜器的运动响应和运动控制。结果表明,发射载荷对潜器运动将产生较长时间的显著影响,包括速度损失、升沉运动和纵倾角振荡。航速越小,运动变化越大,恢复所需时间越长,控制越困难。  相似文献   

10.
水下缆索运动建模过程中出现低应力松弛状态、大弯曲或扭转形变等状态,必须精细划分空间离散微元与时域求解步长以描述缆索曲率变化,进而避免数值求解奇异,这种处理方法使得求解水下缆索运动响应效率极为低下,甚至可能出现数值积分过程中截断误差与舍入误差累加导致的计算错误,无法描述水下锚泊、拖曳等系统的真实状态。针对精确描述水下柔性缆索的弯曲、扭转等形变状态及其对运动系统数学模型的影响,采用三次样条插值方法构建水下缆索微元空间形态,对连续水下缆索进行非线性离散处理,通过Galerkin余量消除方法实现求解域内满足缆索微元空间运动方程要求,建立了包含弯矩、扭矩作用的水下缆索动态运动数学模型与求解方法。通过与理论数值计算数据及海上实验数据对比分析,验证了本模型的准确性,可为水下锚泊系留、水下拖曳等系统的工程应用提供一种高效设计方法。  相似文献   

11.
In this paper,the underwater vehicle,sling and the mother ship are considered as a single de-gree of freedom system connected by a spring.Through the analysis of this system,a physical model is es-tablished,which describes the motion of the vehicle caused by the ship motion and wave motion.Furthermore,a mathematical model based on this physical model is obtained,and a numerical solutionprogram is made.As an example,a practical launch and recovery system for an underwater robot is calcu-lated by use of the program.and the motion track of the robot is obtained.  相似文献   

12.
A three-dimensional model of a two-part underwater towed system is studied. In the model, the governing equations of cables are established based on the Ablow and Schechter method. The boundary conditions for the two-part underwater towed system are derived. The six-degrees-of-freedom equations of motion for submarine simulations are adopted to predict the hydrodynamic performance of a towed vehicle. The established governing equations for the system are then solved using a central finite difference method. In this paper several algorithms are used to solve this special form of finite difference equations. The results in this paper indicate that the two-part underwater towed system improves the dynamic behavior of the towed vehicle and is an easy way to decouple the towing ship motion from the towed vehicle. Because the model uses an implicit time integration, it is stable for large time steps and is an effective algorithm for simulation of a large-scale underwater towed system.  相似文献   

13.
An experimental set-up is developed and proved to be effective for laboratory study of an underwater towed system. The experimental technique gives a practical method for monitoring the kinematic and dynamic performance of an underwater towed system in a ship towing tank. Both the theoretical and experimental results in the investigation indicate that the hydrodynamic response of a towed vehicle to the wave induced motion of a towing ship can be significantly reduced by applying a two-part tow method. A comparison of the numerical and experimental results in the investigation demonstrates that the numerical simulation results are close to the experimental data, overall agreement between experimental and theoretical results is satisfactory. The results qualitatively verify the mathematical model of a two-part underwater towed system proposed by Wu and Chwang [Wu, J., Chwang, A.T., 2000. A hydrodynamic model of a two-part underwater towed system. Ocean Engineering 27 (5), 455–472].  相似文献   

14.
A hydrodynamic model of a two-part underwater manoeuvrable towed system is proposed in which a depressor is equipped with active horizontal and vertical control surfaces, and a towed vehicle is attached to the lower end of a primary cable. In such a system the towed vehicle can be manoeuvred in both vertical and horizontal planes when it is towed at a certain velocity and the coupling effect of excitations at the upper end of the primary cable and disturbances of control manipulations to the towed vehicle can be reduced. In the model the hydrodynamic behavior of an underwater vehicle is described by the six-degrees-of-freedom equations of motion for submarine simulations. The added masses of an underwater vehicle are obtained from the three-dimensional potential theory. The control surface forces of the vehicle are determined by the wing theory. The results indicate that with relative simple control measures a two-part underwater manoeuvrable towed system enables the towed vehicle to travel in a wide range with a stable attitude. The method in this model gives an effective numerical approach for determining hydrodynamic characteristics of an underwater vehicle especially when little or no experimental data are available or when costs prohibit doing experiments for determining these data.  相似文献   

15.
An integrated hydrodynamics and control model to simulate tethered underwater robot system is proposed. The governing equation of the umbilical cable is based on a finite difference method, the hydrodynamic behaviors of the underwater robot are described by the six-degrees-of-freedom equations of motion for submarine simulations, and a controller based on the fuzzy sliding mode control (FSMC) algorithm is also incorporated. Fluid motion around the main body of moving robot with running control ducted propellers is governed by the Navier–Stokes equations and these nonlinear differential equations are solved numerically via computational fluid dynamics (CFD) technique. The hydrodynamics and control behaviors of the tethered underwater robot under certain designated trajectory and attitude control manipulation are then investigated based on the established hydrodynamics and control model. The results indicate that satisfactory control effect can be achieved and hydrodynamic behavior under the control operation can be observed with the model; much kinematic and dynamic information about tethered underwater robot system can be forecasted, including translational and angular motions of the robot, hydrodynamic loading on the robot, manipulation actions produced by the control propellers, the kinematic and dynamic behaviors of the umbilical cable. Since these hydrodynamic effects are fed into the proposed coupled model, the mutual hydrodynamic influences of different portions of the robot system as well as the hydrological factors of the undersea environment for the robot operation are incorporated in the model.  相似文献   

16.
AQUA is an underwater hexapod robot that uses its paddles to propel itself and control its orientation. To aid in the vehicle development, a simulation was needed to predict the motion of the robot based on its paddle oscillations. The most difficult aspect of this simulation was the characterization of the forces generated by the paddles oscillating in the water. In this work, a model predicting the forces produced by an oscillating rigid paddle was developed and validated experimentally. Tests were performed on an experimental setup, which was designed and built to measure the forces and torques produced by a paddle oscillating in a water tank. Also, the forces produced by a flexible fin were determined experimentally and were compared to those generated by the rigid paddle. Finally, a simulation of the AQUA robot was developed, based on the validated rigid paddle model.  相似文献   

17.
In this study, a dynamic modeling method for foil-like underwater vehicles is introduced and experimentally verified in different sea tests of the Hadal ARV. The dumping force of a foil-like underwater vehicle is sensitive to swing motion. Some foil-like underwater vehicles swing periodically when performing a free-fall dive task in experiments. Models using conventional modeling methods yield solutions with asymptotic stability, which cannot simulate the self-sustained swing motion. By improving the ridge regression optimization algorithm, a grey-box modeling method based on 378 viscous drag coefficients using the Taylor series expansion is proposed in this study. The method is optimized for over-fitting and convergence problems caused by large parameter matrices. Instead of the PMM test data, the unsteady computational fluid dynamics calculation results are used in modeling. The obtained model can better simulate the swing motion of the underwater vehicle. Simulation and experimental results show a good consistency in free-fall tests during sea trials, as well as a prediction of the dive speed in the swing state.  相似文献   

18.
水下滑翔机器人系统研究   总被引:12,自引:2,他引:10  
水下滑翔机器人是一种新型的水下机器人,可以作为水下监测平台用于大范围、长时间的大尺度海洋环境监测作业。文中调查了水下滑翔机器人的国内外发展现状,分析了其可能的应用领域。详细介绍了中国科学院沈阳自动化研究所开发的水下滑翔机器人系统,包括载体外形优化设计、载体结构设计和控制系统设计。分析了水下滑翔机器人定常滑翔运动和空间螺旋会转运动的运动性能。  相似文献   

19.
水下机器人主动升沉补偿系统研究   总被引:3,自引:1,他引:2  
介绍一种基于水下机器人常规液压收放绞车的主动升沉补偿系统,利用加速度传感器获得母船的升沉运动信号,控制绞车的运转来降低母船的升沉运动对水下机器人的影响。通过理论计算建立主动升沉补偿系统的数学模型,仿真分析绞车运动对水下机器人升沉运动的补偿效果,并利用主动升沉补偿系统实验台验证基于常规液压收放绞车的主动升沉补偿方案的可行性。  相似文献   

20.
This paper presents an open-loop control system for a new experimental vehicle, named the biorobotic autonomous underwater vehicle (BAUV). The rigid cylindrical hull of the vehicle is attached with six strategically located fins to produce forces and moments in all orthogonal directions and axes with minimal redundancy. The fins are penguin-wing inspired and they implement the unsteady high-lift principle found widely in swimming and flying animals. The goal has been to design an underwater vehicle that is highly maneuverable by taking the inspiration from nature where unsteady hydrodynamic principles of lift generation and the phase synchronization of fins are common. We use cycle-averaged experimental data to analyze the hydrodynamic forces and moments produced by a single foil as a function of its kinematic motion parameters. Given this analysis, we describe a method for synthesizing and coordinating the sinusoidal motion of all six foils to produce any desired resultant mean force and moment vectors on the vehicle. The mathematics behind the resulting algorithm is elegant and effective, yielding compact and efficient implementation code. The solution method also considers and accommodates the inherent physical constraints of the foil actuators. We present laboratory experimental results that demonstrate the solution method and the vehicle's resulting high maneuverability.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号