首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Markus Weiler   《Journal of Hydrology》2005,310(1-4):294-315
Simulating infiltration in soils containing macropores still provides unsatisfactory results, as existing models seem not to capture all relevant processes. Recent studies of macropore flow initiation in natural soils containing earthworm channels revealed a distinct flow rate variability in the macropores depending on the initiation process. When macropore flow was initiated at the soil surface, most of the macropores received very little water while a few macropores received a large proportion of the total inflow. In contrast, when macropore flow was initiated from a saturated or nearly saturated soil layer, macropore flow rate variation was much lower. The objective of this study was to develop, evaluate, and test a model, which combines macropore flow variability with several established approaches to model dual permeability soils. We then evaluate the INfiltration–INitiation–INteraction Model (IN3M) to explore the influence of macropore flow variability on infiltration behavior by performing a sensitivity analysis and applying IN3M to sprinkling and dye tracer experiments at three field sites with different macropore and soil matrix properties. The sensitivity analysis showed that the flow variability in macropores reduces interaction between the macropores and the surrounding soil matrix and thus increases bypass flow, especially for surface initiation of macropore flow and at higher rainfall intensities. The model application shows reasonable agreement between IN3M simulations and field data in terms of water balance, water content change, and dye patterns. The influence of macropore flow variability on the hydrological response of the soil was considerable and especially pronounced for soils where initiation occurs at the soil surface. In future, the model could be applied to explore other types of preferential flow and hence to get a generally better understanding of macropore flow.  相似文献   

2.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   

3.
Research shows that water repellency is a key hydraulic property that results in reduced infiltration rates in burned soils. However, more work is required in order to link the hydrological behaviour of water repellent soils to observed runoff responses at the plot and hillslope scale. This study used 5 M ethanol and water in disc infiltrometers to quantify the role of macropore flow and water repellency on spatial and temporal infiltration patterns in a burned soil at plot (<10 m2) scale in a wet eucalypt forest in south‐east Australia. In the first summer and winter after wildfire, an average of 70% and 60%, respectively, of the plot area was water repellent and did not contribute to infiltration. Macropores (r > 0·5 mm), comprising just 5·5% of the soil volume, contributed to 70% and 95%, respectively, of the field‐saturated and ponded hydraulic conductivity (Kp). Because flow occurred almost entirely via macropores in non‐repellent areas, this meant that less than 2·5% of the soil surface effectively contributed to infiltration. The hydraulic conductivity increased by a factor of up to 2·5 as the hydraulic head increased from 0 to 5 mm. Due to the synergistic effect of macropore flow and water repellency, the coefficient of variation (CV) in Kp was three times higher in the water‐repellent soil (CV = 175%) than under the simulated non‐repellent conditions (CV = 66%). The high spatial variability in Kp would act to reduce the effective infiltration rate during runoff generation at plot scale. Ponding, which tend to increase with increasing scale, activates flow through macropores and would raise the effective infiltration rates at larger scales. Field experiments designed to provide representative measurements of infiltration after fire in these systems must therefore consider both the inherent variability in hydraulic conductivity and the variability in infiltration caused by interactions between surface runoff and hydraulic conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Topographic controls upon soil macropore flow   总被引:1,自引:0,他引:1  
Macropores are important components of soil hydrology. The spatial distribution of macropore flow as a proportion of saturated hydraulic conductivity was tested on six humid–temperate slopes using transects of tension infiltrometer measurements. Automated water table and overland flow monitoring allowed the timing of, and differentiation between, saturation‐excess overland flow and infiltration‐excess overland flow occurrence on the slopes to be determined and related to tension‐infiltrometer measurements. Two slopes were covered with blanket peat, two with stagnohumic gleys and two with brown earth soils. None of the slopes had been disturbed by agricultural activity within the last 20 years. This controlled the potential for tillage impacts on macropores. The proportion of near‐surface macropore flow to saturated hydraulic conductivity was found to vary according to slope position. The spatial patterns were not the same for all hillslopes. On the four non‐peat slopes there was a relationship between locations of overland flow occurrence and reduced macroporosity. This relationship did not exist for the peat slopes investigated because they experienced overland flow across their whole slope surfaces. Nevertheless, they still had a distinctive spatial pattern of macropore flow according to slope position. For the other soils tested, parts of slopes that were susceptible to saturation‐excess overland flow (e.g. hilltoes or flat hilltops) tended to have least macropore flow. To a lesser extent, for the parts of slopes susceptible to infiltration‐excess overland flow, the proportion of macropore flow as a component of infiltration was also smaller compared with the rest of the slope. The roles of macropore creation and macropore infilling by sheet wash are discussed, and it is noted that the combination of these may result in distinctive topographically controlled spatial patterns of macropore flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Many peatlands have been subjected to wildfire or prescribed burning, but it is not known how these fires influence near‐surface hydrological processes. Macropores are important flowpaths in the upper layers of blanket peat and were investigated through the use of tension disc infiltrometers, which also provide data on saturated hydraulic conductivity. Measurements were performed on unburnt peat (U), where prescribed burning had taken place 2 years (B2), 4 years (B4) and >15 (B15+) years prior to sampling, and where a wildfire (W) had taken place 4 months prior to sampling. Where there had been recent burning (B2, B4 and W), saturated hydraulic conductivity was approximately three times lower than where there was no burning (U) or where burning was last conducted >15 years ago (B15+). Similarly, the contribution of macropore flow to overall infiltration was significantly lower (between 12% and 25% less) in the recently burnt treatments compared to B15+ and U. There were no significant differences in saturated hydraulic conductivity or macropore flow between peat that had been subject to recent wildfire (W) and those that had undergone recent prescribed burning (B2 and B4). The results suggest that fire influences the near‐surface hydrological functioning of peatlands but that recovery in terms of saturated hydraulic conductivity and macropore flow may be possible within two decades if there are no further fires. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Little is known about the processes of infiltration and water movement in the upper layers of blanket peat. A tension infiltrometer was used to measure hydraulic conductivity in a blanket peat in the North Pennines, England. Measurements were taken from the surface down to 20 cm in depth for peat under four different vegetation covers. It was found that macropore flow is a significant pathway for water in the upper layers of this soil type. It was also found that peat depth and surface vegetation cover were associated with macroporosity and saturated hydraulic conductivity. The proportion of macropore flow was found to be greater at 5 cm depth than at 0, 10 and 20 cm depth. Peat beneath a Sphagnum cover tends to be more permeable and a greater proportion of macropore flow can occur beneath this vegetation type. Functional macroporosity and matrix flow in the near‐surface layers of bare peat appear to have been affected by weathering processes. Comparision of results with rainfall records demonstrates that infiltration‐excess overland flow is unlikely to be a common runoff‐generating mechanism on blanket peat; rather, a saturation‐excess mechanism combined with percolation‐excess above much less permeable layers dominates the runoff response. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
The hydraulic properties of the topsoil control the partition of rainfall into infiltration and runoff at the soil surface. They must be characterized for distributed hydrological modelling. This study presents the results of a field campaign documenting topsoil hydraulic properties in a small French suburban catchment (7 km2) located near Lyon, France. Two types of infiltration tests were performed: single ring infiltration tests under positive head and tension‐disk infiltration using a mini‐disk. Both categories were processed using the BEST—Beerkan Estimation of Soil Transfer parameters—method to derive parameters describing the retention and hydraulic conductivity curves. Dry bulk density and particle size data were also sampled. Almost all the topsoils were found to belong to the sandy loam soil class. No significant differences in hydraulic properties were found in terms of pedologic units, but the results showed a high impact of land use on these properties. The lowest dry bulk density values were obtained in forested soils with the highest organic matter content. Permanent pasture soils showed intermediate values, whereas the highest values were encountered in cultivated lands. For saturated hydraulic conductivity, the highest values were found in broad‐leaved forests and small woods. The complementary use of tension‐disk and positive head infiltration tests highlighted a sharp increase of hydraulic conductivity between near saturation and saturated conditions, attributed to macroporosity effect. The ratio of median saturated hydraulic conductivity to median hydraulic conductivity at a pressure of − 20 mm of water was about 50. The study suggests that soil texture, such as used in most pedo‐transfer functions, might not be sufficient to properly map the variability of soil hydraulic properties. Land use information should be considered in the parameterizations of topsoil within hydrological models to better represent in situ conditions, as illustrated in the paper. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
CHANGYUAN TANG 《水文研究》1996,10(11):1427-1434
Interception and recharge processes beneath a Pinus elliotii forest were considered in an integrated study. In the study area, annual rainfall was divided into throughfall (74.45%), stemflow (9.37%) and interception (16.28%). Throughfall and stemflow infiltrate into the soil in different ways. The results show that trees can affect the recharge characteristics by providing throughfall as a non-point source and stemflow as a point source, and also through their influence on infiltration processes by making the hydraulic conductivity of soil heterogeneous. In the root zone there was a divergent zero flux plane recharged by macropore flow during heavy rain and a convergent zero flux plane caused by transpiration during dry periods.  相似文献   

9.
A new hydrological and soil erosion model has been developed and tested: LISEM, the Limburg soil erosion model. The model uses physically based equations to describe interception, infiltration and soil water transport, storage in surface depressions, splash and flow detachment, transport capacity and overland and channel flow. From the validation results it is clear that, although the model has several advantages over other models, the results of LISEM 1.0 are far from perfect. Based on the sensitivity analysis and field observations, the main reasons for these differences seems to be the spatial and temporal variability of the soil hydraulic conductivity and the initial pressure head at the basin scale. Another reason for the differences between measured and simulated results is our lack or understanding of the theory of hydrological and soil erosion processes.  相似文献   

10.
Macropores are a relatively small proportion of the soil volume, but they play an important role in the movement of water and chemicals owing to occasional rapid fluxes through them. The occurrence of macropore flow does not depend on the water content (or potential) of the bluk matrix unless the soil is close to saturation, but depends instead principally upon surface boundary conditions. Accordingly, three control situations of infiltration are recognized: macropore control, application control, and matrix control. These three situations indicate that the two-domain system may be a proper approach for the simulation of macropore soil. In this conceptualization, macropores are defined as channeling pores of different radii in which the flux density (with unit hydraulic gradient) occurring in the minimum sizes of such pores is greater than or equal to the saturated matrix hydraulic conductivity. Recognizing the two structural domains of the macropore and matrix, and possible water flow situations, three flow regions are suggested: matrix, macropore, and transaction. The matrix and the macropore are the two domains, and the transaction represents the exchange of water between the matrix and the macropore. The classic approach of the Richards equation is applicable to describe the flow in the matrix domain. The Hagen-Poiseuille and the Chezy-Manning equations for tube flow can be applied to represent the relationship between the hydraulic conductivity of the macroporosity and the total macroporosity, where the total macroporosity is defined as the ratio of the summed macropore cross-sectional area and the total soil cross-sectional area. An equation describing water flow in the macropore domain is then obtained.  相似文献   

11.
Preferential flow is known to influence hillslope hydrology in many areas around the world. Most research on preferential flow has been performed in temperate regions. Preferential infiltration has also been found in semi‐arid regions, but its impact on the hydrology of these regions is poorly known. The aim of this study is to describe and quantify the influence of preferential flow on the hillslope hydrology from small scale (infiltration) to large scale (subsurface stormflow) in a semi‐arid Dehesa landscape. Precipitation, soil moisture content, piezometric water level and discharge data were used to analyse the hydrological functioning of a catchment in Spain. Variability of soil moisture content during the transition from dry to wet season (September to November) within horizontal soil layers leads to the conclusion that there is preferential infiltration into the soils. When the rainfall intensity is high, a water level rapidly builds up in the piezometer pipes in the area, sometimes even reaching soil surface. This water level also drops back to bedrock within a few hours (under dry catchment conditions) to days (under wet catchment conditions). As the soil matrix is not necessarily wet while this water layer is built up, it is thought to be a transient water table in large connected pores which drain partly to the matrix, partly fill up bedrock irregularities and partly drain through subsurface flow to the channels. When the soil matrix becomes wetter the loss of water from macropores to the matrix and bedrock decreases and subsurface stormflow increases. It may be concluded that the hillslope hydrological system consists of a fine matrix domain and a macropore domain, which have their own flow characteristics but which also interact, depending on the soil matrix and macropore moisture contents. The macropore flow can result in subsurface flow, ranging from 13% contribution to total discharge for a large event of high intensity rainfall or high discharge to 80% of total discharge for a small event with low intensity rainfall or low discharge. During large events the fraction of subsurface stormflow in the discharge is suppressed by the large amount of surface runoff. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Effect of macropores on soil freezing and thawing with infiltration   总被引:3,自引:0,他引:3       下载免费PDF全文
An understanding of heat transport and water flow in unsaturated soils experiencing freezing and thawing is important when considering hydrological and thermal processes in cold regions. Macropores, such as cracks, roots, and animal holes, provide efficient conduits for enhanced infiltration, resulting in a unique distribution of water content. However, the effects of macropores on soil freezing and thawing with infiltration have not been well studied. A one‐directional soil‐column freezing and thawing experiment was conducted using unsaturated sandy and silt loams with different sizes and numbers of macropores. During freezing, macropores were found to retard the formation of the frozen layer, depending on their size and number. During thawing, water flowed through macropores in the frozen layer and reached the underlying unfrozen soil. However, infiltrated water sometimes refroze in a macropore. The ice started to form at near inner wall of the macropore, grew to the centre, and blocked flow through the macropore. The blockage ice in the macropore could not melt until the frozen layer disappeared. Improving a soil freezing model to consider these macropore effects is required. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Biochar has the potential to be a soil amendment in green roofs owing to its water retention, nutrient supply, and carbon sequestration application. The combined effects of biochar and vegetated soil on hydraulic performance (e.g., saturated hydraulic conductivity, retention and detention, and runoff delay) are the crucial factor for the application of the novel biochar in green roofs. Recent studies investigated soil water potential (i.e., suction) either on vegetated soil or on biochar-amended soil but rarely focused on their integrated application. With the purpose of investigating the hydraulic performance of green roofs in the application of biochar, the combined effect of biochar and vegetated soil on hydrological processes was explored. Artificial rainfall experiments were conducted on the four types of experimental soil columns, including natural soil, biochar-amended soil, vegetated natural soil, and vegetated biochar-amended soil. The surface ponding, bottom drainage and the volumetric water content were measured during the rainfall test. Simulation method by using HYDRUS-1D was adopted for estimating hydraulic parameters and developing modelling analysis. The results indicated that the saturated hydraulic conductivity of vegetated soil columns were higher than bare soil columns. The addition of biochar decreased the saturated hydraulic conductivity, and the magnitude of decrease was much significant in the case of vegetated soil. The influence of vegetation on permeability is more prominent than biochar. The vegetated biochar-amended soil has the highest retention and detention capacity, and shows a preferable runoff delay effect under heavy rain among the four soil columns. The results from the present study help to understand the hydrological processes in the green roof in the application of biochar, and imply that biochar can be an alternative soil amendment to improve the hydraulic performance.  相似文献   

14.
Leaching through subsurface drainage systems has been widely adopted to ameliorate saline soils. The application of this method to remove salt from reclaimed lands in the coastal zone, however, may be impacted by macro-pores such as crab burrows, which are commonly distributed in the soils. We developed a three-dimensional model to investigate water flow in subsurface drainage systems affected by macro-pores distributed deterministically and randomly through Monte Carlo simulations. The results showed that, for subsurface drainage systems under the condition of continuous surface ponding, macro-pores increased the hydraulic head in the deep soil, which in turn reduced the hydraulic gradient between the surface and deep soil. As a consequence, water infiltration across the soil surface was inhibited. Since salt transport in the soil is dominated by advection, the flow simulation results indicated that macro-pores decreased the efficiency of salt leaching by one order of magnitude, in terms of both the elapsed time and the amount of water required to remove salt over the designed soil leaching depth (0.6 m). The reduction of the leaching efficiency was even greater in drainage systems with a layered soil stratigraphy. Sensitivity analyses demonstrated that with an increased penetration depth or density of macro-pores, the leaching efficiency decreased further. The revealed impact of macro-pores on water flow represents a significant shortcoming of the salt leaching technique when applied to coastal saline soils. Future designs of soil amelioration schemes in the coastal zone should consider and aim to minimize the bypassing effect caused by macro-pores.  相似文献   

15.
Hillslope hydrological modelling is considered to be of great importance for the understanding and quantification of hydrological processes in hilly or mountainous landscapes. In recent years a few comprehensive hydrological models have been developed at the hillslope scale which have resulted in an advanced representation of hillslope hydrological processes (including their interactions), and in some operational applications, such as in runoff and erosion studies at the field scale or lateral flow simulation in environmental and geotechnical engineering. An overview of the objectives of hillslope hydrological modelling is given, followed by a brief introduction of an exemplary comprehensive hillslope model, which stimulates a series of hydrological processes such as interception, evapotranspiration, infiltration into the soil matrix and into macropores, lateral and vertical subsurface soil water flow both in the matrix and preferential flow paths, surface runoff and channel discharge. Several examples of this model are presented and discussed in order to determine the model's capabilities and limitations. Finally, conclusions about the limitations of detailed hillslope modelling are drawn and an outlook on the future prospects of hydrological models on the hillslope scale is given.The model presented performed reasonable calculations of Hortonian surface runoff and subsequent erosion processes, given detailed information of initial soil water content and soil hydraulic conditions. The vertical and lateral soil moisture dynamics were also represented quite well. However, the given examples of model applications show that quite detailed climatic and soil data are required to obtain satisfactory results. The limitations of detailed hillslope hydrological modelling arise from different points: difficulties in the representations of certain processes (e.g. surface crusting, unsaturated–saturated soil moisture flow, macropore flow), problems of small‐scale variability, a general scarcity of detailed soil data, incomplete process parametrization and problems with the interdependent linkage of several hillslopes and channel–hillslope interactions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Rainfall experiments have been conducted in the laboratory in order to assess the hydrological response of top soils very susceptible to surface sealing and containing rock fragments in different positions with respect to the soil surface. For a given cover level, rock fragment position in the top soil has an ambivalent effect on water intake and runoff generation. Compared to a bare soil surface rock fragments increase water intake rates as well as time of runoff concentration and decrease runoff volume if they rest on the soil surface. For the same cover level, rock fragments reduce infiltration rate and enhance runoff generation if they are well embedded in the top layer. The effects of rock fragment position on infiltration rate and runoff generation are proportional to cover percentage. Micromorphological analysis and measurements of the saturated hydraulic conductivity of bare top soils and of the top layer underneath rock fragments resting on the soil surface reveal significant differences supporting the mechanism proposed by Poesen (1986): i.e. runoff generated as rock flow or as Horton overland flow can (partly) infiltrate into the unsealed soil surface under the rock fragments, provided that they are not completely embedded in the top layer. Hence, rock fragment position, beside other rock fragment properties, should be taken into account when assessing the hydrological response of soils susceptible to surface sealing and containing rock fragments in their surface layers. A simple model, based on the proportions of bare soil surface, soil surface occupied by embedded rock fragments, and soil surface covered with rock fragments resting on the soil surface, describes the runoff coefficient data relatively well.  相似文献   

17.
Testing the relative performances of the single ring pressure infiltrometer (PI) and simplified falling head (SFH) techniques to determine the field saturated soil hydraulic conductivity, Kfs, at the near point scale may help to better establish the usability of these techniques for interpreting and simulating hydrological processes. A sampling of 10 Sicilian sites showed that the measured Kfs was generally higher with the SFH technique than the PI one, with statistically significant differences by a factor varying from 3 to 192, depending on the site. A short experiment with the SFH technique yielded higher Kfs values because a longer experiment with the PI probably promoted short‐term swelling phenomena reducing macroporosity. Moreover, the PI device likely altered the infiltration surface at the beginning of the run, particularly in the less stable soils, where soil particle arrangement may be expected to vary upon wetting. This interpretation was supported by a soil structure stability index, SSI, and also by the hydraulic conductivity data obtained with the tension infiltrometer, i.e. with a practically negligible disturbance of the sampled soil surface. In particular, a statistically significant, increasing relationship with SSI and an unsaturated conductivity greater than the saturated one were only detected for the Kfs data obtained with the PI. The SFH and PI techniques should be expected to yield more similar results in relatively rigid porous media (low percentages of fine particles and structurally stable soils) than in soils that modify appreciably their particle arrangement upon wetting. The simultaneous use of the two techniques may allow to improve Kfs determination in soils that change their hydrodynamic behaviour during a runoff producing rainfall event. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Macropores are important preferential pathways for the migration of water and contaminants through the vadose zone. The objective of this study was to examine small‐scale preferential flow processes during infiltration in macroporous, low permeability soils. A series of tension infiltration tests were conducted using Brilliant Blue dye tracer at two field sites in southwestern Ontario, Canada. The maximum applied pressure head was varied for each test and the resulting dye stain patterns and macropore networks were characterized by excavation, mapping, photography, and image analysis. Worm burrows were the dominant macropore type, with average macropore densities exceeding 400 m?2 and peak densities of more than 750 m?2 at 30 cm depth at both sites. Flow in macropores became significant at infiltration pressures > ? 3 cm, with corresponding increases in infiltration rate, soil water content variability (spatially and temporally), and depth of dye staining. The results demonstrated clear evidence for partially saturated macropore flow under porewater tension conditions and the associated importance of macropore–matrix interaction in controlling this flow. Field observations of transient infiltration showed that film and rivulet flow along macropores yielded vertical flow velocities exceeding 40 m d?1. Simple calculations showed that film flow along the walls and corners of irregularly shaped macropores could explain the observed results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号