首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
The effects of soil‐structure interaction on the seismic response of multi‐span bridges are investigated by means of a modelling strategy based on the domain decomposition technique. First, the analysis methodology is presented: kinematic interaction analysis is performed in the frequency domain by means of a procedure accounting for radiation damping, soil–pile and pile‐to‐pile interaction; the seismic response of the superstructure is evaluated in the time domain by means of user‐friendly finite element programs introducing suitable lumped parameter models take into account the frequency‐dependent impedances of the soil–foundation system. Second, a real multi‐span railway bridge longitudinally restrained at one abutment is analyzed. The input motion is represented by two sets of real accelerograms: one consistent with the Italian seismic code and the other constituted by five records characterized by different frequency contents. The seismic response of the compliant‐base model is compared with that obtained from a fixed‐base model. Pile stress resultants due to kinematic and inertial interactions are also evaluated. The application demonstrates the importance of performing a comprehensive analysis of the soil–foundation–structure system in the design process, in order to capture the effects of soil‐structure interaction in each structural element that may be beneficial or detrimental. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A numerical solution for evaluating the effects of foundation embedment on the effective period and damping and the response of soil–structure systems is presented. A simple system similar to that used in practice to account for inertial interaction effects is investigated, with the inclusion of kinematic interaction effects for the important special case of vertically incident shear waves. The effective period and damping are obtained by establishing an equivalence between the interacting system excited by the foundation input motion and a replacement oscillator excited by the free-field ground motion. In this way, the use of standard free-field response spectra applicable to the effective period and damping of the system is permitted. Also, an approximate solution for total soil–structure interaction is presented, which indicates that the system period is insensitive to kinematic interaction and the system damping may be expressed as that for inertial interaction but modified by a factor due to kinematic interaction. Results involving both kinematic and inertial effects are compared with those obtained for no soil–structure interaction and inertial interaction only. The more important parameters involved are identified and their influences are examined over practical ranges of interest. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
An evaluation of the wave passage effects on the relevant dynamic properties of structures with flexible foundation is presented. A simple soil–structure system similar to that used in practice to take into account the inertial interaction effects by the soil flexibility is studied. The kinematic interaction effects due to non‐vertically incident P, SV and Rayleigh waves are accounted for in this model. The effective period and damping of the system are obtained by establishing an equivalence between the interacting system excited by the foundation input motion and a replacement oscillator excited by the free‐field ground motion. In this way, the maximum structural response could be estimated from standard free‐field response spectra using the period and damping of the building modified by both the soil flexibility and the travelling wave effects. Also, an approximate solution for the travelling wave problem is examined over wide ranges of the main parameters involved. Numerical results are computed for a number of soil–structure systems to identify under which conditions the effects of wave passage are important. It comes out that these effects are generally negligible for the system period, but they may significantly change the system damping since the energy dissipation within the soil depends on both the wave radiation and the diffraction and scattering of the incident waves by the foundation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
In this research, a parametric study is carried out on the effect of soil–structure interaction on the ductility and strength demand of buildings with embedded foundation. Both kinematic interaction (KI) and inertial interaction effects are considered. The sub‐structure method is used in which the structure is modeled by a simplified single degree of freedom system with idealized bilinear behavior. Besides, the soil sub‐structure is considered as a homogeneous half‐space and is modeled by a discrete model based on the concept of cone models. The foundation is modeled as a rigid cylinder embedded in the soil with different embedment ratios. The soil–structure system is then analyzed subjected to a suit of 24 selected accelerograms recorded on alluvium deposits. An extensive parametric study is performed for a wide range of the introduced non‐dimensional key parameters, which control the problem. It is concluded that foundation embedment may increase the structural demands for slender buildings especially for the case of relatively soft soils. However, the increase in ductility demands may not be significant for shallow foundations with embedment depth to radius of foundation ratios up to one. Comparing the results with and without inclusion of KI reveals that the rocking input motion due to KI plays the main role in this phenomenon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A Study of Piles during Earthquakes: Issues of Design and Analysis   总被引:1,自引:0,他引:1  
The seismic response of pile foundations is a very complex process involving inertial interaction between structure and pile foundation, kinematic interaction between piles and soils, seismically induced pore-water pressures (PWP) and the non-linear response of soils to strong earthquake motions. In contrast, very simple pseudo-static methods are used in engineering practice to determine response parameters for design. These methods neglect several of the factors cited above that can strongly affect pile response. Also soil–pile interaction is modelled using either linear or non-linear springs in a Winkler computational model for pile response. The reliability of this constitutive model has been questioned. In the case of pile groups, the Winkler model for analysis of a single pile is adjusted in various ways by empirical factors to yield a computational model for group response. Can the results of such a simplified analysis be adequate for design in all situations?The lecture will present a critical evaluation of general engineering practice for estimating the response of pile foundations in liquefiable and non-liquefiable soils during earthquakes. The evaluation is part of a major research study on the seismic design of pile foundations sponsored by a Japanese construction company with interests in performance based design and the seismic response of piles in reclaimed land. The evaluation of practice is based on results from field tests, centrifuge tests on model piles and comprehensive non-linear dynamic analyses of pile foundations consisting of both single piles and pile groups. Studies of particular aspects of pile–soil interaction were made. Piles in layered liquefiable soils were analysed in detail as case histories show that these conditions increase the seismic demand on pile foundations. These studies demonstrate the importance of kinematic interaction, usually neglected in simple pseudo-static methods. Recent developments in designing piles to resist lateral spreading of the ground after liquefaction are presented. A comprehensive study of the evaluation of pile cap stiffness coefficients was undertaken and a reliable method of selecting the single value stiffnesses demanded by mainstream commercial structural software was developed. Some other important findings from the study are: the relative effects of inertial and kinematic interactions between foundation and soil on acceleration and displacement spectra of the super-structure; a method for estimating whether inertial interaction is likely to be important or not in a given situation and so when a structure may be treated as a fixed based structure for estimating inertial loads; the occurrence of large kinematic moments when a liquefied layer or naturally occurring soft layer is sandwiched between two hard layers; and the role of rotational stiffness in controlling pile head displacements, especially in liquefiable soils. The lecture concludes with some recommendations for practice that recognize that design, especially preliminary design, will always be based on simplified procedures.  相似文献   

7.
This paper deals with the effect of the foundation mass on the filtering action exerted by embedded foundations. The system under examination comprises a rigid rectangular foundation embedded in a homogeneous isotropic viscoelastic half‐space under harmonic shear waves propagating vertically. The problem is addressed both theoretically and numerically by means of a hybrid approach, where the foundation mass is explicitly included in the kinematic interaction between the foundation and the surrounding soil, thus referring to a “quasi‐kinematic” interaction problem. Based on the results of an extensive parametric study, it is shown that the filtering problem depends essentially on three dimensionless parameters, i.e.: the dimensionless frequency of the input motion, the foundation width‐to‐embedment depth ratio, and the foundation‐to‐soil mass density ratio. In complements to the translational and rotational kinematic interaction factors that are commonly adopted to quantify the filtering effect of rigid massless foundations on the free‐field motion, an additional kinematic interaction factor is introduced, referring to the horizontal motion at the top of a rigid massive foundation. New analytical expressions for the above kinematic interaction factors are proposed and compared with foundation‐to‐free‐field transfer functions computed from available earthquake recordings on two instrumented buildings in LA (California) and Thessaloniki (Greece). Results indicate that the foundation mass can have a strong beneficial effect on the filtering action with increasing foundation‐to‐soil mass density and foundation width‐to‐embedment depth ratios.  相似文献   

8.
This paper is concerned with the dynamic response of a system of flexible strip foundations resting in smooth contact with a homogeneous isotropic viscoelastic half space. An arbitrary number of foundations with different flexibilities and geometries subjected to time-harmonic distributed loadings are considered in the formulation. The response of each strip foundation is governed by the classical plate theory and its transverse deflection is represented by an admissible function containing a set of generalized co-ordinates. A coupled variational-Green's function scheme is employed to establish the equations of motion of the strip foundation system. The numerical stability and convergence of the solution scheme are established. The influence of the foundation flexibility, distance between adjacent foundations and frequency of motion on the response of the foundation system is investigated in the numerical study.  相似文献   

9.
In a seismic design, the dynamic loads are generally dependent on the inertial interaction caused by earthquake. But for the foundations embedded in soil, the dynamic loads are influenced by both the inertial and kinematic interactions among superstructure, foundation and soil. Especially, when a foundation is embedded in soft surface ground, the effects due to the kinematic interaction increase and should be considered in seismic design. For this reason, a method called seismic deformation method (SDM), which is suitable for an intensive earthquake motion (level 2 earthquake motion), has been stipulated recently in a new design code called Seismic Design Code for railway structures (the Railway Code, drawn up by Railway Technical Research Institute, Japan, 1999) [Railway Technical Research Institute. Seismic Design Code for railway structures. Tokyo: Maruzen; 1999]. In order to grasp the suitability of the SDM to actual structures, pile foundations, which experienced the Hyogoken-Nanbu earthquake, were taken as the objects for investigations. Comparison studies between the SDM analysis and reconnaissance were conducted. As a result, the adequacy of the SDM to actual foundations was confirmed to prove good agreement between the two results from the viewpoint of engineering practice.In addition, determination of indices for seismic-performance evaluation and speculation of damage mechanism of the foundations are also discussed in this paper.  相似文献   

10.
A methodology using modal analysis is presented to evaluate dynamic displacements of a circular flexible foundation on soil media subjected to vertical vibration. The interaction effects between the foundation and the underlying soil are represented using modal soil impedance functions determined by an efficient procedure developed. The displacements of the foundation can then be easily solved by modal superposition. Comparing with existing solutions, the presented method is found to provide accurate results with less computational effort using only a few vibration modes. In addition, parametric studies for modal responses of the flexible foundation indicate that the response of the foundation are significantly influenced by relative stiffness between the foundation and the soil medium, load distributions, vibration frequency range, and the foundation mass. Besides, justification for flexible foundations to be considered as rigid are investigated.  相似文献   

11.
A simplified method with a dynamic Winkler model to study the seismic response of composite caisson–piles foundations (CCPF1) is developed. Firstly, with the dynamic Winkler model, the kinematic response of the CCPF subjected to vertically propagating seismic S-wave is analyzed by coupling the responses of caisson part and pile part. Secondly, a simplified model for the foundation–structure system is created with the structure simplified as a lumped mass connected to the foundation with an elastic column, and through the Fast Fourier Transformation (FFT) this model is enabled to solve transient seismic problems. Thirdly, the proposed method for the seismic response of CCPF-structure systems is verified by comparison against 3D dynamic finite element simulation, in which the Domain Reduction Method (DRM2) is utilized. Lastly, the mechanism and significance of adding piles in improving the earthquake resistance of the foundation and structure is analyzed through an example with different soil conditions. Discovered in this study is that adding piles under the caisson is an efficient way to increase seismic resistant capability of the soil–foundation–structure system, and the main mechanism of that is the elimination of the pseudo-resonance.  相似文献   

12.
The problem of the dynamic response of rigid embedded foundations subjected to the action of external forces and seismic excitation is analysed. It is shown that to calculate the response of rigid embedded foundations, or the response of flat rigid foundations subjected to non-vertically incident seismic waves, it is necessary to obtain not only the impedance matrix for the foundation, but also the forces induced by the incident seismic waves. Under these general conditions, rocking and torsional motion of the foundation is generated in addition to translation. The case of a two-dimensional rigid foundation of semi-elliptical cross-section is used as an example to illustrate the effects of the embedment depth and angle of incidence of the seismic waves on the response of the foundation.  相似文献   

13.
The paper presents a numerical model for the dynamic analysis of pile groups with inclined piles in horizontally layered soil deposits. Piles are modelled with Euler–Bernoulli beams, while the soil is supposed to be constituted by independent infinite viscoelastic horizontal layers. The pile–soil–pile interaction as well as the hysteretic and geometric damping is taken into account by means of two‐dimensional elastodynamic Green's functions. Piles cap is considered by introducing a rigid constraint; the condensation of the problem permits a consistent derivation of both the dynamic impedance matrix of the soil–foundation system and the foundation input motion. These quantities are those used to perform inertial soil–structure interaction analyses in the framework of the substructure approach. Furthermore, the model allows evaluating the kinematic stress resultants in piles resulting from waves propagating in the soil deposit, taking into account the pile–soil–pile interactions. The model validation is carried out by performing accuracy analyses and comparing results in terms of dynamic impedance functions, kinematic response parameters and pile stress resultants, with those furnished by 3D refined finite element models. To this purpose, classical elastodynamic solutions are adopted to define the soil–pile interaction problem. The model results in low computational demands without significant loss of precision, compared with more rigorous approaches or refined finite element models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a statistical study of the kinematic soil-foundation-structure interaction effects on the maximum inelastic deformation demands of structures. Discussed here is the inelastic displacement ratio defined as the maximum inelastic displacement demands of structures subjected to foundation input motions divide by those of structures subjected to free-field ground motions. The displacement ratio is computed for a wide period range of elasto-plastic single-degree-of-freedom (SDOF) systems with various levels of lateral strength ratios and with different sizes of foundations. Seventy-two earthquake ground motions recorded on firm soil with average shear wave velocities between 180 m/s and 360 m/s are adopted. The effects of period of vibration, level of lateral yielding strength and dimension of foundations are investigated. The results show that kinematic interaction will reduce the maximum inelastic displacement demands of structures, especially for systems with short periods of vibration, and the larger the foundation size the smaller the maximum inelastic displacement becomes. In addition, the inelastic displacement ratio is nearly not affected by the strength ratio of structures for systems with periods of vibration greater than about 0.3 s and with strength ratios smaller than about 3.0. Expressions obtained from nonlinear regression analyses are also proposed for estimating the effects of kinematic soil-foundation-structure interaction from the maximum deformation demand of the inelastic system subjected to free-field ground motions.  相似文献   

15.
A stochastic approach has been formulated for the linear analysis of suspension bridges subjected to earthquake excitations. The transfer functions of various responses have been formulated while including the effects of dynamic Soil–Structure Interaction (SSI) via the use of the fixed-base modes of the structure. The excitation has been characterized by the ‘equivalent stationary’ processes corresponding to the free-field motions at each support and by an assumed coherency function between these motions. The proposed formulation considers the non-stationarity in the structural response due to sudden application of excitation by considering (i) the time-dependent frequency response functions, and (ii) the order statistics formulation for the peak factors in evolutionary response processes. The formulation has been illustrated by analysing the seismic response of the Golden Gate Bridge at San Francisco for two example excitations conforming to USNRC-specified design spectra. The significance of various governing parameters on the dynamic soil–structure interaction effects on the seismic response of suspension bridges has also been studied. It has been found that the contribution of the vertical component of ground motion to the bridge response increases with increasing soil compliance. Also, the extent to which the spatial variation of ground motion affects the bridge response depends on how significant the SSI effects are. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

16.
It is commonly understood that earthquake ground excitations at multiple supports of large dimensional structures are not the same. These ground motion spatial variations may significantly influence the structural responses. Similarly, the interaction between the foundation and the surrounding soil during earthquake shaking also affects the dynamic response of the structure. Most previous studies on ground motion spatial variation effects on structural responses neglected soil–structure interaction (SSI) effect. This paper studies the combined effects of ground motion spatial variation, local site amplification and SSI on bridge responses, and estimates the required separation distances that modular expansion joints must provide to avoid seismic pounding. It is an extension of a previous study (Earthquake Engng Struct. Dyn. 2010; 39 (3):303–323), in which combined ground motion spatial variation and local site amplification effects on bridge responses were investigated. The present paper focuses on the simultaneous effect of SSI and ground motion spatial variation on structural responses. The soil surrounding the pile foundation is modelled by frequency‐dependent springs and dashpots in the horizontal and rotational directions. The peak structural responses are estimated by using the standard random vibration method. The minimum total gap between two adjacent bridge decks or between bridge deck and adjacent abutment to prevent seismic pounding is estimated. Numerical results show that SSI significantly affects the structural responses, and cannot be neglected. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
While the study of kinematic interaction (i.e. the dynamic response of massless foundations to seismic loads) calls, in general, for advanced analytical and numerical techniques, an excellent approximation was proposed recently by Iguchi.1,2 This approximation was used by the authors to analyse embedded foundations subjected to spatially random SH-wave fields, i.e. motions that exhibit some degree of incoherence. The wave fields considered ranged from perfectly coherent motions (resulting from seismic waves arriving from a single direction) to chaotic motions, resulting from waves arriving simultaneously from all directions. Additional parameters considered were the shape of the foundation (cylindrical or rectangular) and the degree of embedment. It was found that kinematic interaction usually reduces the severity of the motions transmitted to the structure, and that incoherent motions do not exhibit the frequency selectivity (i.e. narrow valleys in the foundation response spectra) that coherent motions do.  相似文献   

18.
In the analysis of structural foundations for seismic loads, it is customary to distinguish two types of soil-structure interaction effect: kinematic interaction (or wave passage), and inertial interaction. The former refers to the phenomenon of wave scattering, which occurs because the foundation is much stiffer than the surrounding soil and cannot accommodate to its distortions. Inertial interaction, on the other hand, is caused by feedback of kinetic energy of the structure into the soil. This paper is concerned only with the first phenomenon. The rigorous analysis of rigid, embedded foundations subjected to seismic disturbances requires, in general, substantial computational effort. Indeed, a typical analysis would normally require models with finite elements and/or boundary elements. Although such methods may be used to find an accurate solution to the problem of kinematic interaction, their use is not always warranted, given the many uncertainties involved and the multitude of assumptions that must be considered. Hence, approximate solutions are attractive for this problem. One such approximate method is the remarkably simple algorithm proposed by Iguchi.3 This paper presents first an appraisal of this method by way of a comparison with accurate numerical solutions for cylindrical foundations; next the algorithm is applied to rectangular (prismatic) foundations. It is found that Iguchi's method gives results that are adequate for engineering purposes, even if not entirely accurate.  相似文献   

19.
Complex seismic behaviour of soil–foundation–structure (SFS) systems together with uncertainties in system parameters and variability in earthquake ground motions result in a significant debate over the effects of soil–foundation–structure interaction (SFSI) on structural response. The aim of this study is to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. An established rheological soil‐shallow foundation–structure model with equivalent linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large number of models incorporating wide range of soil, foundation and structural parameters were generated using a robust Monte‐Carlo simulation. In total, 4.08 million time‐history analyses were performed over the adopted models using an ensemble of 40 earthquake ground motions as seismic input. The results of the analyses are used to rigorously quantify the effects of foundation flexibility on the structural distortion and total displacement of the superstructure through comparisons between the responses of SFS models and corresponding fixed‐base (FB) models. The effects of predominant period of the FB system, linear vs nonlinear modelling of the superstructure, type of nonlinear model used and key system parameters are quantified in terms of different probability levels for SFSI effects to cause an increase in the structural response and the level of amplification of the response in such cases. The results clearly illustrate the risk of underestimating the structural response associated with simplified approaches in which SFSI and nonlinear effects are ignored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The dynamic response of a finite number of flexible surface foundations subjected to harmonic incident Rayleigh or SH waves is presented. The foundations are assumed to be resting on an elastic half-space. The results show that the foundation stiffness has a marked effect on the vertical response, while there is only a minor effect on the horizontal displacements. In general, the dynamic response decreases with increasing foundation stiffness. In cases of Rayleigh wave incidence, the existence of an adjacent foundation generates a certain amount of horizontal response in the direction perpendicular to the incident wave and subsequently causes the system to undergo a torsional motion; while in cases of horizontally incident SH waves, a vertical response has been observed and its magnitude is comparable to the response in the direction of the incident wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号