首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
松原5.7级地震震中区土壤氢气变化特征   总被引:2,自引:0,他引:2  
2018年5月28日吉林松原发生5.7级地震,为了探究地震对断层气的影响以及震后断层气变化特征,震后在震中区进行了多期土壤氢气浓度观测工作,得到了震中区氢气浓度的最大值、背景值等多项指标。结合地震前后氢气浓度数据,分析震中区震前、震后氢气浓度趋势性变化情况,结果显示:在此次地震活动中,氢气浓度变化有"震前缓慢升高—临震下降—震后迅速升高—强余震前再次骤升"的现象;氢气浓度变化与地震活动间有很好的映震关系,主震对氢气浓度的上升起主要作用,而余震则起诱发作用,余震的活动会使赋存在地下岩石裂隙的氢气释放量增大,表明氢气对余震活动的响应较灵敏;另外,震后某一时刻空气中的氢气浓度也会升高,这可能与区域断层中的氢气逸散到大气中有一定关系。  相似文献   

2.
The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the waveform fitting is 12 km,and it is a strike-slip type event. In this paper,with the seismic phase data provided by the China Earthquake Network, the double-difference location method is used to relocate the earthquake sequence,finally the relocation results of 60 earthquakes are obtained. The results show that the aftershock zone is about 4. 3km long and 3. 1km wide,which is distributed in the NE direction. The depth distribution of the seismic sequence is 9km-10 km. 1-2 days after the main shock,the aftershocks were scattered throughout the aftershock zone,and the largest aftershock occurred in the northeastern part of the aftershock zone. After 3-8 days,the aftershocks mainly occurred in the southwestern part of the aftershock zone. The profile distribution of the earthquake sequence shows that the fault plane dips to the southeast with the dip angle of about 75°. Combined with the regional tectonic setting,focal mechanism solution and intensity distribution,we conclude that the concealed fault of the Fuyu-Zhaodong fault is the seismogenic fault of the Songyuan M_S5. 7 earthquake. This paper also relocates the earthquake sequence of the previous magnitude 5. 0 earthquake in 2017. Combined with the results of the focal mechanism solution,we believe that the two earthquakes have the same seismogenic structure,and the earthquake sequence generally develops to the southwest. The historical seismic activity since 2009 shows that after the magnitude 5. 0 earthquake in 2017,the frequency and intensity of earthquakes in the earthquake zone are obviously enhanced,and attention should be paid to the development of seismic activity in the southwest direction of the earthquake zone.  相似文献   

3.
Soil CO2 concentration data were collected periodically from July 2001 to June 2005 from sampling site grids in two areas located on the lower flanks of Mt. Etna volcano (Paternò and Zafferana Etnea–Santa Venerina). Cluster analysis was performed on the acquired data in order to identify possible groups of sites where soil degassing could be fed by different sources. In both areas three clusters were recognised, whose average CO2 concentration values throughout the whole study period remained significantly different from one another. The clusters with the lowest CO2 concentrations showed time-averaged values ranging from 980 to 1,170 ppm vol, whereas those with intermediate CO2 concentrations showed time-averaged values ranging from 1,400 to 2,320 ppm vol, and those with the highest concentrations showed time-averaged values between 1,960 and 55,430 ppm vol. We attribute the lowest CO2 concentrations largely to a biogenic source of CO2. Conversely, the highest CO2 concentrations are attributed to a magmatic source, whereas the intermediate values are due to a variable mixing of the two sources described above. The spatial distribution of the CO2 values related to the magmatic source define a clear direction of anomalous degassing in the Zafferana Etnea–Santa Venerina area, which we attribute to the presence of a hidden fault, whereas in the Paternò area no such oriented anomalies were observed, probably because of the lower permeability of local soil. Time-series analysis shows that most of the variations observed in the soil CO2 data from both areas were related to changes in the volcanic activity of Mt. Etna. Seasonal influences were only observed in the time patterns of the clusters characterised by low CO2 concentrations, and no significant interdependence was found between soil CO2 concentrations and meteorological parameters. The largest observed temporal anomalies are interpreted as release of CO2 from magma batches that migrated from deeper to shallower portions of Etna’s feeder system. The pattern of occurrence of such episodes of anomalous gas release during the observation period was quite different between the two studied areas. This pattern highlighted an evident change in the mechanism of magma transport and storage within the volcano’s feeder system after June 2003, interpreted as magma accumulation into a shallow (<8 km depth) reservoir.  相似文献   

4.
The concentration of H2 in soil gases has been measured weekly at five stations on the Atotsugawa and Ushikubi faults in northern central Main Island, Japan, since 1981 in search of possible relationship with earthquakes. The observed H2 concentration varies from lower than 1 ppm to 7.8% in time and place. When a large earthquake (M: 7.7, epicenter distance: 486 km) occurred on 26 May 1983, an outstanding discharge of H2 was observed at all five stations, preseismically at three of them, and coseismically at the other two. Simultaneous H2 emission was also observed at some stations in seven other occasions. These periods of unusual H2 discharge nearly coincided with occurrences of major earthquakes in Japan, but not of local minor earthquakes along the Atotsugawa fault. This fault, being a deep fracture zone, may be sensitive to large-scale crustal stress changes which incidentally cause the major earthquakes. Increased H2 may be produced by rock fracture caused by the increased stresses on the fault and by the earthquakes themselves. Local minor earthquakes along Atotsugawa fault with magnitude lower than 3 may be unable to cause sufficient rock fracture to produce significant H2.  相似文献   

5.
由于唐山断裂带土壤气地球化学研究成果相对较少,因此于2017—2018年分3期对唐山断裂带5条分支断裂土壤气浓度(包括Rn、Hg、CO2)和通量(包括Rn、Hg)进行测量,利用土壤气浓度平均值+2倍均方差的方法确定每条断裂异常限。分析结果表明,唐山-古冶断裂和唐山断裂土壤气浓度及通量出现高值异常;2017—2018年ML1.0以上地震多集中在唐山断裂和唐山-古冶断裂,与土壤气异常分布有较好的相关性;土壤气地球化学空间变化特征能反映断裂带的分段活动性。  相似文献   

6.
A new 3D velocity model of the crust and upper mantle in the southeastern (SE) margin of the Tibetan plateau was obtained by joint inversion of body- and surface-wave data. For the body-wave data, we used 7190 events recorded by 102 stations in the SE margin of the Tibetan plateau. The surface-wave data consist of Rayleigh wave phase velocity dispersion curves obtained from ambient noise cross-correlation analysis recorded by a dense array in the SE margin of the Tibetan plateau. The joint inversion clearly improves the v S model because it is constrained by both data types. The results show that at around 10 km depth there are two low-velocity anomalies embedded within three high-velocity bodies along the Longmenshan fault system. These high-velocity bodies correspond well with the Precambrian massifs, and the two located to the northeast of 2013 M S 7.0 Lushan earthquake are associated with high fault slip areas during the 2008 Wenchuan earthquake. The aftershock gap between 2013 Lushan earthquake and 2008 Wenchuan earthquake is associated with low-velocity anomalies, which also acts as a barrier zone for ruptures of two earthquakes. Generally large earthquakes (M ≥ 5) in the region occurring from 2008 to 2015 are located around the high-velocity zones, indicating that they may act as asperities for these large earthquakes. Joint inversion results also clearly show that there exist low-velocity or weak zones in the mid-lower crust, which are not evenly distributed beneath the SE margin of Tibetan plateau.  相似文献   

7.
Seasonal metrics and environmental responses to forestry soil surface CO2 emission effluxes among three types of lower subtropical forests were consistently monitored over two years with static chamber-gas chromatograph techniques among three types of lower subtropical forests. Results showed that annual CO2 effluxes (S+L) reached 3942.20, 3422.36 and 2163.02 CO2 g·m?2·a?1, respectively in the monsoon evergreen broadleaf forest, mixed broadleaf-coniferous forest and coniferous forest. All the three types of forests revealed the same characteristics of seasonal changes with the CO2 effluxes peaking throughout June to August. During this peaking period, the effluxes were 35.9%, 38.1% and 40.2% of the total annual effluxes, respectively. The CO2 emission process responding to the environmental factors displayed significantly different patterns in forestry soils of the three types of forests. The coniferous forest (CF) was more sensitive to temperature than the other two types. The Q 10 values were higher, along with greater seasonal variations of the CO2 efflux, indicating that the structurally unique forestry ecosystem has disadvantage against interferences. All the three types of forestry CO2 effluxes showed significant correlation with the soil temperature (T s), soil water content (M s) and air pressure (P a). However, stepwise regression analysis indicated no significant correlation between air pressure and the soil CO2 efflux. With an empirical model to measure soil temperature and water content in 5 cm beneath the soil surface, the CO2 effluxes accounting for 75.7%, 77.8% and 86.5% of the efflux variability respectively in soils of BF, MF and PF were calculated. This model can be better used to evaluate the CO2 emission of soils under water stress and arid or semi-arid conditions.  相似文献   

8.
By observing the variation of fault soil gases,we can understand the activity of faults and information on earthquake precursors.Two fault soil gas observation spots were set up at the Xiadian fault east of Beijing and at the Houhaoyao geothermal area in Huailai(Hebei Province)during November-December 1989.Concentrations of fault soil gases H2,Ar,CO2,CH4,Hg,etc.were observed.Before several moderate-strong earthquakes in 1990,the concentrations of fault soil gases such as H2 and Hg all showed abnormal variations quite significantly.In this paper,we mainly discuss the relation of these fault soil gases to earthquake activity.  相似文献   

9.
The northwestern flank of the Colli Albani, a Quaternary volcanic complex near Rome, is characterised by high pCO2 values and Rn activities in the groundwater and by the presence of zones with strong emission of gas from the soil. The most significant of these zones is Cava dei Selci where many houses are located very near to the gas emission site. The emitted gas consists mainly of CO2 (up to 98 vol%) with an appreciable content of H2S (0.8–2%). The He and C isotopic composition indicates, as for all fluids associated with the Quaternary Roman and Tuscany volcanic provinces, the presence of an upper mantle component contaminated by crustal fluids associated with subducted sediments and carbonates. An advective CO2 flux of 37 tons/day has been estimated from the gas bubbles rising to the surface in a small drainage ditch and through a stagnant water pool, present in the rainy season in a topographically low central part of the area. A CO2 soil flux survey with an accumulation chamber, carried out in February–March 2000 over a 12 000 m2 surface with 242 measurement points, gave a total (mostly conductive) flux of 61 tons/day. CO2 soil flux values vary by four orders of magnitude over a 160-m distance and by one order of magnitude over several metres. A fixed network of 114 points over 6350 m2 has been installed in order to investigate temporal flux variations. Six surveys carried out from May 2000 to June 2001 have shown large variations of the total CO2 soil flux (8–25 tons/day). The strong emission of CO2 and H2S, which are gases denser than air, produces dangerous accumulations in low areas which have caused a series of lethal accidents to animals and one to a man. The gas hazard near the houses has been assessed by continuously monitoring the CO2 and H2S concentration in the air at 75 cm from the ground by means of two automatic stations. Certain environmental parameters (wind direction and speed; atm P, T, humidity and rainfall) were also continuously recorded. At both stations, H2S and CO2 exceeded by several times the recommended concentration thresholds. The highest CO2 and H2S values were recorded always with wind speeds less than 1.5 m/s, mostly in the night hours. Our results indicate that there is a severe gas hazard for people living near the gas emission site of Cava dei Selci, and appropriate precautionary and prevention measures have been recommended both to residents and local authorities.  相似文献   

10.
通过甘东南地震危险区地震宏观异常观测实例分析,系统研究CO_2气体在地震构造活动过程中的地球化学演化过程,以及发生的一系列酸碱平衡和氧化还原化学反应。结果表明地下深部CO_2气体不仅是其他微量气体Rn等向地表方向运移的载体,而且参与酸碱平衡和氧化还原反应,是地下深部生物化学反应的重要影响条件,地震前兆及宏观异常现象的发生常伴随着CO_2的异常变化。因此CO_2气体可以作为良好的示踪气体,在地震前兆观测及重大异常落实中尤其要重视对其进行监测。  相似文献   

11.
We present a new petro-elastical and numerical-simulation methodology to compute synthetic seismograms for reservoirs subject to CO2 sequestration. The petro-elastical equations model the seismic properties of reservoir rocks saturated with CO2, methane, oil and brine. The gas properties are obtained from the van der Waals equation and we take into account the absorption of gas by oil and brine, as a function of the in situ pore pressure and temperature. The dry-rock bulk and shear moduli can be obtained either by calibration from real data or by using rock-physics models based on the Hertz-Mindlin and Hashin-Shtrikman theories. Mesoscopic attenuation due to fluids effects is quantified by using White's model of patchy saturation, and the wet-rock velocities are calculated with Gassmann equations by using an effective fluid modulus to describe the velocities predicted by White's model. The simulations are performed with a poro-viscoelastic modeling code based on Biot's theory, where viscoelasticity is described by generalizing the solid/fluid coupling modulus to a relaxation function. Using the pseudo-spectral method, which allows general material variability, a complete and accurate characterization of the reservoir can be obtained. A simulation, that considers the Utsira sand of the North Sea, illustrates the methodology.  相似文献   

12.
对辽宁南部地区重点活动断裂的8条剖面进行跨断层土壤气Rn、CO2和H2浓度测量。测量结果表明,各测量剖面土壤气Rn、CO2和H2的浓度平均值变化范围分别为10.65~39.50kBq/m3、0.59%~3.37%和9.74~306.28ppm。研究区土壤气Rn、CO2和H2浓度异常主要集中在海城老震区和盖州震群地区,土壤气空间变化特征显示Rn、CO2和H2浓度从南至北有逐渐增高变化趋势,这与辽南地区地震活动分布、地下低速层分布、地质特征及地壳垂直变形速率等变化相对应,表明辽南地区金州断裂土壤气地球化学特征主要受控于辽南地区地震活动、地下介质结构和地壳垂直形变速率的影响,同时也受到测量场地地质特征的影响。  相似文献   

13.
This paper provides a generic equation for the evaluation of the maximum earthquake magnitude mmax for a given seismogenic zone or entire region. The equation is capable of generating solutions in different forms, depending on the assumptions of the statistical distribution model and/or the available information regarding past seismicity. It includes the cases (i) when earthquake magnitudes are distributed according to the doubly-truncated Gutenberg-Richter relation, (ii) when the empirical magnitude distribution deviates moderately from the Gutenberg-Richter relation, and (iii) when no specific type of magnitude distribution is assumed. Both synthetic, Monte-Carlo simulated seismic event catalogues, and actual data from Southern California, are used to demonstrate the procedures given for the evaluation of mmax.The three estimates of mmax for Southern California, obtained by the three procedures mentioned above, are respectively: 8.32 ± 0.43, 8.31 ± 0.42 and 8.34 ± 0.45. All three estimates are nearly identical, although higher than the value 7.99 obtained by Field et al. (1999). In general, since the third procedure is non-parametric and does not require specification of the functional form of the magnitude distribution, its estimate of the maximum earthquake magnitude mmax is considered more reliable than the other two which are based on the Gutenberg-Richter relation.  相似文献   

14.
After analyzing systematically the dynamic variation of released H2 in Xiadian Fault during 1990–1996 and studying the whole data of earthquakes in the Beijing area during this period, we have found that the quantity of underground H2 release relates closely to earthquake activities. From the chart of annual frequency-magnitude of earthquake activities, the chart of H2 dynamic variation and release intensity, we have discovered that H2 release concerns with not only earthquake scale but also its frequency-magnitude. The higher earthquake scale and frequency-magnitude, the larger the released H2 quantity and its abnormal range.  相似文献   

15.
The M w 6.2 Lefkada earthquake occurred on 14 August 2003 beneath the western coastline of Lefkada Island. The main shock was followed by an intense aftershock activity, which formed a narrow band extending over the western coast of the Island and the submarine area between Lefkada and Kefalonia Islands, whereas additional off fault aftershocks formed spatial clusters on the central and northwestern part of the Island. The aftershock spatial distribution revealed the activation of along-strike adjacent fault segment as well as of secondary faults close to the main rupture. The properties of the activated segments were illuminated by the precisely located aftershocks, fault plane solutions determination and the cross sections performed parallel and normal to their strike. The aftershock focal mechanisms exhibited mainly strike slip faulting throughout the activated area, although deviation of the dominant stress pattern is also observed. The results help to emphasize the importance of the identification of activated nearby fault segments possibly triggered by the main rupture. Because such segments are capable to produce moderate events causing appreciable damage, they should be viewed with caution in seismic hazard assessment in addition to the major regional faults.  相似文献   

16.
郯庐断裂带安徽段土壤气体的地球化学特征   总被引:3,自引:0,他引:3  
在郯庐断裂带安徽段由北向南分别于泗县、明光、肥东、桐城布设了4个测区,每个测区各布设了4条跨断层土壤气测量剖面,测量土壤气Rn、Hg和CO_2的浓度。根据16条跨断层土壤气剖面的测量结果,对郯庐断裂带安徽段的3种土壤气体的释放特征及其与断层空间位置间的关系进行了初步分析。结果表明,气体在断裂带附近较为富集,对断层位置有一定指示作用;气体的富集程度与断裂的活动性、该区段断层岩性及地质环境有一定关系。该结果对于认识测量区域气体的积累特征及构造地球化学研究有一定意义。  相似文献   

17.
The 2022 Menyuan MS6.9 earthquake, which occurred on January 8, is the most destructive earthquake to occur near the Lenglongling (LLL) fault since the 2016 Menyuan MS6.4 earthquake. We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method. The total length and width of the aftershock sequence are approximately 32 km and 5 km, respectively, and the aftershocks are mainly concentrated at a depth of 7–12 km. The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock, where aftershocks are sparse. The east and west fault structures revealed by aftershock locations differ significantly. The west fault strikes EW and inclines to the south at a 71º–90º angle, whereas the east fault strikes 133º and has a smaller dip angle. Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes. Based on surface traces of faults, the distribution of relocated earthquake sequence and surface ruptures, the mainshock was determined to have occurred at the conjunction of the Tuolaishan (TLS) fault and LLL fault, and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault, respectively. Aftershocks migrate in the early and late stages of the earthquake sequence. In the first 1.5 h after the mainshock, aftershocks expand westward from the mainshock. In the late stage, seismicity on the northeast side of the east fault is higher than that in other regions. The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.  相似文献   

18.
This paper introduces the basic parameters, focal mechanism solutions and earthquake sequence characteristics of the Kalpin MS5.3 earthquake sequence of December 1, 2013, and analyzed seismic activity before the earthquake, the adjacent tectonic features and the precursory anomaly at fixed points within a range of 200km. Research indicates:(1) The earthquake occurred on Kalpin fault, the source rupture type is thrust faulting with sinistral strike-slip component. (2) The earthquake sequence is mainshock-aftershock type, with the aftershock distribution attenuating quickly and trending NE. (3) Abnormal seismic activity before the earthquake was characterized by seismically nesting quiescence of MS2.0-4.0 earthquakes, seismic quiescence of MS4.0 earthquakes and seismic belts of MS3.0 earthquakes in the Kalpin block, abnormal enhancement zone of moderate earthquakes on Puchang fault and seismological parameters. (4) Anomalies of precursory observation data at fixed stations are mainly characterized by mutation. Apart from the borehole tiltmeter in Halajun, the spatial distribution of other abnormal precursors showed a phenomenon of migration from the near field to far field and from the epicenter to the peripheries.  相似文献   

19.
Diffuse CO<Subscript>2</Subscript> degassing at Vesuvio,Italy   总被引:1,自引:0,他引:1  
At Vesuvio, a significant fraction of the rising hydrothermal–volcanic fluids is subjected to a condensation and separation process producing a CO2–rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic–hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d–1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d–1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d–1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.Editorial responsibility: H. Shinohara  相似文献   

20.
Soil temperature and gas (CO2 concentration and flux) have been investigated at Merapi volcano (Indonesia) during two inter-eruptive periods (2002 and 2007). Precise imaging of the summit crater and the spatial pattern of diffuse degassing along a gas traverse on the southern slope are interpreted in terms of summit structure and major caldera organization. The summit area is characterized by decreasing CO2 concentrations with distance from the 1932 crater rim, down to atmospheric levels at the base of the terminal cone. Similar patterns are measured on any transect down the slopes of the cone. The spatial distribution of soil gas anomalies suggests that soil degassing is controlled by structures identified as concentric historical caldera rims (1932, 1872, and 1768), which have undergone severe hydrothermal self-sealing processes that dramatically lower the permeability and porosity of soils. Temperature and CO2 flux measurements in soils near the dome display heterogeneous distributions which are consistent with a fracture network identified by previous geophysical studies. These data support the idea that the summit is made of isolated and mobile blocks, whose boundaries are either sealed by depositional processes or used as pathways for significant soil degassing. Within this context, self-sealing both prevents long-distance soil degassing and controls heat and volatile transfers near the dome. A rough estimate of the CO2 output through soils near the dome is 200–230 t day−1, i.e. 50% of the estimated total gas output from the volcano summit during these quiescent periods. On Merapi’s southern slope, a 2,500 m long CO2 traverse shows low-amplitude anomalies that fit well with a recently observed electromagnetic anomaly, consistent with a faulted structure related to an ancient avalanche caldera rim. Sub-surface soil permeability is the key parameter that controls the transfer of heat and volatiles within the volcano, allowing its major tectonic architecture to be revealed by soil gas and soil temperature surveys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号