首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of the modulation of radio waves during their passage through turbulent interstellar plasma on measurements of the structure of radio sources made with ultrahigh angular resolution using space radio interferometers are considered. Typical scattering angles?scat, pl for an extragalactic radio source at various wavelengths are estimated from scattering observations for pulsars and extragalactic sources. The (?0λ) plane, where ?0 is the source size and λ is the wavelength of the radio emission, can be divided into five regions, in which different regimes of radio-wave modulation and image reconstruction are realized. Possibilities for image reconstruction in each of these regions are investigated.  相似文献   

2.
Comparing the asymmetry coefficients γ and scintillation indices m for observed time variations of the intensity of the radiation of extragalactic sources and the predictions of theoretical models is a good test of the nature of the observed variations. Such comparisons can be used to determine whether flux density variations are due to scintillation in the interstellar medium or are intrinsic to the source. In the former case, they can be used to estimate the fraction of the total flux contributed by the compact component (core) whose flux density variations are caused by inhomogeneities in the interstellar plasma. Results for the radio sources PKS 0405-385, B0917+624, PKS 1257-336, and J1819+3845 demonstrate that the scintillating component in these objects makes up from 50 to 100% of the total flux, and that the intrinsic angular sizes of the sources at 5 GHz are 10–40 microarcseconds. The characteristics of the medium giving rise to the scintillations are presented.  相似文献   

3.
Data on the visible angular sizes of sources of microwave subsecond pulses (MSPs) obtained using the Siberian Solar Radio Telescope are analyzed assuming a dominant role for scattering on small-scale electron-density inhomogeneities in the solar corona. The observed dependence of the angular sizes of MSPs on the distance from the solar-disk center confirms that the MSP sources are localized in low layers of the solar corona. Both absolute and fractional levels of small-scale electron-density fluctuations have been estimated. These estimates suggest that flicker-noise-type turbulence power spectra are formed in the lower corona, and are preserved in the solar-wind acceleration region. A composite dependence of the scattering angle of a sounding radio wave on distance from the Sun is presented.  相似文献   

4.
We present the results of our observations of compact extragalactic radio sources near the north celestial pole (+75° ≤ δ ≤ +88°) obtained on the RATAN-600 radio telescope. Our sample consists of 51 radio sources with spectra that are either flat or inverted (growing toward shorter wavelengths) and with flux densities at 1.4 GHz S ν ≥ 200 mJy. We observed the sources at 1–21.7 GHz. Multi-frequency instantaneous spectra are presented for 1999–2007. We observed 33 of our sample source daily for 30 days in August 2007. As a result, we revealed 15 objects exhibiting rapid variations on time scales of a day. The multi-frequency instantaneous spectra of these sources indicate that radio flux variations on one-day timescales are characteristic of objects of various spectral types. More than half the sources exhibiting rapid variations demonstrate a growth in the variability amplitude with increasing frequency. For some of the objects, the variability amplitude is virtually independent of frequency.  相似文献   

5.
Results of a study of a strong flare of H2O maser emission in the star-forming region Sgr B2(M) in 2004 are reported. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory. The main emission, with its flux density reaching 3800 Jy, was concentrated in a narrow radial-velocity interval (about 3 km/s) and was most likely associated with the compact group r, while the emission at VLSR > 64 km/s came from group q. After 1994, the variations of the H2O maser emission in Sgr B2(M) became cyclic with a mean period of 3 years.  相似文献   

6.
A catalog of λ=1.35 cm water-vapor maser spectra in Sgr B2 obtained in 1992–2003 is presented; this supplements our results for earlier observations in 1982–1992. Sgr B2 was monitored using the 22 m radio telescope of the Pushchino Radio Astronomy Observatory. The whole monitoring dataset for 1982–2003 has been analyzed. The emission received is a superposition of radiation from various parts of the entire Sgr B2 region, but the main contribution is made by two sources: Sgr B2(M) and Sgr B2(N). The monitoring did not reveal any long-term component of the integrated maser flux variations with a period shorter than 20 years. The flare component of the flux variability and a short-period component with a mean period of two years have been found. The latter are correlated with variations of the velocity centroid, supporting the reality of the short-period variations. It is likely that all the various types of variations are inherent to both Sgr B2(M) and Sgr B2(N), and represent a superposition of the variations occurring in each of these sources. There is an alternation of maxima of the emission from Sgr B2(M) and Sgr B2(N).  相似文献   

7.
We present classifications, optical identifications, and radio spectra for 19 radio sources from three complete samples, with declinations 4°–6° (B1950, S 3.9 GHz > 200 mJy), 10°–12°30′ (J2000, S 4.85 GHz > 200 mJy), and 74°–75° (J2000, S 4.85 GHz > 100 mJy). We also present corresponding information for the radio source J0527+0331. The right ascensions are 0–24h and the Galactic latitudes |b| > 15° for all the samples. Our observations were obtained with the 6 m telescope from the Special Astrophysical Observatory in the range 4000–9000 Å or 4000–7500 Å and the RATAN-600 radio telescope at frequencies in the range 0.97–21.7 GHz. We obtained flux densities for the radio sources and optical spectra for their optical counterparts. Nine objects were classified as quasars with redshifts from z = 1.029 to 3.212; nine objects are emission-line galaxies with redshifts from 0.172 to 0.546, and one is a galaxy with burstlike star formation at z = 0.156, and one is a BL Lac object with z = 0.509. The spectra of five radio sources were decomposed into extended and compact components. The radio source J0527+0331, identified with a BL Lac object, displays significant variations of time scales from several days to several years. Data on flux variations are presented for 11 radio sources, as well as their spectra at several epochs.  相似文献   

8.
The results of 0.97, 2.3, 3.9, 7.7, 11.1, and 21.7 GHz observations of a complete sample of radio sources obtained on the RATAN-600 radio telescope are presented. The sample is comprised of sources from the 4.85-GHz MGB survey, and contains all sources at declinations 10°–12°30′ (J2000) with Galactic latitudes |b|>15° and flux densities S4.85>200 mJy. Optical identifications have been obtained for about 86% of the radio sources with flat spectra and 59% of those with steep spectra. The spectra of the flat-spectrum sources have been decomposed into extended and compact components.  相似文献   

9.
The dependence of the emission measure on the dispersion measure due to the Galactic background has been derived for 120 directions in the Galaxy. This analysis has yielded the mean electron density, effective thickness of the electron layer, and the volume filling factor of the clouds of ionized gas along the line of sight. The pulsar J1745?2900, which lies in a direction close to the direction toward the center of the Galaxy, is located at least 100 pc closer to the observer than the source Sgr A* along the line of sight. The scatter-broadened angular size of J1745?2900 is determined by the turbulent medium in the Sagittarius Arm.  相似文献   

10.
Eighteen regions (bipolar outflows and methanol masers) are mapped in the CS(2-1) line using the 20-m Onsala radio telescope. The coordinates of the CS emission peaks are refined. The sizes and masses of dense regions are estimated for 13 maps. Measurement of the angular sizes of regions of emission indicates that all the sources were resolved by the Onsala radio telescope. The lower limit for the linear dimensions of the CS condensations studied is 0.2–2.1 pc. The hydrogen densities and masses of the CS condensations are estimated to be n(H2)=(0.3–13.1)×104 cm?3 and (M ≈ 7–2800M ). Methanol masers are associated with denser and more massive regions, whether or not the maser condensation is connected with a bipolar outflow.  相似文献   

11.
Results of interferometric observations of the class I methanol masers OMC-2 and NGC 2264 in the 70-61 A + and 80-71 A + lines at 44 and 95 GHz, respectively, are presented. The maser spots are distributed along the arcs bent toward infrared sources, which are young stellar objects. The distributions of the maser spots at 44 and 95 GHz are virtually identical, and the fluxes from the brightest spots are similar. The measured sizes of the maser spots at 44 GHz are, on average, about 50 AU. The brightness temperature of the strongest components at 44 GHz is 1.7 × 107 K and 3.9 × 107 K for OMC-2 and NGC 2264, respectively. A simple model for the excitation of Class I methanol masers is proposed; it yields an estimate of the limiting brightness temperature of the emission. The model is based solely on the properties of the methanol molecule without invoking the physical parameters of the medium. Using it, we showed that the emission opening angles for NGC 2264 and OMC-2 do not exceed 3° and 4.5°, respectively. The depth of the masing region is about 1000 AU. The emission directivity is naturally realized in the model of of maser consisting of a thermalized core and a thin inverted envelope, probably, with an enhanced methanol abundance. The maser emission has the greatest intensity in the direction tangential to the envelope. The size of the masing envelope estimated from the measured depth and spot extens is ~2 × 104 AU, or 0.15 pc. This size is close to the sizes of the dense molecular cores surrounding the young stellar objects IRS 4 in OMC-2 and IRS 1 in NGC 2264.  相似文献   

12.
We present the results of a variability study of some H2O maser-emission components of Sgr B2, which is located in an active star-forming region. Our monitoring was conducted in 1982–2004 with the 22-m radio telescope of the Pushchino Radio Astronomy Observatory. We analyze brightness variations for the strongest groups of emission features in the H2O spectra, mainly during periods of maser flaring activity. Each of these groups contains many components, whose radial velocities and fluxes we determined. Most of the components displayed radial-velocity drifts. We detected a correlation between the flux and radial-velocity variations for some of the components. Variability of the emission can be explained in a model in which the maser spots form elongated chains and filaments with radial-velocity gradients. During H2O flares, the flux increases of some maser spots were accompanied by acceleration, while flux decreases were accompanied by deceleration of their motion in the dense circumstellar matter. Spectral groups of emission features are probably spatially compact structures.  相似文献   

13.
The statistical dependence of τ/(DM)2 (the ratio of the broadening of a pulsar pulse due to scattering in the interstellar medium to the square of the pulsar’s dispersion measure) on the pulsar’s dispersionmeasure, Galactic coordinates, age, and the angular distance to the nearest supernova remnant are studied. This parameter describes the relative level of electron density fluctuations in the turbulent interstellar plasma. It is shown that the interstellar plasma turbulence level is three orders of magnitude higher in the spiral arms of the Galaxy than outside the arms. The plasma turbulence level is approximately an order of magnitude higher in the Galactic arms, in regions within ?0.3° of supernova remnants, than outside these regions. We conclude that the source of energy for the turbulence in the Galactic arms is supernova explosions in the denser medium there.  相似文献   

14.
We present optical identifications, classifications, and radio spectra for 19 radio sources from a complete sample in flux density with declinations 10°–12°30′ (J2000) obtained with the 6-m optical telescope (4000–9000 Å) and RATAN-600 radio telescope (0.97–21.7 GHz) of the Special Astrophysical Observatory. Twelve objects with redshifts from 0.573 to 2.694 have been classiffied as quasars, and two objects with featureless spectra as BL Lac objects. Four objects are emission-line radio galaxies with redshifts from 0.204 to 0.311 (one also displaying absorption lines), and one object is an absorption-line galaxy with a redshift of 0.214. Radio flux densities have been obtained at six frequencies for all the sources except for two extended objects. The radio spectra of five of the sources can be separated into extended and compact components. Three objects display substantial rapid (on time scales from several days to several weeks) and long-term variability of their flux densities.  相似文献   

15.
We present the results of studies of the superfine structure of H2O maser sources in the Orion Nebula. Powerful, low-velocity, compact maser sources are distributed in eight active zones. Highly organized structures in the form of chains of compact components were revealed in two of these, in the molecular cloud OMC-1. The component sizes are ~0.1 AU and their brightness temperatures are T b =1012?1016 K. The structures correspond to tangential sections of concentric rings viewed edge-on. The ring emission is concentrated in the azimuthal plane, decreasing the probability of their discovery. The formation of protostars is accompanied by the development of accretion disks and bipolar flows, with associated H2O maser emission. The accretion disks are in the stage of fragmentation into protoplanetary rings. In a Keplerian approximation, the protostars have low masses, possibly evidence for instability of the systems. Supermaser emission of the rings is probably triggered by precession of the accretion disk. The molecular cloud’s radial velocity is V LSR=7.74 km/s and its optical depth is τ≈5. The emission from components with velocities within the maser window is additionally amplified. The components’ emission is linearly polarized via anisotropic pumping.  相似文献   

16.
The results of a study of H2O and OH maser emission in the complex region of active star formation W75 N are presented. Observations were obtained using the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) and the Nan3ay radio telescope (France). Flaring H2O maser features may be identified with maser spots associated with the sources VLA 1 and VLA 2. Themain H2O flares occurred in VLA 1. The flare emission was associated with either maser clusters having closely spaced radial velocities and sizes up to ~2 AU or individual features. The maser emission is generated in a medium where turbulence on various scales is present. Analysis of the line shapes during flare maxima does not indicate the presence of the simplest structures—homogeneous maser condensations. Strong variability of the OH maser emission was observed. Zeeman splitting of the 1665-MHz line was detected for several features of the same cluster at a radial velocity of +5.5 km/s. The mean line-of-sight magnetic field in this cluster is ~0.5 mG, directed away from the observer. Flares of the OH masers may be due to gas compression at a shock or MHD wave front.  相似文献   

17.
An analysis of the angular structure of the radio galaxy 3C 234 at decameter wavelengths based on data obtained on the URAN-1 and URAN-2 interferometers is presented. Four of the five model components that describe the radio-brightness distribution at centimeter wavelengths are observed at decameter wavelengths: two compact components and two neighboring extended components. The fifth, undetected, component is the most extended, and encompasses the central region of the radio source, including the nucleus of the galaxy. Self-absorption is detected in the compact components, whose angular sizes are determined to be 0.27±0.03″ (northeast component) and 0.55±0.05″ (southwest component), in agreement with direct measurements at centimeter wavelengths. Most of the decameter emission of the radio galaxy is associated with its extended components.  相似文献   

18.
We present classifications, optical identifications, and radio spectra for eight radio sources from three flux-density-complete samples in the following declination ranges: 4°–6° (B1950), S 3.9 > 200 mJy; 10°–12°30′ (J2000), S 4.85 > 200 mJy; 74°?75° (J2000), S 4.85 > 100 mJy. For all these samples, the right ascensions are 0h–24h and the Galactic latitudes, |b| > 15°. Our optical observations at 4000–7500 ° were made with the 6-m telescope of the Special Astrophysical Observatory; we also observed at 0.97–21.7 GHz with the RATAN-600 radio telescope of the Special Astrophysical Observatory. We classify four of the objects as quasars and four as galaxies. Five of the radio sources have power-law spectra at 0.97–21.7 GHz, while two objects have flat spectra. The quasar J2358+0430 virtually did not vary during 23 years.  相似文献   

19.
The results of monitoring the water-vapor maser at λ=1.35 cm in Sgr B2 are presented. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) in 1982–1992. A strong flare of the maser radiation associated with Sgr B2(N) was detected in this period. The absolute strength of this flare is comparable to the megamaser emission observed in Orion in 1979–1987. The flare is probably due to a strengthening of the flow of material from the rotating accretion disk, in which are embedded the three ultracompact HII regions K1, K2, and K3. A subsequent excitation of emission features at increasingly higher radial velocities was observed, associated with a gradient of VLSR along the direction of the outflow. The large width of the lines (>0.86 km/s) could reflect a complex structure for the maser spots, such as a chain or filamentary structure, as has been observed in Orion and S140.  相似文献   

20.
The search for compact components of strong ($${{S}_{{{\text{int}}}}} \geqslant 5$$ Jy at 102.5 MHz) discrete radio sources from the Pushchino catalogue was carried out using the method of interplanetary scintillation. A total of 3620 sources were examined, and 812 of them were found to harbor compact (scintillating) components. Estimates of fluctuations of the flux density of these compact components were derived from the scintillation index ($${{m}_{{\max}}}$$) corresponding to an elongation of 25°. The angular size and compactness of 178 sources with compact components were estimated. Scintillation indices of sources corresponding to the compact component ($${{m}_{0}}$$) and flux densities of compact components were determined. It was demonstrated that slow variations of the spatial distribution of interplanetary plasma, which are related to the 11-year cycle of solar activity, may exert a systematic influence on the estimates of angular sizes of sources. Coefficients compensating the deviation from the spherical symmetry of solar wind in the estimates of angular sizes were found using the coefficient of asymmetry of the statistical distribution of intensity fluctuations. The study of correlations between the parameters of sources in the sample revealed that the maximum value of the scintillation index decreases as the integrated flux increases, while the angular size has no marked dependence on the integrated flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号