首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《International Geology Review》2012,54(11):1413-1434
We present new zircon ages and Hf-in-zircon isotopic data for plutonic rocks and review the crustal evolution of the Chinese Central Tianshan (Xinjiang, northwest China) in the early to mid-Palaeozoic. The Early Ordovician (ca. 475–473 Ma) granitoid rocks have zircon εHf(t) values either positive (+0.3 to +9.5) or negative (?6.0 to ?12.9). This suggests significant addition of juvenile material to, and coeval crustal reworking of, the pre-existing continental crust that is fingerprinted by numerous Precambrian zircon xenocrysts. The Late Ordovician–Silurian (ca. 458–425 Ma) rocks can be assigned to two sub-episodes of magmatism: zircon from rocks of an earlier event (ca. 458–442 Ma) has negative zircon εHf(t) values (?6.3 to ?13.1), indicating a predominantly crustal source; zircon from later events (ca. 434–425 Ma) has positive zircon εHf(t) values (+2.6 to +8.9) that reveal a predominantly juvenile magma source. The Early Devonian (ca. 410–404 Ma) rocks have near-zero zircon εHf(t) values, either slightly negative or positive (?1.4 to +3.5), whereas the Mid-Devonian rocks (ca. 393 Ma) have negative values (?11.2 to ?14.8). The Late Devonian (ca. 368–361 Ma) granites are undeformed and are chemically similar to adakite but have relatively low negative whole-rock εNd(t)values (?2.4 to ?5.3). We interpret the Early Ordovician to Mid-Devonian magmatic event to reflect combined juvenile crustal growth and crustal reworking processes via episodic mafic underplating and mantle–crust interaction. The Late Devonian episode may signify delamination of the over-thickened Chinese Central Tianshan crust.  相似文献   

2.
The Early Caledonian Central Asian Orogenic Belt hosts fragments of continental blocks with Early and Late Precambrian crystalline basement. One of the structures with an Early Precambrian basement was thought to be the Dzabkhan microcontinent, which was viewed as an Early Precambrian “cratonal terrane”. The first geochronologic data suggest that the basement of the Dzabkhan microcontinent includes a zone of crystalline rocks related to Late Riphean tectonism. Geological, geochronological (U-Pb zircon dates), and Nd isotopic-geochemical data were later obtained on the northwestern part of the Dzabkhan microcontinent. The territory hosts the most diverse metamorphic complexes thought to be typical of the Early Precambrian basement. The complexes were determined to comprise the Dzabkhan-Mandal and Urgamal zones of high-grade metamorphic rocks. Gabbrodiorites related to the early metamorphic episode and dated at 860 ± 3 Ma were found in the Dzabkhan-Mandal zone, and the gneiss-granites marking the termination of this episode were dated at 856 ± 2 Ma. The granitoids of the Dzabkhan batholith, whose emplacement was coeval with the termination of the late high-grade metamorphic episode in rocks of both zones, have an age of 786 ± 6 Ma. Similar age values were determined for the granitoids cutting across the Late Precambrian rocks of the Songino and Tarbagatai blocks, which mark the stage when the mature Late Riphean continental crust was formed. The Late Riphean magmatic and metamorphic rocks of the Dzabkhan microcontinent were found out to have Nd model ages mostly within the range of 1.1–1.4 Ga at ?Nd(T) from +1.9 to +5.5. The Nd model age of the metaterrigenous rocks is 2.2?1.3 Ga at ?Nd(T) from ?7.2 to +3.1. The results of our studies provide evidence of convergence processes, which resulted in the Late Riphean (880?780 Ma) continental crust in Central Asia. Simultaneously with these processes, divergence processes that were responsible for the breakup of Rodinia occurred in the structures of the ancient cratons. It is reasonable to suggest that divergence processes within ancient continental blocks and Rodinia shelf were counterbalanced by the development of the Late Riphean continental crust in the convergence zones of its surrounding within established interval.  相似文献   

3.

Laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of zircons confirm a Late Devonian to Early Carboniferous age (ca 360–350 Ma) for silicic volcanic rocks of the Campwyn Volcanics and Yarrol terrane of the northern New England Fold Belt (Queensland). These rocks are coeval with silicic volcanism recorded elsewhere in the fold belt at this time (Connors Arch, Drummond Basin). The new U–Pb zircon ages, in combination with those from previous studies, show that silicic magmatism was both widespread across the northern New England Fold Belt (>250 000 km2 and ≥500 km inboard of plate margin) and protracted, occurring over a period of ~15 million years. Zircon inheritance is commonplace in the Late Devonian — Early Carboniferous volcanics, reflecting anatectic melting and considerable reworking of continental crust. Inherited zircon components range from ca 370 to ca 2050 Ma, with Middle Devonian (385–370 Ma) zircons being common to almost all dated units. Precambrian zircon components record either Precambrian crystalline crust or sedimentary accumulations that were present above or within the zone of magma formation. This contrasts with a lack of significant zircon inheritance in younger Permo‐Carboniferous igneous rocks intruded through, and emplaced on top of, the Devonian‐Carboniferous successions. The inheritance data and location of these volcanic rocks at the eastern margins of the northern New England Fold Belt, coupled with Sr–Nd, Pb isotopic data and depleted mantle model ages for Late Palaeozoic and Mesozoic magmatism, imply that Precambrian mafic and felsic crustal materials (potentially as old as 2050 Ma), or at the very least Lower Palaeozoic rocks derived from the reworking of Precambrian rocks, comprise basement to the eastern parts of the fold belt. This crustal basement architecture may be a relict from the Late Proterozoic breakup of the Rodinian supercontinent.  相似文献   

4.
5.
The information on the composition, structure, P-T conditions of metamorphic facies, evolution, and time of the metamorphic events in the largest Precambrian tectonic provinces of the Antarctic Crystalline Shield gained over more than a half-century is summarized in this paper. The joining up of the ortho- and paracrystalline rocks into complexes and groups according to their geographic position, composition, age, and the character of their metamorphism allowed us to consider the main features of the structure and evolution of the provinces including (1) the near-latitudinal polycyclic Late Precambrian-Early Paleozoic Wegener-Mawson Mobile Belt, extended for more than 4000 km, which started to evolve in the Mesoproterozoic and stabilized only at the end of Cambrian; (2) the Early Precambrian relict crystalline protocratonic blocks adjoining this mobile belt; their history is traced from the Eoarchean; and (3) the near-latitudinal Late Precambrian-Early Paleozoic aulacogen in the southern protocratonic block. The P-T conditions of the metamorphism from the pyroxene-granulite subfacies in the protocratonic blocks to the greenschist facies in aulacogen, as well as the age of the magmatic and metamorphic events in all the tectonic provinces of the shield, are characterized. This made it possible to consider the metamorphic history and conditions of the continental crust’s formation in Antarctica, where the oldest crystalline rocks are dated to the Eoarchean (4060–3850 Ma) and the youngest rocks are ~500 Ma old.  相似文献   

6.
《地学前缘(英文版)》2020,11(5):1711-1725
The tectonic setting of the northern Alxa region during the Late Paleozoic is highly controversial.The key to resolve this controversy is to recognize the Late Paleozoic magmatic processes in the northern Alxa.In this paper,we present new zircon U-Pb ages,Hf-isotopic compositions and whole-rock geochemical data of four granitoids along the Zhusileng-Hangwula Tectonic Belt in the northern Alxa region that could provide critical information about the tectonic evolution of this region.The zircon U-Pb data could be grouped as two phases:Late Devonian granite and diorite(ca.373-360 Ma),and Late Carboniferous granodiorite(ca.318 Ma).The Late Devonian granites and diorites are metaluminous to slightly peraluminous,with A/CNK and A/NK ratios of 0.90-1.11 and0.95-2.19,respectively.The Late Devonian diorites are characterized by high MgO,Cr and Ni contents and MgO#values,together with variable ε_(Hf)(t) values from-1.0 to+1.3 and old T_(DM2) ages varied from 1283 Ma to 1426 Ma,indicating the primary magma was potentially derived from magma mixing of depleted mantle with Mesoproterozoic continental crust.Even though the Late Devonian granites yielded most positive and minor negative e_(Hf)(t) values between-1.1 to+5.7(three grains are negative) with two-stage model ages(T_(DM2)) of 1003-1438 Ma,they display low MgO,Cr and Ni contents and MgO#values,suggesting that they were mainly derived from juvenile crustal materials,mixed with a small amount of ancient crust.The Late Carboniferous granitoids are metaluminous and medium-K calc-alkaline series,with A/CNK and A/NK ratios ranging from 0.88 to 0.95 and1.75 to 1.90,respectively.These rocks were potentially derived from juvenile crustal materials mixed with depleted mantle,as evidenced by their high ε_(Hf)(t) values(+11.6 to+14.1) and young TDM2 ages(427 Ma to 586 Ma),as well as high Mg#values,and MgO,Ni and Cr contents.Our data,along with available sedimentary evidence and previous researches,indicate that the Late Devonian and Late Carboniferous rocks are arc-related granitoids under the subduction setting.The identification of arc-related granitoids in the northern Alxa region not only reveals the Late Paleozoic magmatic process in response to the subduction of Paleo Asian Ocean,but also provide significant constrains to the tectonic evolution of the Central Asian Orogenic Belt.  相似文献   

7.
《地学前缘(英文版)》2020,11(5):1533-1548
The Chinese North Tianshan(CNTS) in the southern part of the Central Asian Orogenic Belt(CAOB) has undergone multistage accretion-collision processes during Paleozoic time,which remain controversial.This study addresses this issue by tracing the provenance of Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS through U-Pb dating and Lu-Hf isotopic analyses of detrital zircons.New detrital zircon U-Pb ages(N=519) from seven samples range from 261±4 Ma to 2827±32 Ma.The most prominent age peak is at 313 Ma and subordinate ages vary from 441 Ma to 601 Ma,with some Precambrian detrital zircon ages(~7%) lasting from 694 Ma to 1024 Ma.The youngest age components in each sample yielded weighted mean ages ranging from 272±9 Ma to 288±5 Ma,representing the maximum depositional ages.These and literature data indicate that some previously-assumed "Carboniferous"strata in the Bogda area were deposited in the Early Permian,including the Qijiaojing,Julideneng,Shaleisaierke,Yangbulake,Shamaershayi,Liushugou,Qijiagou,and Aoertu formations.The low maturity of the sandstones,zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East Junggar Arc and the Harlik-Dananhu Arc in the CNTS.The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc.Zircon E_(Hf)(t) values have increased since ~408 Ma,probably reflecting a tectonic transition from regional compression to extension.This event might correspond to the opening of the Bogda intraarc/back arc rift basin,possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean.A decrease of zircon ε_(Hf)(t) values at ~300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision,which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous.  相似文献   

8.
New data on composition and age of Precambrian granites and volcanic rocks in the southern part of the Lyapin structure (Northern Urals) are considered. The geochemical features of the igneous rocks are similar to those of the rocks formed in both divergent and convergent environments. In the Late Precambrian (583–553 Ma), the investigated area is assumed to have been a part of the active margin above the mantle plume.  相似文献   

9.
The Berezitovoe gold-polymetallic deposit is localized in the west of the Selenga–Stanovoi superterrane composed of a wide spectrum of Early and Late Precambrian igneous rocks and abundant Paleozoic and Mesozoic intrusive and volcanoplutonic associations. The 40Ar/39Ar ages determined for metasomatites bearing gold-polymetallic mineralization are as follows: garnet-quartz-muscovite-sericite-K-feldspathic metasomatites (129.7±3.2–127.3±4.4 Ma); muscovite-quartz-sericite metasomatites (132.0±2.9–131.3±2.3 Ma). According to the age and general scheme of evolution of the Early Cretaceous magmatism in the Selenga–Stanovoi superterrane, the metasomatites of the Berezitovoe deposit are nearly coeval to the intrusive rocks of the Amudzhikan complex (132–128 Ma). The revealed platinum potential of gold-polymetallic ores and metasomatites permits ranking the Berezitovoe deposit as a specific complex gold-polymetallic-platinum deposit, which considerably increases its commercial value.  相似文献   

10.
We studied geology and main rock assemblages of the Precambrian Kan, Arzybei, and Derba terranes of the Central Asian Fold Belt which border the Siberian craton in the southwest. The Precambrian terranes include three isotopic provinces (Paleoproterozoic, Mesoproterozoic, and Neoproterozoic) distinguished from the Sm-Nd isotope compositions of granitoids, felsic metavolcanics, and metasediments. The terranes formed in three stages of crustal evolution: 2.3–2.5, 0.9–1.1, and 0.8–0.9 Ga. Proterozoic juvenile crust was produced by subduction-related magmatism; it was originally of transitional composition and transformed into continental crust by potassic plutonism as late as the Late Vendian-Cambrian. Terrigenous sediments in the Arzybei and Derba terranes vary in T(DM) Nd model ages from 1.0 to 2.0 Ga. The Nd ages of the underlying metavolcanics and lowest T(DM) of metasediments indicate that terrigenous sedimentation started in the Neoproterozoic. It was maintained by erosion of Mesoproterozoic-Neoproterozoic crust and, to a lesser extent, of Early Precambrian rocks on the craton margin or in Paleoproterozoic terranes. Ar-Ar dating of amphiboles and biotites from metamorphic rocks and U-Pb dating of zircons from granitoids yielded 600–555 and 500–440 Ma, respectively, corresponding to the Vendian and Early Paleozoic stages of nearly synchronous metamorphism and plutonism. Accretion and collision events caused amalgamation of the Paleoproterozoic, Mesoproterozoic, and Neoproterozoic terranes in the Vendian and their collision with the Siberian craton. The lateral growth of the paleocontinent completed in the Late Ordovician.  相似文献   

11.
~(40)Ar/~(39)Ar and zircon U-Pb geochronological and whole-rock geochemical analyses for the Laozanggou intermediate-acidic volcanic rocks from the western Qinling orogenic belt,Central China,constrain their petrogenesis and the nature of the Late Mesozoic lithospheric mantle.These volcanic rocks yield hornblende or whole-rock ~(40)Ar/~(39)Ar plateau ages of 128.3-129.7 Ma and zircon U-Pb age of131.3±1.3 Ma.They exhibit Si02 of 56.86-66.86 wt.%,K_2 O of 0.99-2.46 wt.% and MgO of 1.03-4.47 wt.%,with Mg# of 42-56.They are characterized by arc-like geochemical signatures with significant enrichment in LILE and LREE and depletion in HFSE.All the samples have enriched Sr-Nd isotopic compositions with initial ~(87)Sr/~(86)Sr ratios ranging from 0.7112 to 0.7149 and ε_(Nd)(t) values from 10.2 to 6.3.Such geochemical signatures suggest that these volcanic rocks were derived from enriched lithospherederived magma followed by the assimilation and fractional crystallization(AFC)process.The generation of the enriched lithospheric mantle is likely related to the modification of sediment-derived fluid in response to the Triassic subduction/collision event in Qinling orogenic belt.The early Cretaceous detachment of the lithospheric root provides a reasonable mechanism for understanding the petrogenesis of the Laozanggou volcanic sequence in the western Qinling orogenic belt.  相似文献   

12.
A comparative geochemical characteristics of Late Precambrian sedimentary rocks (Ust’-Kelyana and Tuluya rock units) in the Anamakit–Muya zone of the Baikal–Muya belt is given, and the conditions of their sedimentation are considered. The first results of U–Pb (LA-ICP-MS) dating of detrital zircons and Sm–Nd isotope data on the Tuluya unit deposits are presented. Petrogeochemical study showed that the studied sediments are first-cycle rocks similar in composition to terrigenous island-arc sediments. The low contents of Th, Rb, Zr, Hf, and LREE and high contents of Co, Ni, Sc, V, Cr, and Fe2O3* in the sandstones of the Ust’-Kelyana unit evidence that these rocks are similar to oceanic-arc deposits. In contrast, the enrichment of the Tuluya unit rocks in Zr, LREE, Th, Rb, and Nb indicates their similarity to deposits of continental island arcs or active continental margin. Isotope-geochronological studies of the Tuluya rock unit showed the mixing of detrital material resulted from the erosion of Neoproterozoic island-arc igneous rock associations (625–700 Ma), like those in the Karalon–Mamakan zone (Yakor’ and Karalon Formations), and more ancient associations, like the Kelyana (812–824 Ma) and/or Dzhaltuk Groups. Judging from the minimum age of detrital zircon, the lower time bound of sedimentation corresponds to 0.6 Ga.  相似文献   

13.
Studies of gneisses from the Yenisei regional shear zone (YRSZ) provide the first evidence for Mesoproterozoic tectonic events in the geologic history of the South Yenisei Ridge and allowed the recognition of several stages of deformation and metamorphism spanning from Late Paleoproterozoic to Vendian. The first stage (~ 1.73 Ga), corresponding to the period of granulite-amphibolite metamorphism at P = 5.9 kbar and T = 635 °C, marks the final amalgamation of the Siberian craton to the Paleo-Mesoproterozoic Nuna supercontinent. During the second stage, corresponding to a hypothesized breakup of Nuna as a result of crustal extension, these rocks underwent Mesoproterozoic dynamic metamorphism (P = 7.4 kbar and T = 660 °C) with three peaks at 1.54, 1.38, and 1.25 Ga and the formation of high-pressure blastomylonite rocks in shear zones. Late-stage deformations during the Mesoproterozoic tectonic activity in the region, related to the Grenville-age collision processes and assembly of Rodinia, took place at 1.17-1.03 Ga. The latest pulse of dynamic metamorphism (615–600 Ma) marks the final stage of the Neoproterozoic evolution of the Yenisei Ridge, which is associated with the accretion of island-arc terranes to the western margin of the Siberian craton. The overall duration of identified tectonothermal processes within the South Yenisei Ridge during the Riphean (~ 650 Ma) is correlated with the duration of geodynamic cycles in the supercontinent evolution. A similar succession and style of tectonothermal events in the history of both the southern and the northern parts of the Yenisei Ridge suggest that they evolved synchronously within a single structure over a prolonged time span (1385–600 Ma). New data on coeavl events identified on the western margin of the Siberian craton contradict the hypothesis of a mantle activity lull (from 1.75 to 0.7 Ga) on the southwestern margins of the Siberian craton during the Precambrian. The synchronous sequence and similar style of tectonic events on the periphery of the large Precambrian Laurentia, Baltica, and Siberia cratons suggest their spatial proximity over a prolonged time span (1550–600 Ma). The above conclusion is consistent with the results of modern paleomagnetic reconstructions suggesting that these cratons represented the cores of Nuna and Rodinia within the above time interval.  相似文献   

14.
In northeastern Vietnam, Late Paleozoic and Permo-Triassic granitic plutons are widespread, but their tectonic significance is controversial. In order to understand the regional magmatism and crustal evolution processes of the South China block (SCB), this study reports integrated in situ U–Pb, Hf–O and Sr–Nd isotope analyses of granitic rocks from five plutons in northeastern Vietnam. Zircon SIMS U–Pb ages of six granitic samples cluster around in two groups 255–228 Ma and 90 Ma. Bulk-rock εNd (t) ranges from −11 to −9.7, suggesting that continental crust materials were involved in their granitic genesis. In situ zircon Hf–O isotopic measurements for the granitic samples yield a mixing trend between the mantle- and supracrustal-derived melts. It is suggested that the granitic rocks were formed by re-melting of the continental crust. These new data are compared with the Paleozoic and Mesozoic granitic rocks of South China. We argue that northeastern Vietnam belongs to the South China block. Though still speculated, an ophiolitic suture between NE Vietnam and South China, so-called Babu ophiolite, appears unlikely. The Late Paleozoic to Mesozoic magmatism in the research area provides new insights for the magmatic evolution of the South China block.  相似文献   

15.
This paper reports geochronological, geochemical, zircon U–Pb and Hf–O isotopic data of the Late Triassic and Early Jurassic intrusive rocks in the northeastern North China Craton (NCC), with the aim of reconstructing the tectonic evolution and constraining the spatial–temporal extent of multiple tectonic regimes during the early Mesozoic. Zircon U–Pb ages indicate that the early Mesozoic magmatism in the northeastern NCC can be subdivided into two stages: Late Triassic (221–219 Ma) and Early Jurassic (180–177 Ma). Late Triassic magmatism produced mainly granodiorite and monzogranite, which occur as a NE–SW-trending belt parallel to the Sulu–Jingji Belt. Geochemically, they are classified as high-K calc-alkaline and metaluminous to weakly peraluminous granitoids, and are enriched in large-ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high-field-strength elements (HFSEs; e.g., Nb, Ta, Ti, and P) and heavy rare earth elements (HREEs), indicating an affinity to adakite. Combined with their εHf(t) values (−17.9 to −3.2) and two-stage model ages (2387–1459 Ma), we conclude that the Late Triassic granitoid magma in the northeastern NCC was derived from partial melting of the thickened lower crust of the NCC and was related to deep subduction and collision between the NCC and the Yangtze Craton (YC). The Early Jurassic magmatism is composed mainly of monzogranites, which are classified as metaluminous, high-K calc-alkaline, and I-type granite. Their εHf(t) values and two-stage model ages are −16.7 to −4.2 and 2282–1491 Ma, respectively. Compared with the Late Triassic granitoids, the Early Jurassic granitoids have relatively high HREE contents, similar to calc-alkaline igneous rocks in an active continental margin setting. These Early Jurassic granitoids, together with the coeval calc-alkaline volcanic rocks and gabbro–diorite–granodiorite association in the northeastern (NE) Asian continental margin, comprise a NNE–SSW-trending belt parallel to the NE Asian continental margin, indicative of the onset of Paleo-Pacific Plate subduction beneath Eurasia.  相似文献   

16.
This paper reports U–Pb–Hf isotopes of detrital zircons from Late Triassic–Jurassic sediments in the Ordos, Ningwu, and Jiyuan basins in the western-central North China Craton (NCC), with the aim of constraining the paleogeographic evolution of the NCC during the Late Triassic–Jurassic. The early Late Triassic samples have three groups of detrital zircons (238–363 Ma, 1.5–2.1 Ga, and 2.2–2.6 Ga), while the latest Late Triassic and Jurassic samples contain four groups of detrital zircons (154–397 Ma, 414–511 Ma, 1.6–2.0 Ga, and 2.2–2.6 Ga). The Precambrian zircons in the Late Triassic–Jurassic samples were sourced from the basement rocks and pre-Late Triassic sediments in the NCC. But the initial source for the 238–363 Ma zircons in the early Late Triassic samples is the Yinshan–Yanshan Orogenic Belt (YYOB), consistent with their negative zircon εHf(t) values (−24 to −2). For the latest Late Triassic and Jurassic samples, the initial source for the 414–511 Ma zircons with εHf(t) values of −18 to +9 is the Northern Qinling Orogen (NQO), and that for the 154–397 Ma zircons with εHf(t) values of −25 to +12 is the YYOB and the southeastern Central Asian Orogenic Belt (CAOB). In combination with previous data of late Paleozoic–Early Triassic sediments in the western-central NCC and Permian–Jurassic sediments in the eastern NCC, this study reveals two shifts in detrital source from the late Paleozoic to Jurassic. In the Late Permian–Early Triassic, the western-central NCC received detritus from the YYOB, southeastern CAOB and NQO. However, in the early Late Triassic, detritus from the CAOB and NQO were sparse in basins located in the western-central NCC, especially in the Yan’an area of the Ordos Basin. We interpret such a shift of detrital source as result of the uplift of the eastern NCC in the Late Triassic. In the latest Late Triassic–Jurassic, the southeastern CAOB and the NQO restarted to be source regions for basins in the western-central NCC, as well as for basins in the eastern NCC. The second shift in detrital source suggests elevation of the orogens surrounding the NCC and subsidence of the eastern NCC in the Jurassic, arguing against the presence of a paleo-plateau in the eastern NCC at that time. It would be subsidence rather than elevation of the eastern NCC in the Jurassic, due to roll-back of the subducted paleo-Pacific plate and consequent upwelling of asthenospheric mantle.  相似文献   

17.
New data are presented on the petrogeochemical composition, age, and formation conditions of the Late Neoproterozoic metarhyolite–basalt association of the Glushikha trough (Yenisei Ridge). The association is localized within the subaerial and shallow-water terrigenous-carbonate sediments of the Orlovka Group, which overlies Proterozoic rocks with unconformity. The felsic volcanics are essentially potassic and enriched in Rb, U, Th, and Fe. They show a weakly fractionated REE pattern with a prominent negative Eu anomaly. The basalts and picrite basalts have higher contents of Ti, Fe, P, HFSE, REE, U, Th, Ba, and Sr, and their spidergrams show no Nb or Ta depletion with respect to Th and LREE. These rocks have the petrochemical parameters of intraplate magmatic associations in continental rift zones. New geochronological data (SHRIMP II) on single zircon grains from the felsite porphyry of the metarhyolite–basalt association (717 ± 15 Ma) indicate Late Neoproterozoic volcanism in the Yenisei part of the Central block of the Trans-Angara region. According to Sm–Nd isotopic data, the rhyolites originate from Paleoproterozoic crust (TNd(DM) = 1757 Ma; TNd(DM-2st) = 1651 Ma; ∑ Nd(T) = ? 2.7). The Orlovka volcanosedimentary rocks are rift-related, as evidenced by the following facts: (1) localization of the volcanosedimentary rocks in a narrow fault-line trough; (2) bimodal rhyolite-basaltic composition of the volcanics; and (3) petrology and geochemistry of the picrite basalts and basalts, typical of intraplate environments. The studies show that Late Neoproterozoic rifting and intraplate plume magmatism took place not only in the Tatarka–Ishimba fault zone but also in the Yenisei fault zone of the Yenisei Ridge.  相似文献   

18.
Sedimentological and geochronological analyses were performed on Carboniferous strata from central Inner Mongolia (China) to determine the tectonic setting of the southeastern Central Asian Orogenic Belt (CAOB). Sedimentological analyses indicate that the widespread Late Carboniferous strata in central Inner Mongolia were dominated by shallow marine clastic-carbonate deposition with basal conglomerate above the Precambrian basement and Early Paleozoic orogenic belts. Based on lithological comparison and fossil similarity, five sedimentary stages were used to represent the Carboniferous deposition. The depositional stages include, from bottom to top, 1) basal molassic, 2) first carbonate platform, 3) terrigenous with coeval intraplate volcanism, 4) second carbonate platform, and 5) post-carbonate terrigenous. These five stages provide evidence for an extensive transgression in central Inner Mongolia during the Late Carboniferous. Detrital zircon geochronological studies from five samples yielded five main age populations: ~ 310 Ma, ~ 350 Ma, 400–450 Ma, 800–1200 Ma and some Meso-Proterozoic to Neoarchean grains. The detrital zircon geochronological studies indicate that the provenances for these Late Carboniferous strata were mainly local magmatic rocks (Early Paleozoic arc magmatic rocks and Carboniferous intrusions) with subordinate input of Precambrian basement. Combining our sedimentological and provenance analyses with previous fossil comparison and paleomagnetic reconstruction, an inland sea was perceived to be the main paleogeographic feature for central Inner Mongolia during the Late Carboniferous. The inland sea developed on a welded continent after the collision between North China Craton and its northern blocks.  相似文献   

19.
Relationship of large magmatic/plume events, warm periods, and epochs of accumulation of variably Сorg–rich sediments is considered by the example of Riphean low-carbonaceous shales of the western slope of the South Urals. It is shown that this relationship presumably exists for some of the indicated events (as for Early Precambrian superplume events), and does not exist for others. The formation of organic carbon-rich sediments in the Late Precambrian was likely controlled by other external and internal factors than in the Early Precambrian, relationships between which are so far poorly understood. It is also possible that the lesser scale of plume events in the Late Precambrian as compared to previous epochs could lead to the obliteration of their influence on the formation of Сorg–rich sedimentary rocks, as well as to the local accumulation of the latters.  相似文献   

20.
The Zhalantun terrane from the Xing'an massif, northeast China, was used to be considered as Proterozoic basements. However, amounts of detrital zircon ages from the meta-sedimentary rocks deny the existence of Precambrian basements recently. Notably, magmatic rocks were barely reported to limit the exact ages of the Zhalantun basements. In this study, we collected rhyolite, gabbro and quartz diorite for zircon in-situ U-Pb isotopic dating, which yield crystallization ages of ~505 Ma, ~447 Ma and ~125 Ma, respectively. Muscovite schist and siltstone define maximum depositional ages of ~499 Ma and ~489 Ma, respectively. Additionally, these dated supracrustal rocks and plutons also yield ancient detrital/xenocryst zircon ages of ~600–1000 Ma, ~1600–2220 Ma, ~2400 Ma, ~2600–2860 Ma. Based on the whole-rock major and trace element compositions, the ~505 Ma rhyolites display high SiO_2 and alkaline contents, low Fe_2O_3T, TiO_2 and Al_2O_3, and relatively high Mg O and Mg#, which exhibit calc-alkaline characteristics. These rhyolites yield fractionated REE patterns and negative Nb, Ta, Ti, Sr, P and Eu anomalies and positive Zr anomalies. The geochemistry, petrology and Lu-Hf isotopes imply that rhyolites were derived from the partial melting of continental basalt induced by upwelling of sub-arc mantle magmas, and then experienced fractional crystallization of plagioclase, which points to a continental arc regime. The ~447 Ma gabbros exhibit low Si O2 and alkaline contents, high Fe2 O3 T, Ti O2, Mg O and Mg#. They show minor depletions of La and Ce, flat MREE and HREE patterns, and negative Nb, Ta, Zr and Hf anomalies. Both sub-arc mantle and N-MORB-like mantle were involved in the formation of the gabbros, indicative of a probable back-arc basin tectonic setting. Given that, the previously believed Proterozoic supracrustal rocks and several plutons from the Zhalantun Precambrian basements were proved to be Paleozoic to Mesozoic rocks, among which these Paleozoic magmatic rocks were generally related to subduction regime. So far, none Proterozoic rocks have been identified from the Zhalantun Precambrian basement, though some ~600–3210 Ma ancient detrital/xenocryst zircons were reported. Combined with ancient zircon ages and newly reported ~2.5 Ga and ~1.8 Ga granites from the south of the Zhalantun, therefore, the Precambrian rocks probably once exposed in the Zhalantun while they were re-worked and consumed during later long tectonic evolutionary history, resulting in absence of Precambrian rocks in the Zhalantun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号