首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Continuous shallow marine carbonates spanning the Triassic–Jurassic boundary are exposed in the Karaburun Peninsula, Western Turkey. The studied section (Tahtaiskele section) consists of Upper Triassic cyclic shallow marine carbonates intercalated with clastics overlain by Lower Liassic carbonates. Based on the microfacies stacking patterns, three main types of shallowing-upward cycles have been recognized. Cycles are mostly composed of subtidal facies at the bottom, intertidal/supratidal facies and/or subaerial exposure structures at the top. The duration of the cycles suggests that cycles were driven by the precessional Milankovitch rhytmicity. In the sequence stratigraphic frame of the Tahtaiskele section 4 sequence boundaries were detected and globally correlated. The first sequence boundary is located at the Alaunian–Sevatian boundary nearly coinciding with the first appearance of Triasina hantkeni. The second falls in the Rhaetian corresponding to a major sea level fall which led to the invasion of forced regressive siliciclastic deposits over the peritidal carbonates. The third occurs close to the T/J boundary and the fourth lies slightly above the base of the Jurassic. In the studied section, extinction, survival and recovery intervals have been recognized based on the stratigraphic occurrence patterns of benthic foraminifera and algae. Foraminifers became nearly totally extinct in the inner carbonate shelves at the Triassic–Jurassic boundary and an interval of approximately 0.5 my passed before the begining of the recovery of Jurassic foraminifera.  相似文献   

3.
We present the results of a series of density experiments in the system O–S–Fe–Ni–Cu. These experiments were designed to extend our understanding of the physical properties of sulfide liquids, and to extend one-bar thermochemical models for sulfide liquids to apply to low to moderate pressures. Density measurements indicate both positive and negative deviations from linear mixing of partial molar volumes across this five-dimensional composition space. In terms of the homogeneous speciation model of Kress (in Contrib Mineral Petrol 154:191–204, 2007), the best fit to experimental data can be achieved by starting with a model where the volume of formation reaction for associated species initially is set to zero. Further refinement of this first-order fit yields a volume mixing model which reproduces experimental data to within nearly the estimated experimental uncertainty. Experimental ultrasonic and X-ray absorption data from the literature, along with the bulk modulus–volume relation of Anderson and Nafe (J Geophys Res 16:3951–3963, 1965), allow the estimation of the pressure dependence of partial molar volumes for sulfide liquid species. The resulting combined thermochemical model should be valid to about 2,000 K and 3 GPa. Application of this thermochemical model in a simple adiabatic magma ascent scenario confirms earlier work suggesting that the pressure dependence of sulfur solubility in sulfide-saturated magma will decrease with increasing pressure along geologically reasonable paths in PT–– space.  相似文献   

4.
In this work, we investigated a 3 ha sulphide-bearing waste-rock dump (Libiola Mine, Italy) using mineralogical, geochemical, and geostatistical analyses. The dumped materials were highly heterogeneous in grain size and lithology and varied both laterally and vertically. Other than the host rock of the ore, basalts and serpentinites, the dumped materials contained high amounts of low-grade chalcopyrite- and pyrite-rich mineralisations. Due to these characteristics and to the absence of minerals able to neutralise acidity, this waste-rock dump can be classified as an acid mine drainage (AMD) producer. The study confirms that AMD is still active and, in the best scenario, can persist for up to 6.17 × 103 years. The consequences of this process are of serious environmental concern as it involves strong acidification of the circulating waters, the release of potentially toxic metals into the soil, streams and rivers and the precipitation of huge quantities of secondary Fe-oxides and Fe-oxyhydroxides.  相似文献   

5.
New paleomagnetic and magnetostratigraphic data are presented for the stratotype of the Upper Riphean Lopata Formation (Teya River, Yenisei Ridge). The paleomagnetic pole calculated is significantly distinct from the Phanerozoic and Riphean poles of the Siberian Platform and is similar to the Late Vendian–Early Cambrian poles of the Madagascar Group. The stratigraphic range studied is characterized by an anomalously high frequency of geomagnetic inversions (15 zones of magnetic polarity), which is comparable with the inversion frequency of the Late Vendian sections of Baltica. These data, along with previous paleontological findings, indicate an age of the Lopata Formation of 555–540 Ma.  相似文献   

6.
ABSTRACT

There are voluminous ultrahigh pressure-related orthogneisses and minor metamorphic supracrustal rocks in the northeastern Sulu UHP terrane (NSL), East China. The tectonic affinities of the supracrustal rocks are crucial for unravelling the deep continental subduction processes and locating the tectonic suture between the South China (SCB) and North China (NCB) blocks. In this contribution, we report new zircon U–Pb ages and Hf isotope data for the supracrustal rocks and metagabbros in the Zeku region of the NSL. In the Zeku region, the supracrustal rocks are spatially associated with granitic gneisses, metagabbros, and eclogites. Detrital zircon U–Pb analyses yield ages between 3.39 and 0.65 Ga that cluster as three major age populations including (1) 2.15–1.68 Ga with two subpeaks at ~1.83 Ga and~1.97 Ga, (2) 2.45–2.15 Ga with a peak at ~2.37 Ga, and (3) 0.79–0.65 Ga. In addition, there is a small age population between 3.39 and 2.61 Ga. The youngest age population of 0.79–0.65 Ga indicates that the Zeku supracrustal rocks must have been deposited after 650 Ma rather than during the Palaeoproterozoic as previously thought. The 210–190 Ma metamorphic ages suggest that the Zeku rocks were affected by Triassic collision–subduction and exhumation. Most of the Archaean-Palaeoproterozoic zircons have negative εHf(t) values and two-stage Hf model ages concentrating at 2.4–3.4 Ga (peak at ~2.9 Ga), indicating that source rocks of these zircons were mainly derived from recycling of ancient crustal material. These ages, together with the Hf isotopic compositions and rock assemblages, indicate that the Zeku supracrustal rocks were mainly derived from the Precambrian basement rocks of the northern Yangzte Block and have a tectonic affinity to the SCB, rather than the NCB. Our results, together with previously published data, suggest that there are two types of supracrustal rocks with different zircon U–Pb ages and tectonic affinities in the NSL. On the basis of new data, we suggest that the surface boundary between the SCB and NCB in the Jiaodong Peninsula is a complicated tectonic mélange zone rather than a single fault.  相似文献   

7.
The Samgwang mine is located in the Cheongyang gold district (Cheonan Metallogenic Province) of the Republic of Korea. It consists of eight massive, gold-bearing quartz veins that filled NE- and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. Their mineralogy and paragenesis allow two separate vein-forming episodes to be recognized, temporally separated by a major faulting event. The ore minerals occur in quartz and calcite of stage I, associated with fracturing and healing of veins. Hydrothermal wall-rock alteration minerals of stage I include Fe-rich chlorite (Fe/(Fe+Mg) ratios 0.74-0.81), muscovite, illite, K-feldspar, and minor arsenopyrite, pyrite, and carbonates. Sulfide minerals deposited along with electrum during this stage include arsenopyrite, pyrite, pyrrhotite, sphalerite, marcasite, chalcopyrite, galena, argentite, pyrargyrite, and argentian tetrahedrite. Only calcite was deposited during stage II. Fluid inclusions in quartz contain three main types of C–O–H fluids: CO2-rich, CO2–H2O, and aqueous inclusions. Quartz veins related to early sulfides in stage I were deposited from H2O–NaCl–CO2 fluids (1,500–5,000 bar, average 3,200) with T htotal values of 200°C to 383°C and salinities less than about 7 wt.% NaCl equiv. Late sulfide deposition was related to H2O–NaCl fluids (140–1,300 bar, average 700) with T htotal values of 110°C to 385°C and salinities less than about 11 wt.% NaCl equiv. These fluids either evolved through immiscibility of H2O–NaCl–CO2 fluids as a result of a decrease in fluid pressure, or through mixing with deeply circulated meteoric waters as a result of uplift or unloading during mineralization, or both. Measured and calculated sulfur isotope compositions (δ34SH2S = 1.5 to 4.8‰) of hydrothermal fluids from the stage I quartz veins indicate that ore sulfur was derived mainly from a magmatic source. The calculated and measured oxygen and hydrogen isotope compositions (δ18OH2O = −5.9‰ to 10.9‰, δD = −102‰ to −87‰) of the ore-forming fluids indicate that the fluids were derived from magmatic sources and evolved by mixing with local meteoric water by limited water–rock exchange and by partly degassing in uplift zones during mineralization. While most features of the Samgwang mine are consistent with classification as an orogenic gold deposit, isotopic and fluid chemistry indicate that the veins were genetically related to intrusions emplaced during the Jurassic to Cretaceous Daebo orogeny.  相似文献   

8.
Using field data from Agnico-Eagle’s Meliadine gold project located in Nunavut Territory in northern Canada, a coupled DFN–DEM approach was used to evaluate the rock mass mechanical properties at REV. Variability in the structural data gathered on site and the variability associated with the stochastic modeling process have an impact on discrete fracture model (DFN) properties. Through a sensitivity analysis, this paper assesses the influence of a variation in the DFN model input parameters’ values on the rock mass peak properties – uniaxial compressive strength, Young modulus and Poisson ratio. The results not only highlight the possibilities associated with DFN–DEM modeling in characterizing rock mass properties at the engineering scale, they also provide a systematic way to assess the critical structural parameters controlling the rock mass properties.  相似文献   

9.
This study presents an example of locating Cambrian–Ordovician boundary in the lower Paleozoic carbonate succession in Korea using carbon isotope stratigraphy. The Yeongweol Unit of the lower Paleozoic Joseon Supergroup comprises the Upper Cambrian Wagok Formation and the Lower Ordovician Mungok Formation in the Cambrian–Ordovician transition interval. Conventionally, the boundary was placed at the lithostratigraphic boundary between the two formations. This study reveals that the boundary is positioned in the basal part of the Mungok Formation based on the carbon isotope stratigraphy coupled with biostratigraphic information of conodont and trilobite faunas. The δ13C curve of the Lower Ordovician Mungok Formation shows a similar trend to that of the coeval stratigraphic interval of Argentine Precordillera (Buggisch et al., 2003), suggesting that the δ13C curve of the Mungok Formation reflects the Early Ordovician global carbon cycle.  相似文献   

10.
For seepage failures of dike due to water level-up and rainfall, surface infiltration and strength change induced by suction reduction are important factors; thus, numerical analysis should consider the coupling of water and soil, as well as the effect of saturation to obtain more precise failure mechanism. Based on the advanced smoothed particle hydrodynamics (SPH) method, this work proposed a two-phase-coupled SPH model in coordination with a novel constitutive model for unsaturated soils. Then, a triaxial compression test is simulated to check the applicability of the SPH method on the soil phase. After that, the failure test of a dike due to water level-up is discretized and simulated, from which the seepage process, the distribution of maximum shear strain, the slip surface, and pore water pressure are obtained. The two-phase-coupled SPH model is also applied to a slope failure test of heavy rainfall, and the results are compared to the model test. Finally, a dike failure test due to rainfall is analyzed using the proposed SPH model to reproduce the surface infiltration and suction reduction. The proposed SPH model provides several insights of seepage failures and can be a helpful tool for the analysis of dike failures induced by water level-up and rainfall.  相似文献   

11.
In situ SHRIMP U–Pb dating of magmatic zirconolite (CaZrTi2O7) in the Golden Mile Dolerite from the Mt Charlotte gold deposit (Yilgarn Craton, Australia) has yielded the first robust emplacement age (2,680 ± 9 Ma) for the principle host-rock of gold mineralization in the Kalgoorlie district. In contrast, co-magmatic zircon gave ages from ~2.68 Ga to ~2.17 Ga, reflecting isotopic resetting of high-U and -Th crystals. In situ SHRIMP analysis of hydrothermal xenotime (YPO4), which co-exists with gold in alteration pyrite, provided a Pb/Pb isochron age of 2,655 ± 13 Ma. This date indicates that the youngest deposit in the Kalgoorlie district (Mt Charlotte) formed at ~2.65 Ga, and provides a new minimum age for the structurally older Golden Mile deposit. Our results indicate that gold mineralization at Mt Charlotte is ~50 million years older than indicated by recent 40Ar/39Ar dating and places new constraints on the timing of late-stage regional faulting (D4) in the province.  相似文献   

12.

Analysing pre-earthquake signals using satellite technology are getting importance among the scientific community, since round-the-clock survey for the wider region is possible compared to ground-based monitoring techniques. Several scientists are involved in various satellites and ground-based technologies to decode the complex physical mechanism of the earthquake process since 1980. They involved in measuring anomalous variations using space-based methodologies like EM signals, SAR interferometry, GPS for ionospheric sounding, satellite gravimetry, atmospheric sounding, Outgoing Longwave Radiation (OLR), radon gas and seismo-tectonic clouds. In this paper, the authors have considered surface latent heat flux (SLHF) and OLR satellite data for detailed analysis of earthquakes took place during the year 2014 in Sumatra and Nicobar Is regions. At the surface and atmospheric interface, the anomalous variations in SLHF were observed prior to the occurrence of the earthquake. Similarly, anomalous variations in OLR have been observed 3–30 days prior to the big earthquakes and it is measured above the cloud level. From the analysis, the author has found that variations in the SLHF and OLR flux can be utilized as efficient tools to identify the impending big earthquakes. SLHF and OLR variation level can give us a clue about the probable magnitude of earthquakes and also about earthquake preparation zones. Hence, by correlating the above-mentioned parameters, it is potential to key out the impending earthquakes with reasonable accuracy.

  相似文献   

13.
Inter-annual variations of phytoplankton abundance and community organization were observed over a two-decade period along with the ancillary parameters at the land–ocean boundary associated with the Sundarban mangrove forest (21°32′ and 22°40′ N and 88°05′ and 89° E), along the NE Coast of the Bay of Bengal. The number of definable Bacillariophyceae species exceeded Dinophyceae taxa, and the total number of bloom-forming species declined from a maximum of ten in 2000 and a minimum of two in 2007. Blooms of the diatom Coscinodiscus radiatus were common in 2000 and 2007. Tide cycles and the onset of the monsoon season played important roles in diurnal and seasonal variability of phytoplankton. Phytoplankton biovolume showed seasonality, with the highest levels during post-monsoon periods and lowest levels during the monsoon period. Phytoplankton abundance was correlated to rainfall patterns, which may be altered by long-term changes in climate.  相似文献   

14.
In order to understand sequence development and sea-level fluctuations during the late Middle Cambrian to early Furongian on the North China epeiric platform, the present study focuses on a unique, subtle erosion surface of an extensive (approx. 100 km), strongly deformed limestone bed in the uppermost part of the Gushan Formation, Shandong Province, China. The Gushan Formation and the overlying Chaomidian Formation consist mainly of shales and a variety of carbonates that were deposited in subtidal environments (e.g., deep subtidal, shallow subtidal, shoreface/shoal, subtidal microbial flat, and restricted platform interior). Three third-order depositional sequences (S1–3) are identified, each of which comprises a thin transgressive systems tract (TST) and a relatively thick highstand systems tract (HST). Each sequence is bounded by a drowning unconformity (SB1), a subaerial unconformity (SB2), or a surface of submarine erosion (SB3). The upper sequence boundary (SB2) of sequence 1 (S1) is represented by a subtle erosion surface of an extensive, deformed limestone bed with a wide variety of soft-sediment deformation structures (e.g., lime mudstone breccias, chaotic wacke-packstone laminae and fragments, homogenized oolites, and clastic dykes), and is overlain by small sporadic microbial buildups and an extensive bioclastic grainstone bed. The deformed limestone was formed during early diagenesis by differential deformation processes (brecciation, liquefaction/fluidization, and injection) which were most likely induced by pore-water overpressure during the period of rapid sea-level fall. Despite the lack of subaerial exposure features (e.g., paleokarst, paleosol, etc.), the characteristics of the erosion surface (cutting well-lithified sediment below), the missing of a significant geological record (the Prochuangia biozone), and the worldwide correlatable positive carbon isotope excursion collectively indicate that the erosion surface developed under conditions of subaerial exposure after contemporaneous marine cementation of the deformed sediment. The missing of the Prochuangia biozone is most likely due to non-deposition at a subaerial hiatal surface. The erosion surface was submerged as a result of subsequent rise in sea level, where sporadic microbial buildups formed under suitable conditions. Freshly deposited, winnowed, shell-dominated transgressive lag deposits (containing Chuangia trilobite fragments, brachiopod shells, and abundant glauconite grains) formed with continued rise in sea level, which became, in turn, overlain by shale-dominated facies. The unique combination of the subtle erosion surface (sensu stricto a subaerial unconformity) and the underlying deformed limestone bed provides an important criterion for recognizing the subtle changes in relative sea level on shallow epeiric platforms.  相似文献   

15.
We have experimentally investigated the kinetics of melting of an aplitic leucogranite (quartz+sodic plagioclase of ≈Ab90+K-feldspar+traces of biotite) at 690, 740, and 800°C, all at 200 MPa H2O. Leucogranite cylinders, 3.5 mm in diameter and 7 mm in length, were run in the presence of excess H2O using cold-seal pressure vessels for 11–2,925 h. At 690 and 740°C and any experimental time, and 800°C and short run times, silicate glass (melt at run conditions) occurs as interconnected films along most of the mineral boundaries and in fractures, with the predominant volume occurring along quartz/feldspars boundaries and quartz/plagioclase/K-feldspar triple junctions. Glass film thickness is roughly constant throughout a given experimental charge and increases with experimental temperature and run duration. The results indicate that H2O-saturated partial melting of a quartzo-feldspathic protolith will produce an interconnected melt phase even at very low degrees (<5 vol%) of partial melting. Crystal grain boundaries are therefore completely occluded with melt films even at the lowest degrees of partial melting, resulting in a change in the mechanism of mass transport through the rock from advection of aqueous vapor to diffusion through silicate melt. At 690 and 740°C the compositions of glasses are homogeneous and (at both temperatures) close to, but not on, the H2O-saturated 200 MPa haplogranite eutectic; glass compositions do not change with run duration. At 800°C glasses are heterogeneous and plot away from the minimum, although their molar ratios ASI (=mol Al2O3/CaO+Na2O+K2O) and Al/Na are constant throughout the entire charge at any experimental time. Glass compositions within individual 800°C experiments form linear trends in (wt%) normative quartz–albite–orthoclase space. The linear trends are oriented perpendicular to the 200 MPa H2O haplogranite cotectic line, reflecting nearly constant albite/orthoclase ratio versus variable quartz/feldspar ratio, and have endpoints between the 800°C isotherms on the quartz and feldspar liquidus surfaces. With increasing experimental duration the trends migrate from the potassic side of the minimum toward the bulk rock composition located on the sodic side, due to more rapid (and complete) dissolution of K-feldspar relative to plagioclase. The results indicate that partial melting at or slightly above the solidus (690–740°C) is interface reaction-controlled, and produces disequilibrium melts of near-minimum composition that persist metastably for up to at least 3 months. Relict feldspars show no change in composition or texture, and equilibration between melt and feldspars might take from a few to tens of millions of years. Partial melting at temperatures well above the solidus (800°C) produces heterogeneous, disequilibrium liquids whose compositions are determined by the diffusive transport properties of the melt and local equilibrium with neighboring mineral phases. Feldspars recrystallize and change composition rapidly. Partial melting and equilibration between liquids and feldspars might take from a few to tens of years (H2O-saturated conditions) at these temperatures well above the solidus.  相似文献   

16.
17.
In this study we analyze the importance of new magnetostratigraphic data on the Nordvik section for solving the problem of detailed Tethyan–Boreal correlation around the Jurassic–Cretaceous boundary with a special emphasis on the aspects of interpretation of the paleomagnetic data in magnetostratigraphic studies and the need for the integrated (paleontological and paleomagnetic) approach to recognition of the base of the Berriasian.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号