首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the contributions of overland flow, throughflow and deep seepage to the generation of streamflow in a salt-affected, deeply weathered landscape. Runoff mechanisms on a small hillslope in south-western Australia were dependent on the extent and development of variable source areas. In winter, streamflow generation was controlled by returnflow, saturation overland flow and throughflow. In summer, post-ponding, infiltration-excess and saturation overland flow dominated. The extent of the variable source area and the magnitude of streamflow were due to antecedent soil moisture, rainfall and slope morphology. Concave hillslope sections accumulated soil moisture due to both saturated and unsaturated lateral flow processes. Throughflow provided the mechanism and vehicle for solute movement from the groundwater discharge area to the stream. However, discharge from the deep aquifer was the primary mechanism responsible for soil salinity and maintaining the core of the variable source area. Estimates of throughflow which only take account of soil-water movement and disregard returnflow, will underestimate the magnitude of throughflow.  相似文献   

2.
Three main reservoirs were identified that contribute to the shallow subsurface flow regime of a valley drained by a fourth‐order stream in Brittany (western France). (i) An upland flow that supplied a wetland area, mainly during the high‐water period. It has high N‐NO3? and average Cl? concentrations. (ii) A deep confined aquifer characterized by low nitrate and low chloride concentrations that supplied the floodplain via flow upwelling. (iii) An unconfined aquifer under the riparian zone with high Cl? and low N‐NO3? concentrations where biological processes removed groundwater nitrate. This aquifer collected the upland flow and supplied a relict channel that controlled drainage from the whole riparian zone. Patterns of N‐NO3? and Cl? concentrations along riparian transects, together with calculated high nitrate removal, indicate that removal occurred mainly at the hillslope–riparian zone interface (i.e. first few metres of wetland), whereas dilution occurred in lower parts of the transects, especially during low‐water periods and at the beginning of recharge periods. Stream flow was modelled as a mixture of water from the three reservoirs. An estimation of these contributions revealed that the deep aquifer contribution to stream flow averaged 37% throughout the study period, while the contribution of the unconfined reservoir below the riparian zone and hillslope flow was more variable (from ca 6 to 85%) relative to rainfall events and the level of the riparian water table. At the entire riparian zone scale, NO3? removal (probably from denitrification) appeared most effective in winter, despite higher estimated upland NO3? fluxes entering the riparian zone during this period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Though the S. Susanna spring system is one of the biggest water sources in the central Apennines, its hydrogeological dynamics have been scarcely investigated. This study tried to clarify some of the factors controlling the recharge/discharge processes of this spring by modelling the available climate series, water balance equations and new isotopic and quantitative data, using statistical and raster overlay functions embedded in a Geographic Information System (GIS). Oxygen and hydrogen isotopic data were recorded monthly over a 2‐year period at the spring itself and in eight rain gauges in Reatini Mountains. The effective infiltration rate was calculated using the Kennessey coefficients and the Turc equation. Finally, the recharge area was identified with the help of an expert evaluation procedure. Local δ18O and δD versus altitude regression curves were used to validate the digital recharge model by comparing their expected values with the values actually measured. Recharge process was framed within the perspective of the ongoing local climate trends. The current discharge rate of 4·1 m3·s?1 is significantly lower than the average value of 5·5 m3·s?1 measured up to the 1980s, confirming the fall in the recharge/discharge rate. The hydrogeological system shows a delayed response, due to an average groundwater residence time in the aquifer, which is estimated to be about 15/20 years on the basis of the offset between calculated and observed isotope data at the main spring. For this reason the system is presently not equilibrated and is gradually changing towards a final equilibrium discharge estimated in about 3·4 m3·s?1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Jordan is classified as an arid to semi‐arid country with a population according to 1999 estimates of 4·8 millions inhabitants and a growth rate of 3·4%. Efficient use of Jordan's scarce water is becoming increasingly important as the urban population grows. This study was carried out within the framework of the joint European Research project ‘Groundwater recharge in the eastern Mediterranean’ and describes a combined methodology for groundwater recharge estimation in Jordan, the chloride method, as well as isotopic and hydrochemical approaches. Recharge estimations using the chloride method range from 14 mm year?1 (mean annual precipitation of 500 mm) for a shallow and stony soil to values of 3·7 mm year?1 for a thick desert soil (mean annual precipitation of 100 mm) and values of well below 1 mm year?1 for thick alluvial deposits (mean annual rainfall of 250 mm). Isotopically, most of the groundwater in the Hammad basin, east Jordan, falls below the global meteoric water line and far away from the Mediterranean meteoric water line, suggesting that the waters are ancient and were recharged in a climate different than Mediterranean. Tritium levels in the groundwater of the Hammad basin are less than the detection limit (<1·3 TU). However, three samples in east Hammad, where the aquifer is unconfined, present tritium values between 1 and 4 TU. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The effect of bedrock permeability on subsurface stormflow initiation and the hillslope water balance is poorly understood. Previous hillslope hydrological studies at the Panola Mountain Research Watershed (PMRW), Georgia, USA, have assumed that the bedrock underlying the trenched hillslope is effectively impermeable. This paper presents a series of sprinkling experiments where we test the bedrock impermeability hypothesis at the PMRW. Specifically, we quantify the bedrock permeability effects on hillslope subsurface stormflow generation and the hillslope water balance at the PMRW. Five sprinkling experiments were performed by applying 882–1676 mm of rainfall over a ~5·5 m × 12 m area on the lower hillslope during ~8 days. In addition to water input and output captured at the trench, we measured transpiration in 14 trees on the slope to close the water balance. Of the 193 mm day?1 applied during the later part of the sprinkling experiments when soil moisture changes were small, <14 mm day?1 was collected at the trench and <4 mm day?1 was transpired by the trees, with residual bedrock leakage of >175 mm day?1 (91%). Bedrock moisture was measured at three locations downslope of the water collection system in the trench. Bedrock moisture responded quickly to precipitation in early spring. Peak tracer breakthrough in response to natural precipitation in the bedrock downslope from the trench was delayed only 2 days relative to peak tracer arrival in subsurface stormflow at the trench. Leakage to bedrock influences subsurface stormflow at the storm time‐scale and also the water balance of the hillslope. This has important implications for the age and geochemistry of the water and thus how one models this hillslope and watershed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
A large quantity of submarine groundwater discharge (SGD) of about 1000 m3 day?1 m?1 of the 600‐km‐long shoreline of South Atlantic Bight has been estimated by Moore (Global Biogeochemical Cycles, 2010b, 24, GB4005, doi: 10.1029/2009GB003747 ). However, there is great uncertainty in estimating the percentage of net, land‐originated groundwater recharge of SGD. Moreover, most previous studies considered the homogeneous case for the coastal superficial aquifers. Here, we investigated the terrestrial‐originated SGD through a multilayered submarine aquifer system, which comprises two confined aquifers and two semi‐permeable layers. The inland recharge includes a constant part representing the annual average and a periodical part representing its seasonal variation. An analytical solution was derived and used to analyse the distributions of the terrestrial‐originated SGD from the multilayered aquifers along the Winyah Bay transect, South Atlantic Bight. It is found that the width of the zone of SGD from the upper aquifer ranges from ~0.8 to ~8.0 km depending on the leakance of the seabed semi‐permeable layer. A head of the upper aquifer at a coastline 1.0 m higher than the mean sea level will cause a SGD of 1.82– 18.3 m3 day?1 m?1 from that aquifer as the seabed semi‐permeable layer's leakance varies from 0.001 to 0.1 day?1, providing considerable possibility for considerable land‐originated SGD. Seasonal terrestrial‐originated SGD variations predicted by the analytical model provide consistent explanation of the seasonal variation of 226Ra observed by Moore (Journal of Geophysics, 2007, 112, C10013, doi: 10.1029/2007JC004199 ). The contribution of the lower aquifer to SGD is only 1.2–12% of that of the upper aquifer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
ABSTRACT

Groundwater is used by 3?million inhabitants in the coastal urban city of Douala, Cameroon, but comprehensive data are too sparse for it to be managed in a sustainable manner. Hence this study aimed to (1) assess the potability of the groundwater; (2) evaluate the spatial variation of groundwater composition; and (3) assess the interaction and recharge mechanisms of different water bodies. Hydrogeochemical tools and methods revealed the following results in the Wouri and Nkappa formations of the Douala basin, which is beneath Douala city: 30% of water samples from hand-dug wells in the shallow Pleistocene alluvium aquifer were saline and highly mineralized. However, water from boreholes in the deeper (49–92 m depth) Palaeocene aquifer was saline-free, less mineralized and potable. Water in the shallow aquifer (0.5–22 m depth) was of Na+-K+-Cl?-NO3? type and not potable due to point source pollution, whereas Ca+-HCO3? unpolluted water dominates in the deeper aquifer. Water in the deep and shallow aquifers indicates the results of preferential flow pass and evaporative recharge, respectively. Possible hydrogeochemical processes include point source pollution, reverse ion exchange, remote recharge areas and mixing of waters with different chemical signatures.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

8.
The effects of vegetation root distribution on near‐surface water partitioning can be two‐fold. On the one hand, the roots facilitate deep percolation by root‐induced macropore flow; on the other hand, they reduce the potential for deep percolation by root‐water‐uptake processes. Whether the roots impede or facilitate deep percolation depends on various conditions, including climate, soil, and vegetation characteristics. This paper examines the effects of root distribution on deep percolation into the underlying permeable bedrock for a given soil profile and climate condition using HYDRUS modelling. The simulations were based on previously field experiments on a semiarid ponderosa pine (Pinus ponderosa) hillslope. An equivalent single continuum model for simulating root macropore flow on hillslopes is presented, with root macropore hydraulic parameterization estimated based on observed root distribution. The sensitivity analysis results indicate that the root macropore effect dominates saturated soil water flow in low conductivity soils (Kmatrix below 10?7 m/s), while it is insignificant in soils with a Kmatrix larger than 10?5 m/s, consistent with observations in this and other studies. At the ponderosa pine site, the model with simple root‐macropore parameterization reasonably well reproduces soil moisture distribution and some major runoff events. The results indicate that the clay‐rich soil layer without root‐induced macropores acts as an impeding layer for potential groundwater recharge. This impeding layer results in a bedrock percolation of less than 1% of the annual precipitation. Without this impeding layer, percolation into the underlying permeable bedrock could be as much as 20% of the annual precipitation. This suggests that at a surface with low‐permeability soil overlying permeable bedrock, the root penetration depth in the soil is critical condition for whether or not significant percolation occurs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Groundwater flow modelling of the Kwa Ibo River watershed in Abia State of Nigeria is presented in this paper with the aim of assessing the degree of interaction between the Kwa Ibo River and the groundwater regime of the thick sandy aquifer. The local geology of the area comprises the Quaternary to recent Benin Formation. Potential aquifer zones that were delineated earlier using geoelectrical resistivity soundings and borehole data for the area formed the basis for groundwater flow modelling. The watershed has been modelled with a grid of 65 rows by 43 columns and with two layers. Lateral inflow from the north has been simulated with constant heads at the Government College, Umuahia, and outflow at Usaka Elegu in the south. The Kwa Ibo River traverses the middle of the watershed from north to south. The river‐stage data at Umudike, Amawom, Ntalakwu and Usaka Elegu have been used for assigning surface water levels and riverbed elevations in the model. Permeability distribution was found to vary from 3 to 14·5 m day?1. Natural recharge due to rainfall formed the main input to the aquifer system, and abstraction from wells was the main output. A steady‐state groundwater flow simulation was carried out and calibrated against the May 1980 water levels using 26 observation wells. The model computations have converged after 123 iterations. Under the transient‐state calibration, the highest rainfall (and hence groundwater recharge) over the 10‐year study period was recorded in 1996, whereas the lowest was recorded in 1991. The computed groundwater balance of 55 274 m3 day?1 was comparable to that estimated from field investigations. Results from the modelling show that abstraction is much less than groundwater recharge. Hence there is the possibility for additional groundwater exploitation in the watershed through drilling of boreholes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Results from hydrometric and isotopic investigations of unsaturated flow during snowmelt are presented for a hillslope underlain by well-sorted sands. Passage of melt and rainwater through the vadose zone was detected from temporal changes in soil water 2H concentrations obtained from sequential soil cores. Bypassing flow was indicated during the initial snowmelt phase, but was confined to the near-surface zone. Recharge below this zone was via translatory flow, as meltwater inputs displaced premelt soil water. Estimates of premelt water fluxes indicate that up to 19 per cent of the premelt soil water may have been immobile. Average water particle velocities during snowmelt ranged from 6.2 × 10?7 to 1.1 × 10?6 ms?1, suggesting that direct groundwater recharge by meltwater during snowmelt was confined to areas where the premelt water table was within 1 m of the ground surface. Soil water 2H signatures showed a rapid response to isotopically-heavy rain-on-snow inputs late in the melt. In addition, spatial variations in soil moisture content at a given depth induced a pronounced lateral component to the predominantly vertical transport of water. Both factors may complicate isotopic profiles in the vadose zone, and should be considered when employing environmental isotopes to infer recharge processes during snowmelt.  相似文献   

11.
The proposed harvesting of previously undeveloped forests in north coastal British Columbia requires an understanding of hydrological responses. Hydrometric and isotopic techniques were used to examine the hydrological linkages between meteoric inputs to the surface‐groundwater system and runoff response patterns of a forest‐peatland complex. Quickflow accounted for 72–91% of peak storm discharge. The runoff ratio was lowest for open peatland areas with thick organic horizons (0·02–0·05) due to low topographic gradients and many surface depressions capable of retaining surface water. Runoff ratio increased comparatively for ephemeral surface seep flows (0·06–0·40) and was greatest in steeply sloping forest communities with more permeable soils (0·33–0·69). The dominant mechanism for runoff generation was saturated shallow subsurface flow. Groundwater fluxes from the organic horizon of seeps (1·70–1·72 m3 day?1 m?1) were an important component of quickflow. The homogeneous δ2H? δ18O composition of groundwater indicated attenuation of the seasonal rainfall signal by mixing during recharge. The positive correlation (r2 = 0·64 and 0·38, α = 0·05) between slope index and δ18O values in groundwater suggests that the spatial pattern in the δ18O composition along the forest‐peatland complex is influenced by topography and provides evidence that topographic indices may be used to predict groundwater residence time. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The hydrological behaviour of the cultivated Féfé catchment (17·8 ha) on the tropical volcanic island of Guadeloupe was studied to identify flow paths, to quantify water fluxes, and finally, to build a lumped model to simulate discharge and piezometer levels. The approach combined two steps, an experimental step and a modelling step, which covered two time scales, the annual and the storm event scale. The hydrological measurements were conducted over 2 years. The Féfé catchment is characterized by heavy rainfall (4229 mm year?1) on permeable Andosols; the results showed that underground flow paths involved two overlapping aquifers, and that the annual water balance in 2003 was shared among outflows of the deep aquifer (42%), evapotranspiration (31%), and streamflow (27%). On the event scale, the surface runoff coefficient ranges between 6·2% and 24·4% depending on antecedent dry or wet moisture conditions. Hortonian overland flow predominated over subsurface and saturation overland flow processes. Recharge of the shallow aquifer is mainly governed by a constant infiltration capacity of the Andosols with depth in the vadose zone. Outflows of this shallow aquifer were the baseflow of the main stream and the recharge of the deep aquifer. Volcanic deposits at Féfé promoted the underground flow path, and cultivated areas seemed to explain the high stormflow values relative to other tropical small catchments under rain forest. A conceptual lumped model integrating runoff, infiltration, evapotranspiration, and fluctuations of the two overlapping aquifers was developed. The model has six parameters and was calibrated and validated on the hydrograph at the outlet and on the two piezometers of the shallow and the deep aquifers. The results show fair to good agreement between measured and simulated variables, and consequently, the model was consistent with the main hydrological processes observed from experimental results in wet conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Seasonal soil water dynamics were measured at a fine-textured, upslope site within the jarrah forest of southwest Western Australia and compared to the results from a coarse-textured hillslope transect. Gravity drainage dominated during winter and early spring. This reversed in early summer and an upward potential gradient was observed to 7 m depth. A shallow ephemeral saturation zone was observed above a clay pan at 1.5 m depth. This saturation zone persisted through late winter and early spring, contrasting with the short-lived saturation in the duricrust on the hillslope transect. The annual maximum to minimum unsaturated soil water storage was about 530 mm, 50 mm greater than the hillslope transect and higher than most values reported elsewhere in Australia. Significant soil water content changes following winter rain were generally restricted to 6 m but at one site occurred to 9 m. These depths were significantly less than the coarser-textured hillslope transect. Soil water drying rates averaged 5 mm day?1 during extended dry periods compared to 3.5 mm day?1 on the hillslope transect. The drying rate occurred uniformly through the profile until late summer when a significant decrease in the upper 3 m was observed.  相似文献   

15.
Finite element modelling of the saturated–unsaturated surface–subsurface flow mechanisms operative in a small salinized catchment in south‐western Australia was used to help define the flow system and explain the causes of waterlogging and salinization there. Data available at the site from a previous study were used to obtain a first approximation to the flow system. Altering the properties of some of the strata gave a closer calibration. It was found that the modelled saturated hydraulic conductivity of the B horizon in the duplex soil zone needed to be at least an order of magnitude lower than that measured in order to reproduce the perching conditions observed in the field. Also, the model indicated the influence of a doleritic dyke, whose presence was confirmed by field measurement. Our analysis showed that there were two main flow systems operating in the hillslope. The first, and most dominant, was the recharge occurring through the upslope gradational soil zone and percolating down to both the deeply weathered regolith and the basal aquifer. The second flow system is an unsaturated flow system operating in the high permeability A horizon in the downslope duplex soil zone. The first system is primarily responsible for the saline seepage zone in the valley bottom. The second contributes to the waterlogging and perching occurring upslope of the seepage zone. Vertical flow through the higher permeability B horizon in the gradational soil zone in the upper slopes is a major contributor of recharge. Recharge by flow through macropores occurs where, but only where, perched aquifers develop and allow the macropores to be activated. Areas with perched aquifers occurred in downslope locations and near a doleritic dyke located upslope. Thus, the area where macropore recharge occurred was not large. The recharge rate required to maintain the piezometric levels at present values is only about 30 mm/yr (about 5% of the annual rainfall). The piezometric levels under the upper part of the catchment varied greatly with only small changes in recharge rate. A 50% reduction in recharge rate had the effect of reducing the length of the seepage zone at the end of winter by 40%. Changes in recharge rate had little effect on the extent of the perched aquifer at the end of winter. Deep‐rooted perennial forages, shrubs or trees on the gradational soil zone in the upper part of the catchment and on the zones upslope of geological barriers to flow would be required to reduce the recharge and to allow for rehabilitation of the saline valley floor. Waterlogging associated with the perched water table in the bottom part of the catchment would be best addressed by tree plantations located just upslope of the salinized zone in the valley floor. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Atmospheric chloride deposition in continental Spain   总被引:1,自引:0,他引:1  
F. J. Alcalá  E. Custodio 《水文研究》2008,22(18):3636-3650
The atmospheric bulk deposition rate of chloride in continental Spain was studied to get basic information in order to help in the evaluation of diffuse recharge to aquifers through an environmental chemical balance. Both new, recent data and bibliographic data have been used. Most sampling records are less than 5 years long and often only 1 year long. This means that the calculated mean yearly bulk deposition rate of chloride is quite uncertain by 30% on average, and larger than the values derived form records up to 15 years long. A map of atmospheric bulk deposition of chloride has been drawn using ordinary kriging. The mean bulk deposition rate of chloride varies from 1 to 30 g m?2 year?1 in coastal areas, with strong negative landward gradients between 0·1 and 1 g m?2 year?1 km?1. In the centre of the Iberian Peninsula, chloride deposition rates vary from 0·2 to 0·5 g m?2 year?1, with gradients around or less than 5 × 10?3 g m?2 year?1 km?1. The coefficient of variation of the mean bulk atmospheric deposition rate of chloride, for any place, ranges from 0·1 to 1. Values larger than ~0·5 are not a good indicator of natural uncertainty for this series of data that has a skewed distribution. The map of bulk deposition rate and its error is one of the terms needed for aquifer recharge estimation by means of the chloride ion balance. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This article investigates the quantity of submarine groundwater discharge (SGD) from a coastal multi‐layered aquifer system in response to constant rainfall infiltration. The system comprises an unconfined aquifer, a leaky confined aquifer and an aquitard between them and terminates at the coastline. An approximate analytical solution is derived based on the following assumptions: (i) flow is horizontal in the aquifers and vertical in the aquitard, and (ii) flow in the unconfined aquifer is described by nonlinear Boussinesq equation. The analytical solution is compared with numerical solutions of the strictly two‐dimensional nonlinear model to validate the model assumptions used for the analytical solution. The SGD from the leaky confined aquifer increases with the inland rainfall infiltration recharge and the specific leakage of aquitard. The maximum SGD ranges from 1·87 to 10·37 m3 per day per meter of shoreline when rainfall infiltration ranges from 18·2 to 182 mm/year and the specific leakage of aquitard varies from 10?9 to 10?1 l/day. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Intermontane basin aquifers worldwide, particularly in the Himalayan region, are recharged largely by the adjoining mountains. Recharge in these basins can occur either by water infiltrating from streams near mountain fronts (MFs) as mountain front recharge (MFR) or by sub-surface mountain block infiltration as mountain block recharge (MBR). MFR and MBR recharge are challenging to distinguish and are least quantified, considering the lack of extensive understanding of the hydrological processes in the mountains. This study used oxygen and hydrogen isotopes (δ18O and δ2H), electrical conductivity (EC) data, hydraulic head, and groundwater level data to differentiate MFR and MBR. Groundwater level data provide information about the groundwater-surface water interactions and groundwater flow directions, whereas isotopes and EC data are used to distinguish and quantify different recharge sources. The present methodology is tested in an intermontane basin of the Himalayan region. The results suggest that karst springs (KS) and deep groundwater (DGW) recharge are dominated by snowmelt (47% ± 10% and 46% ± 9%) as MBR from adjacent mountains, insignificantly affected by evaporation. The hydraulic head data and isotopes indicate Quaternary shallow groundwater (SGW) aquifer system recharge as MFR of local meteoric water with significant evaporation. The results indicate several flow paths in the aquifer system, a local flow for KS, intermediate flow for SGW, and regional flow for DGW. The findings will significantly impact water resource management in the area and provide vital baseline knowledge for sustainable groundwater management in other Himalayan intermontane basins.  相似文献   

19.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The present study examined groundwater recharge/discharge mechanisms in the regional Central Sudan Rift Basins (CSRB). Aquifers in CSRB constitute poorly sorted silisiclastics of sand, clay and gravels deposited in closed hydrologic systems of the Cretaceous–Pleistocene fluviolacustrine environments. CSRB are bounded to the north by the highlands of the Central African Shear Zone (CAZS) that represents the surface and groundwater divides. Sporadic recharge in the peripheries of the basins along the CASZ occurs subsequent to decadal and centennial storm events. Inflow from the Nile into the aquifers represents an additional source of recharge. Thus, groundwater resources cannot be labelled fossil nor can they be readily recharged. Closed hydrologic troughs located adjacent to the influent Nile system mark areas of main groundwater discharge characterized by lower hydraulic heads. This study has examined mechanisms that derive the discharge of the groundwater in these closed basins and concluded that only evapotranspirative discharge can provide a plausible explanation. Groundwater abstraction is mainly through deep‐rooted trees and effective evaporation. The increase of TDS along the flow indicates local recharge at the peripheries of basins and shows the influence of evaporation and rock/water interaction. The decline in groundwater level along a flow path was calculated using Darcy's law to estimate average recharge and evapotranspirative discharge, which are equal under natural equilibrium and make the only fluxes in CSRB. Steady‐state 2D flow modelling has demonstrated that an average recharge of 4–8 mm yr?1 and evapotranspirative discharge of 1–22 mm yr?1 will maintain natural equilibrium in CSRB. Sporadic storms provide recharge in the highlands to preserve the current hydraulic gradient and maintain aquifer dynamics. Simulated recharge from the Nile totals about 17·5 mm yr?1 and is therefore a significant contributor to the water balance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号