首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Metre-scale amphibolite boudins in the Cheyenne Belt of south-eastern Wyoming are cut and deformed by shear zones which preserve a full strain transition across 7 cm, from relatively undeformed amphibolite with a relict igneous texture to mylonitic amphibolite with an L-S tectonic fabric. The strain transition is marked by the progressive rotation of amphibole + plagioclase aggregates into parallelism with the shear-zone boundary. An increase in strain magnitude is indicated by development of the tectonic fabric and progressive reduction of amphibole and plagioclase grain size as a result of cataclasis. Bulk chemistry of five samples across a single strain transition shows no significant or systematic variation in major element chemistry except for a minor loss of SiO2, which indicates that the shear zone was a system essentially closed to non-volatile components during metamorphism and deformation. Amphibolites throughout the shear zone consist of amphibole and plagioclase with only minor amounts of quartz, chlorite, epidote, titanite and ilmenite. Within the relatively undeformed amphibolite, amphibole and plagioclase have wide compositional ranges in single thin sections. Amphibole compositions vary from actinolitic hornblende to magnesio-hornblende with increases in Al, Fe, Na and K contents and decreases in Si and Mg that can be modelled as progress along tschermakite, edenite and FeMg-1 exchange vectors from tremolite. Plagioclase ranges from An60 in cores to An30 within grain-boundary domains. With increasing strain magnitude, local variation of amphibole composition decreases as amphibole becomes predominantly magnesio-hornblende. Plagioclase composition range also decreases, although grain-boundary domains still have higher albite content. These petrological data indicate that shear-zone metamorphism was controlled by the magnitude of strain during synmetamorphic deformation. SEM and microprobe imaging indicate that chemical reactions occurred by a dissolution and reprecipitation process during or after cataclastic deformation. This suggests that grain-boundary formation was an important process in the petrological evolution of the shear zone, possibly by providing zones for fluid ingress to facilitate metamorphic reactions. These results highlight the necessity for conducting detailed microstructural evaluation of rocks in order to interpret petrological, isotopic and geochronological data.  相似文献   

2.
The Greiner shear zone in the Tauern Window, Eastern Alps, changes from a zone of distributed (dominantly sinistral) shear in supracrustal rocks to a series of narrow, gully forming dextral splays where it enters basement gneisses. Within these splays, granodiorite is transformed into quartz‐poor biotite and/or chlorite schists, reflecting hydration, removal of Si, Ca and Na, and concentration of Fe, Mg and Al. Stable isotope analyses show a prominent increase in δD and a decrease in δ18O from granodiorite into the shear zones. These changes indicate significant channelized flow of an externally derived, low‐δ18O, high‐δD fluid through the shear zones. The shear zone schists are chemically similar to blackwall zones developed around serpentinite bodies elsewhere in the Greiner zone and the stable isotope data support alteration via serpentinite‐derived fluid. Monazite in schist from one shear zone yields spot dates of 29–20 Ma, indicating that the fluid influx and switch from sinistral to dextral shear occurred at or shortly after the thermal peak of the Alpine orogeny (c. 30 Ma). We suggest that Alpine metamorphism of serpentinites released large amounts of high‐δD, low‐δ18O, Si‐undersaturated, Fe + Mg‐saturated fluids that became channelized along prior zones of weakness in the granodiorite. Infiltration of this fluid facilitated growth of chlorite and biotite, which in turn localized later dextral strain in the narrow splays via cleavage‐parallel slip. This dextral strain event can be linked to other structures that accommodated tectonic escape of major crustal blocks during dextral transpression in the Eastern Alps. This study shows that serpentinite devolatilization can play an important role in modifying both the chemistry and rheology of surrounding rocks during orogenesis.  相似文献   

3.
In progressing from a granitoid mylonite to an ultramylonite in the Brevard shear zone in North Carolina, Ca and LOI (H2O) increase, Si, Mg, K, Na, Ba, Sr, Ta, Cs and Th decrease, while changes in Al, Ti, Fe, P, Sc, Rb, REE, Hf, Cr and U are relatively small. A volume loss of 44% is calculated for the Brevard ultramylonite relative to an Al–Ti–Fe isocon. The increase in Ca and LOI is related to a large increase in retrograde epidote and muscovite in the ultramylonite, the decreases in K, Na, Si, Ba and Sr reflect the destruction of feldspars, and the decrease in Mg is related to the destruction of biotite during mylonitization. In an amphibolite facies fault zone separating grey and pink granitic gneisses in the Hope Valley shear zone in New England, compositional similarity suggests the ultramylonite is composed chiefly of the pink gneisses. Utilizing an Al–Ti–Fe isocon for the pink gneisses, Sc, Cr, Hf, Ta, U, Th and M-HREE are relatively unchanged, Si, LOI, K, Mg, Rb, Cs and Ba are enriched, and Ca, Na, P, Sr and LREE are lost during deformation. In contrast to the Brevard mylonite, the Hope Valley mylonite appears to have increased in volume by about 70%, chiefly in response to an introduction of quartz. Chondrite-normalized REE patterns of granitoids from both shear zones are LREE-enriched and have prominent negative Eu anomalies. Although REE increase in abundance in the Brevard ultramylonites (reflecting the volume loss), the shape of the REE pattern remains unchanged. In contrast, REE and especially LREE decrease in abundance with increasing deformation of the Hope Valley gneisses. Mass balance calculations indicate that ≥95% of the REE in the Brevard rocks reside in titanite. In contrast, in the Hope Valley rocks only 15–40% of the REE can be accounted for collectively by titanite, apatite and zircon. Possible sites for the remaining REE are allanite, fluorite or grain boundaries. Loss of LREE from the pink gneisses during deformation may have resulted from decreases in allanite and perhaps apatite or by leaching ofy REE from grain boundaries by fluids moving through the shear zone. Among the element ratios most resistant to change during mylonitization in the Brevard shear zone are La/Yb, Eu/Eu*, Sm/Nd, La/Sc, Th/Sc, Th/Yb, Cr/Th, Th/U and Hf/Ta, whereas the most stable ratios in the Hope Valley shear zone are K/Rb, Rb/Cs, Th/U, Eu/Eu*, Th/Sc, Th/Yb, Sm/Nd, Th/Ta, Hf/Ta and Hf/Yb. However, until more trace element data are available from other shear zones, these ratios should not be used alone to identify protoliths of deformed rocks.  相似文献   

4.
Fractionation of tholeiitic magma in the Red Hill intrusion produced a gradational series of rocks ranging from dolerite to granophyre (McDougall, 1962). Granophyres are enriched in Fe, Si and alkalies, and impoverished in Mg, Ca and Al. With fractionation the magma was depleted rapidly in Cr and Ni owing to their removal in early crystallizing pyroxene and iron oxides. Cobalt decreases gradually from chilled dolerite to silicic dolerite, followed by a significant maximum in the most Fe‐enriched rocks, and finally decreases markedly in the granophyres. Cobalt follows Fe2+ closely and shows no obvious relationship with Mg. Copper was progressively enriched in the magma during the main stages of fractionation until precipitation of sulphide occurred, which caused impoverishment of Cu in the final liquid. Copper also is present in the silicates, it substitutes for Na in the feldspars and Fe2+ in pyroxenes and iron oxides.  相似文献   

5.
The mesothermal Au deposit at Middagsberget in northern Sweden is associated with irregular stock-works of quartz veins occurring in shear zones across a dioritic intrusion. Alteration in the shear zones is characterized by sericitization, chloritization, the presence of sulphides and several generations of veins and small-scale fractures. Small fractures which are filled with variable amounts of quartz, carbonate, sericite, chlorite, albite and sulphides, are particularly abundant in zones having a high Au content. In general, these fractures are younger than the major quartz veins and were apparently important for strong Au-enrichment. Au is associated with arsenopyrite and it occurs as droplets or interfillings in the arsenopyrite or at the crystal surface; together with pyrrhotite as inclusions in arsenopyrite; as free grains in silicates but close to arsenopyrite; or in very small fractures in carbonates. The Au-mineralization is associated with elevated contents of As, S, Sb and W and depletion of Cu, Zn, Ge and Bi. The entire altered areas are enriched in Au compared with the < 1 to 15 ppb found in the host intrusion. During alteration an initial increase in Na or K was accompanied by a weak enrichment of Au and associated elements together with a depletion of elements such as Ca and Mg. In Au-rich samples this alkali enrichment was overprinted by the carbonate-and sulphide-bearing fractures, which often led to an increased Ca-content. An clear zonation of alteration types has not been found. The host rock has been altered by several generations of fluids: the shear zones were repeatedly ruptured and new small-scale fractures were opened. The different fluids did not, therefore, flow through identical paths although they penetrated the same major zones. This resulted in a complex pattern of variously superimposed alterations.  相似文献   

6.
This paper deals with compositional variations in fault zones from a dynamic point of view. In the fault zonen consisting of silicates, relative accumulation of Si and Fe is noticed in response to the leaching-out of K, Na, and to a lesser extent, Mg, Ca and Al. The ordee of petrogenetic elements from stable to mobile is tentatively suggested as follows: Si→Fe→Mg→ Ca→Al→K→Na. The difference in ionic radius for these chemical elements is thought to be the major factor controlling dynamic differentiation. In the fault zones arc silicates on one side and carbonates on the other, and new minerals are recognized in tectonites. On the silicate side Ca and Mg increase but Si and Al decrease; and the opposite is true on the carbonate side. This phenomenon indicates that migration of elements in the fault zones is accelerated by dyna mic effect.  相似文献   

7.
The Hongtoushan Archean Cu–Zn volcanogenic massive sulfide (VMS) deposit, which was metamorphosed (3.0–2.8 Ga) to upper amphibolite facies at temperatures between 600 and 650°C, occurs in the Hunbei granite–greenstone terrane, Liaoning Province of NE China. Stratiform cordierite–anthophyllite gneiss (CAG) that occurs hundreds of meters below the ore horizon in the Hongtoushan district corresponds to the metamorphosed semi‐conformable alteration zone of the VMS hydrothermal system, whereas the CAG that contains abundant deformed sulfide‐bearing quartz veins immediately below the main ore layer represents the metamorphosed discordant alteration zone. Whole‐rock geochemistry indicates that stratiform CAG was derived ultimately from five lithologies (basalt, basaltic andesite, andesite, dacite, and rhyolite), while discordant CAG derived from a single lithology (rhyolite). Amphibolite and biotite‐rich gneiss are identified as a metamorphosed least‐altered precursor for these CAGs. Mass change calculation indicates that, compared to the least‐altered rocks, stratiform CAG is enriched in Fe and Mg, and depleted in Na, K, Ca, Cu, Pb and Zn, while discordant CAG is enriched in Fe, Mg, Si, Na, Pb, Cu and Zn, and depleted in K. HREE and HFSE (Zr, Ti, Nb and Ta) behaved inertly during submarine alteration, whereas Rb, Sr, Ba and LREE (especially Eu) were leached off. Both stratiform and discordant CAGs are depleted in 18O, with values up to 7‰ lower than their corresponding least‐altered precursors. Addition of Fe, Mg, and depletion of Ca, K, Sr, and 18O, indicate that hydrothermal alteration for both types of CAGs was characterized by chloritization prior to metamorphism. Stratiform CAG could be used to evaluate the mineralization potential of VMS in metamorphic terranes, while discordant CAG containing sulfide‐bearing quartz veins could be a good indication for overlying stratiform massive sulfide ores as well as an exploration target itself.  相似文献   

8.
The development of 10–30  m wide mylonite zones at mid-crustal depths in late Proterozoic granitoids on King Island, Tasmania, was associated with pervasive infiltration of low δ18O-fluids (+5 to +7) on the scale of the shear zones. Syndeformational fluid–rock interaction produced substantial differences in mineral composition and bulk rock chemistry among several adjacent shear zones which are hosted by the same granite. In a shear zone at Cape Wickham with a normal slip component, changes in whole-rock chemistry between granite and mylonites indicate a gain of Ca, and losses of K and Na during deformation, which was nearly isovolumetric. Notable losses of K, Rb and Si occurred during partial retrograde alteration of mylonites near the western margin of this shear zone. The alteration suggests a component of up-temperature fluid flow. In contrast, 3  km to the south east, in a strike-slip shear zone at Disappointment Bay, complete albitization of plagioclase was associated with Na-gain and Ca-loss. Deformation also involved losses of Mg and Fe. Up to 60% volume gain occurred during the formation of closely spaced mesoscopic to microscopic quartz veins during mylonitization. The substantial silica-gain in this, as well as in two mylonite zones further south east, is interpreted to have been associated with upward flow of aqueous fluids along these shear zones. On the basis of a gradient reaction model, minimum time-integrated fluid-fluxes of 106  m3/m2 are estimated for the Disappointment Bay (West) Shear Zone.  相似文献   

9.
The ultrahigh‐pressure pyrope whiteschists from the Brossasco‐Isasca Unit of the Southern Dora‐Maira Massif represent metasomatic rocks originated at the expense of post‐Variscan granitoids by the influx of fluids along shear zones. In this study, geochemical, petrological and fluid‐inclusion data, correlated with different generations of pyrope‐rich garnet (from medium, to very‐coarse‐grained in size) allow constraints to be placed on the relative timing of metasomatism and sources of the metasomatic fluid. Geochemical investigations reveal that whiteschists are strongly enriched in Mg and depleted in Na, K, Ca and LILE (Cs, Pb, Rb, Sr, Ba) with respect to the metagranite. Three generations of pyrope, with different composition and mineral inclusions, have been distinguished: (i) the prograde Prp I, which constitutes the large core of megablasts and the small core of porphyroblasts; (ii) the peak Prp II, which constitutes the inner rim of megablasts and porphyroblasts and the core of small neoblasts; and (iii) the early retrograde Prp III, which locally constitutes an outer rim. Two generations of fluid inclusions have been recognized: (i) primary fluid inclusions in prograde kyanite that represent a NaCl‐MgCl2‐rich brine (6–28 wt% NaCleq with Si and Al as other dissolved cations) trapped during growth of Prp I (type‐I fluid); (ii) primary multiphase‐solid inclusions in Prp II that are remnants of an alumino‐silicate aqueous solution, containing Mg, Fe, alkalies, Ca and subordinate P, Cl, S, CO32‐, LILE (Pb, Cs, Sr, Rb, K, LREE, Ba), U and Th (type‐II fluid), at the peak pressure stage. We propose a model that illustrates the prograde metasomatic and metamorphic evolution of the whiteschists and that could also explain the genesis of other Mg‐rich, alkali‐poor schists of the Alps. During Alpine metamorphism, the post‐Variscan metagranite of the Brossasco‐Isasca Unit experienced a prograde metamorphism at HP conditions (stage A: ~1.6 GPa and ≤ 600 °C), as indicated by the growth of an almandine‐rich garnet in some xenoliths. At stage B (1.7–2.1 GPa and 560–590 °C), the influx of external fluids, originated from antigorite breakdown in subducting oceanic serpentinites, promoted the increase in Mg and the decrease of alkalies and Ca in the orthogneiss toward a whiteschist composition. During stage C (2.1 < P < 2.8 GPa and 590 < T < 650 °C), the metasomatic fluid influx coupled with internal dehydration reactions involving Mg‐chlorite promoted the growth of Prp I in the presence of the type‐I MgCl2‐brine. At the metamorphic peak (stage D: 4.0–4.3 GPa and 730 °C), Prp II growth occurred in the presence of a type–II alumino‐silicate aqueous solution, mostly generated by internal dehydration reactions involving phlogopite and talc. The contribution of metasomatic external brines at the metamorphic climax appears negligible. This fluid, showing enrichment in LILE and depletion in HFSE, could represent a metasomatic agent for the supra‐subduction mantle wedge.  相似文献   

10.
邵济安  张聪  路凤香 《地学前缘》2013,20(3):170-179
内蒙古宁城地区发现的尖晶石二辉橄榄岩捕虏体,其寄主岩为早中生代堆晶成因的辉石岩。尖晶石二辉橄榄岩在矿物组成和Sr、Nd、Pb同位素特征等方面区别于寄主辉石岩,具有地幔岩特征。相对原始地幔岩,尖晶石二辉橄榄岩具有Fe高,Mg、Al低,富集K、Na、Ca、LREE和Rb、Sr、Ba、Th等不相容元素的特征,据此可以认为捕虏体来源于交代的富集地幔。对熔/流体交代反应形成的结构及其交代矿物金云母、韭闪石、白云石、方解石的进一步研究,揭示富K、Al、Ca、LREE和不相容元素的硅酸质和碳酸质熔/流体的交代作用致使地幔岩向不断饱满和富集的趋势演化,导致地幔岩Mg#值、Fo值的降低,Al和其他不相容元素的增高。单斜辉石环带原位微量元素测定也证实交代作用的存在。剪切结构的发育可能与软流圈底辟体上涌引发的塑性流变有关。联系华北古老岩石圈地幔多次的地质事件,笔者认为,早中生代地幔的特征与华北克拉通长期以来自身的深部演化有关。  相似文献   

11.
Sodic alteration is widespread in Palaeoproterozoic greenstone and schist belts of the northern Fennoscandian shield. In the Misi region that forms the easternmost part of the Peräpohja schist belt, several small magnetite deposits show intimate spatial relationships with intensely albitised gabbros, raising the possibility that regional sodic alteration released iron, which was subsequently accumulated into deposits. Two of these magnetite deposits, Raajärvi and Puro display a typical paragenesis as follows (from oldest to youngest): (1) diopside, (2) actinolite/tremolite-magnetite ± chlorite, biotite, and (3) serpentine ± hematite, chlorite. Mass balance calculations suggest that significant amounts of Fe, Ca, Mg, K, Cu, V, and Ba were lost, and Na and Si gained during the albitisation of the gabbro, at near-constant Al, Ga, Ti, and Zr. Significant amounts of Si, Ca, Fe, and Na were enriched in the formation of skarn related to magnetite deposits. Fe and V leached from country rocks deposited during the skarn-alteration and formed the vanadium rich iron deposits while Cu passed through the system without significant precipitation due to low sulphur fugasity. Variations in Na, Ca, Mg, K, and Ba contents reflect the composition of the infiltrating fluid during alteration. Conventional heating-freezing measurements and proton-induced X-ray emission (PIXE) analyses of the fluid inclusions related to actinolite/tremolite-magnetite stage alteration indicate that the fluids that caused the alteration and the Fe-mineralisation were complex, oxidised, highly saline H2O ± CO2 fluids that contained high amounts of Na, Ca, K, Fe, and Ba as well as elevated concentrations of Cu, Zn, and Pb. The oxygen isotope thermometry suggest that temperature during the Fe-mineralisation stage was between 390 and 490°C. Calculated δ18Ofluid values of 6.1–9.8‰ SMOW and δ13C values of calcites in the ores and skarns were between ?7.7 and 10.9‰ PDB and most likely reflect admixture of 13C depleted, possibly magmatic fluids with the marble wall rocks that show δ13Ccalcite values of 13‰ PDB. The SIMS U–Pb data on the zircons in the albitised gabbro next to the Raajärvi and Puro deposits suggest that intrusion of the gabbro took place at 2123±7 Ma and was accompanied by the formation of diopside skarn. The TIMS data on the metasomatic titanites related to sodic alteration yielded ages of 2062±3 and 2017±3 Ma. Iron was probably stripped from the mafic country rocks by sodic alteration between 2123 and 2017 Ma, driven by repeated brine influxes. Subsequently, the metal-rich brine was focused by a fault system and the iron was precipitated from this fluid by a combination of wall rock reaction, fluid mixing, and a drop in the temperature.  相似文献   

12.
‘Sakenites’ constitute a unique association of corundum‐, spinel‐ and sapphirine‐bearing anorthitic to phlogopitic rocks, first described in rocks from an exposure along the beds of the Sakena river to the NW of Ihosy, south Madagascar. The exposure has been revisited and subjected to a detailed petrological and geochemical study. The aluminous anorthitic rocks occur as boudinaged bands and lenses, closely associated with corundum‐, spinel‐ and sapphirine‐bearing phlogopitites, diverse calcsilicate rocks and marbles within a series of biotite‐sillimanite‐cordierite gneisses of the Ihosy granulite unit in the NW of the Pan‐African Bongolava‐Ranotsara shear zone. Bimineralic anorthite + corundum domains preserve the earliest record of a polyphasic evolutionary history that includes two distinct metasomatic episodes. Probable protoliths of these bimineralic rocks were kaolinite‐rich sediments or calcareous bauxites that were altered by Ca or Si infiltration‐metasomatism prior to or coeval with the development of the anorthite‐corundum assemblage. P–T pseudosection modelling of metapelitic gneisses suggests peak‐conditions around 800 °C and 6–7 kbar for the regional high‐grade metamorphism and deformation in the NW part of the Bongolava‐Ranotsara shear zone. The well‐annealed granoblastic‐polygonal textures indicate complete chemical and textural re‐equilibration of the foliated bimineralic rocks during this event. Subsequently, at somewhat lower P–T conditions (750–700 °C, 6 kbar), the influx of Mg‐, Si‐ and K‐bearing fluids into the anorthite‐corundum rocks caused significant metasomatic changes. In zones infiltrated by ‘primary’ potassic fluids, the bimineralic assemblage was completely replaced by phlogopite and Mg‐Al minerals, thereby producing corundum‐, spinel‐ and sapphirine‐bearing phlogopitites. Further advance of the resulting ‘residual’ Mg‐ and Si‐bearing fluids into anorthite‐corundum domains led to partial to complete replacement of corundum porphyroblasts by spinel, spinel + sapphirine or sapphirine, depending on the activities of the solutes. The static textures developed during this second metasomatic episode suggest fluid influx subsequent to intense ductile deformation in the Bongolava‐Ranotsara ductile shear zone c. 530–500 Ma ago.  相似文献   

13.
Hornblende-bearing microgranitoid enclaves from the Swifts Creek Pluton (SCP), SE-Australia display mineralogical and textural variations from their margins to their centers. Margins are fine grained and display quench textures and are enriched in amphibole, biotite and in some cases magnetite relative to their coarser grained centers. Enclaves of this type and their adjacent granitoid host rocks have been sectioned into 0.3 to 1 cm thick slabs in order to determine the chemical variations associated with these mineralogical changes. The fine grained margins are variably enriched in Ti, Al, Mg, Fe, Mg, K, Rb, Ba, Nb, Y, Sc, V, Ni and the REE up to a factor of three relative to the enclave centers. This enrichment is compensated by a depletion of Si and Zr. Elements like Ca, Na and Sr show less coherent variation from margin to center. Host rocks in immediate contact with these enclaves are depleted in Mg, Na, K, Rb and Ba relative to host rocks that are not exposed to enclaves. No one single process can account for all the variations. Instead, we propose that the chemical variations are related to a combination of in situ crystal fractionation of isolated magma globules, mass transfer by diffusion and metasomatic exchange.  相似文献   

14.
Granitic rocks deformed by cataclasis and mylonitization on macro- (a few meters) and micro- (thin section) scales are found at depths down to 6.6km in the Siljan impact structure in central Sweden. Granites near fault planes exhibit: (1) fracturing, kinking, fragmentation, and recrystallization of feldspars into pure K and Na endmember varieties, (2) fragmentation, polygonization and development of undulose extinction in quartz, and (3) kinking, appearance of wavy extinction and alteration of biotite, chlorite, amphibole, and alteration of ilmenite and magnetite. Whole-rock chemical analyses of deformed and undeformed rocks show that deformed rocks are enriched in SiO2 (by about 5 wt.%) and depleted in other oxides by variable percentages. Apart from Rb and Co, the concentrations of other trace elements (including Ba, Sr, Zn, Zr, Pb, Cd, Cu, Cr, Ni, V, U, Th, La, and Li) are lower in deformed relative to undeformed rocks. Mass-balance calculations for a 1000 cm3 model granite which were based on modal mineralogy, whole-rock chemistry, and mineral analyses suggest that the break down of primary biotite, chlorite, and amphibole in deformed zones released elements to circulating fluids. These calculations also indicate liberation of water and a doubling of porosity (from 1 to 2%) during the deformation episodes. Later precipitation of minerals in shear and tension fractures reduced this porosity. Within the upper 2000 m of the Gravberg-1 well, the formation of fracture-filling minerals (smectite, calcite, hematite, chlorite, and albite) is impact-related, and was favored by active circulation of meteoric water. Fracture-filling minerals in the upper 2000 m of the borehole formed at temperatures of 70° to 200°C. Between depths of 2000 and 3500 m, fracture-filling mineral assemblages (dominated by Fe–Mg chlorite, sphene and epidote) suggest formation temperatures in the range of 150° to 300°C. Occurrence of pumpellyite and prehnite in some altered biotite and chlorite of the deformed zones between 3500 and 5500 m suggest preimpact metamorphism and formation temperature above 150°C. Below 5500 m, the mineral assemblages in the fractures are dominated by quartz, sphene, epidote, and some muscovite and chlorite, indicating a temperature range between 300° and 450°C. One of the possible origins for the CH4 and H2 gases detected in the Gravberg-1 well is a combination of hydrogen ions released by decomposition of hydrated silicates (biotite, chlorite, hornblende) with carbon. The presence of iron in the deformed granitic rocks prevented the resulting CH4 from being oxidized.  相似文献   

15.
碱性暗色矿物作为具有特殊指示意义的矿物,其存在对岩浆演化过程具有重要的意义。毛家屯花岗岩体位于兴蒙造山带东部的小兴安岭—张广才岭南段,岩体内部发育碱性暗色矿物。以毛家屯岩体内部发育的碱性暗色矿物为研究对象,进行了矿物学和矿物化学电子探针分析。研究表明,碱性角闪石的类型为铁-镁铝钠闪石,具有富碱,尤其富钠、富硅、富铁、贫钙、镁、钛等特征。辉石的类型为霓辉石,化学特征上高硅-高钠,高铁,低钛、镁、铝、锰。碱性暗色矿物主岩为碱性岩,成因类型为铝质A型花岗岩类。毛家屯花岗岩碱性角闪石具有很低的M值,证明其来源于地壳物质的熔融。毛家屯花岗岩中碱性角闪石的特征指示,在结晶过程中,岩浆体系处于封闭还原条件,且岩体从中央到边部存在偏酸性和偏基性组分分带现象。结合前人的同位素和年代学方面的分析资料,认为毛家屯碱性花岗岩形成于造山后期伸展转换环境中。  相似文献   

16.
Alpine deformation in the Grimsel granodiorite (Aar massif, Central Alps) at greenschist facies conditions (6.5 ± 1 kbar for 450°C ± 25°C) is characterized by the development of a network of centimetre to decametre localized shear zones that surround lenses of undeformed granodiorite. Localization of deformation is assumed to be the result of a first stage of extreme localization on brittle precursors (nucleation stage) followed by a transition to ductile deformation and lateral propagation into the weakly deformed granodiorite (widening stage). A paradox of this model is that the development of the ductile shear zone is accompanied by the crystallization of large amounts of phyllosilicates (white mica and chlorite) that maintains a weak rheology in the localized shear zone relative to the host rock so that deformation is localized and prevents shear zone widening. We suggest that chemical processes, and more particularly, the metamorphic reactions and metasomatism occurring during re‐equilibration of the metastable magmatic assemblage induced shear zone widening at these P–T–X conditions. These processes (reactions and mass transfer) were driven by the chemical potential gradients that developed between the thermodynamically metastable magmatic assemblage at the edge of the shear zone and the stable white mica and chlorite rich ultramylonite formed during the first stage of shear zone due to localized fluid infiltration metasomatism. PT and chemical potential projections and sections show that the process of equilibration of the wall rocks (μ–μ path) occurs via the reactions: kf + cz + ab + bio + MgO + H2O = mu + q + CaO + Na2O and cz + ab + bio + MgO + H2O = chl + mu + q + CaO + Na2O. Computed phase diagram and mass balance calculations predict that these reactions induce relative losses of CaO and Na2O of ~100% and ~40% respectively, coupled with hydration and a gain of ~140% for MgO. Intermediate rocks within the strain gradient (ultramylonite, mylonite and orthogneiss) reflect various degrees of re‐equilibration and metasomatism. The softening reaction involved may have reduced the strength at the edge of the shear zone and therefore promoted shear zone widening. Chemical potential phase diagram sections also indicate that the re‐equilibration process has a strong influence on equilibrium mineral compositions. For instance, the decrease in Si‐content of phengite from 3.29 to 3.14 p.f.u, when white mica is in equilibrium with the chlorite‐bearing assemblage, may be misinterpreted as the result of decompression during shear zone development while it is due only to syn‐deformation metasomatism at the peak metamorphic condition. The results of this study suggest that it is critical to consider chemical processes in the formation of shear zones particularly when deformation affects metastable assemblages and mass transfer are involved.  相似文献   

17.
Glaucophane-lawsonite facies blueschists representing a metamorphosed sequence of basic igneous rocks, cherts and shales have been investigated northeast of the district of Tav?anli in Northwest Turkey. Sodic amphiboles are rich in magnesium reflecting the generally high oxidation states of the blueschists. Lawsonite has a very uniform composition with up to 2.5 wt.% Fe2O3. Sodic pyroxenes show an extensive range of compositions with all the end-members represented. Chlorites are uniform in their Al/(Al+Fe+Mg) ratio but show variable Fe/ (Fe+Mg) ratios. Garnets from metacherts are rich in spessartine (>50%) whereas those from metabasites are largely almandine. Pistacite rich epidote is found in metacherts coexisting with lawsonite. Phengites are distinctly higher in their Fe, Mg and Si contents than those from greenschist facies. Hematites with low TiO2 are ubiquitous in metacherts. Fe2+/Mg partitioning between chlorite and sodic amphibole is strongly controlled by the calcium content of the sodic amphibole and ranges from 1.1 for low calcium substitution to 0.8 for higher calcium substitution. The Al/Fe3+ partition coefficient between sodic amphibole and sodic pyroxene is 2.1. A model system has been constructed involving projections from lawsonite, iron-oxide and quartz onto a tetrahedron with Na, Al, Fe2+ and Mg at its apices. Calcite is treated as an indifferent phase. The model system illustrates the incompatibility of the sodic pyroxene with chlorite in the glaucophanelawsonite facies; this assemblage is represented by sodic amphibole. Sodic amphibole compositions are plotted in terms of coexisting ferromagnesian minerals. Five major areas on the sodic amphibole compositional field are delineated, each associated with one of the following minerals: chlorite, stilpnomelane, talc, almandine, deerite.  相似文献   

18.
The microtextural, petrological and geochemical study of a ductile shear zone in the phlogopite peridotite of Finero/Ivrea Zone (northern Italy) reveals the long-term deformation of this zone. The zone is divided into a protomylonitic and an ultramylonitic part. Both parts reflect different periods of deformation, although the orientation of the mineral lineations does not change. In the coarse-grained part (period 1) the deformation started under granulite facies conditions (about 775°C). Olivine, ortho- and clinopyroxene and phlogopite recrystallized dynamically. In the ultramylonitic part relics of the granulite facies event and evidence for a continuous or two-stage deformation history under amphibolite facies (minimum 640°C) to upper greenschist facies conditions (maximum 520°C) are preserved (period 2). Amphibolite facies conditions are indicated by olivine recrystallization, the monoclinization of orthopyroxene porphyroclasts and the recrystallization and chemical changes of clinopyroxene. The greenschist facies final stage of period 2 is characterized by decreased X CO 2 and the syntectonic formation of antigorite, tremolite and phlogopite at the expense of recrystallized and porphyroclastic olivine and pyroxene. Between both deformation periods a short break in deformation continuity is probable. Continuous deformation or reactivation in shear zones of the Ivrea Zone has not been described so far. During the granulite facies shearing, small amounts of channelized fluid flow led to a slight mass transfer. The shear zone shows a moderate enrichment of Na, Ba, Cu, Cs, H2O and CO2 and a small loss of P. The mass balance of the ultramylonite indicates a significant increase in mass transport. A mass gain can be inferred for H, Na, K, Ba, Al, Ti, P, S, Cs, Sr, Rb, C, Zn, Zr, S, Sc, light rare earth elements, Nb, Cl and Au. The zone is depleted in Ca, Cu, Co, F and Ni. Si, Mg, Cr, Mn, Y, Nb and V are constant within analytical error. Deformation and fluid infiltration led to a change in volume which increases during the granulite facies event by 5.7% and during the lower temperature phase by 3.3%. The calculated fluid to rock ratios by standard equations results in unrealistically high values. For the interpretation of highly deformed rocks with drastic grain size reduction it is therefore necessary to consider the enhanced diffusion, which is mainly controlled by the increased grain boundary surface.  相似文献   

19.
Nonisothermal equilibrium physicochemical dynamics has been numerically modeled to estimate the effect of reduced asthenosphere fluids on continental lithosphere profiles beneath the Siberian Platform (SP). When the over-asthenosphere continental mantle is metasomatically changed by reduced magmatic fluids, the following sequence of zones forms: (1) zone where initial rocks are intensively sublimated and depleted by most petrogenic components; the restite in this case becomes carbonated, salinated and graphitized; (2) zone of Si and Fe enrichment and carbon deposition in initial rocks depleted in Na, K, P, Mn; (3) zone of diamond-bearing lherzolites enriched with Na; (4) zone of hydrated rocks enriched with K; (5) zone of hydrated rocks not enriched with petrogenic components. Zone 1 can be responsible for the formation of kimberlite melts, zones 3 and 4 can be substrates of alkaline magma melting, and zone 5 can be the source of mafic tholeiitic magma.  相似文献   

20.
The effects of high-strain deformation and fluid infiltration during Alpine eclogite facies metamorphism have been studied across ductile shear zones in relatively undeformed metagranitoids at Monte Mucrone (Sesia Zone, Western Alps, Italy). Microfabrics together with bulk rock and stable isotope data indicate that the mineralogical and chemical variations are related to the degree of deformation, rather than to changes in P-T conditions or tectonic position. Transformation of meta-quartz diorite to recrystallized eclogitic mylonites involved the breakdown of biotite and plagioclase and required the influx of H2O. Bulk-rock geochemical data show that ductile deformation to form eclogitic mylonites involved an increase in volume with a weight percent gain in H2O and Si and variable loss of K, Na, Ca and Al. δ18O changes systematically across ductile shear zones into the undeformed country rocks. Constant values in shear zone centres indicate advection parallel to the shear zone and within 10 cm of the mylonites. A dominant component of diffusive oxygen exchange perpendicular to the shear zones produced isotopic fronts, evident from a gradual increase in δ18O values to the reference values of the country rocks. The degree of isotopic shift within the shear zones reflects increasing deformation and degree of reaction progress. Multiple phases of Alpine deformation and mineral growth are recognized in the Monte Mucrone metagranitoids, and in some cases, eclogite facies shear zones were reactivated under greenschist facies conditions. The results of this study suggest that high-strain deformation provided pathways for both synkinematic and post-kinematic metamorphic fluids which were necessary for complete reactions. Relict igneous fabrics, as well as the presence of corona textures around biotite and pseudomorphs after primary igneous plagioclase in the least deformed rocks, indicate a paucity of hydrous fluids and support the conclusion that fluid movement was channelled rather than pervasive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号