首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Datasets containing large numbers (>10 000) of glacial lineaments are increasingly being mapped from remotely sensed data in order to develop a palaeo‐glacial reconstruction or ‘inversion’. The palimpsest landscape presents a complex record of past ice flow and deconstructing this information into a logical history is an involved task. One stage in this process requires the identification of sets of genetically linked lineaments that can form the basis of a reconstruction. This paper presents a semi‐automated algorithm, CLustre, for lineament clustering that uses a locally adaptive, region growing, methodology. After outlining the algorithm, it is tested on synthetic datasets that simulate parallel and orthogonal cross‐cutting lineaments, encompassing 1500 separate classifications. Results show robust classification in most scenarios, although parallel overlap of lineaments can cause false positive classification unless there are differences in lineament length. Case studies for Dubawnt Lake and Victoria Island, Canada, are presented and compared with existing datasets. For Dubawnt Lake 9 out of 14 classifications directly match incorporating 89% of lineaments. For Victoria Island 57 out of 58 classifications directly match incorporating 95% of lineaments. Differences are related to small numbers of unclassified lineaments and parallel cross‐cutting lineaments that are of a similar length. CLustre enables the automated, repeatable, assignment of lineaments to flow sets using defined user criteria. This is important as qualitative visual interpretation may introduce bias, potentially weakening the testability of palaeo‐glacial reconstructions. In addition, once classified, summary statistics of lineament clusters can be calculated and subsequently used during the reconstruction process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Aeromagnetic (AM) and Landsat Thematic Mapper (TM) data from the south-central Zimbabwe Craton have been processed for the purpose of regional structural mapping and thereby to develop strategic models for groundwater exploration in hard-rock areas. The lineament density is greater on TM than on AM images, partly due to the resolution of the different datasets, and also because not all TM lineaments have a magnetic signature. The derived maps reveal several previously undetected lineaments corresponding to dykes, faults, shear zones and/or tectonically-related joints, striking predominantly NNE, NNW and WNW. We suggest the possible hydrogeological significance of some of these patterns as follows: the aeromagnetic data can be used to map faults and fractures of considerable depth which are likely to be open groundwater conduits at depth (typically under tension), while TM lineaments, although not necessarily open (mostly under compression), represent recharge areas.The interpreted persistent lineation and well developed fracture patterns are correlated with existing boreholes and indicate a spatial relationship between regional structures and high borehole yields (> 3 m3/h). This relationship is combined with other lithological and hydrogeological information to identify potential regional groundwater sites for detailed ground investigations. These are defined as dyke margins, faults, fractures/joints or intersections of any combination of these structures. Priority should be given to coincident AM/TM lineaments (e.g., NNW and NNE fractures) and continuous structures with large catchment areas (e.g., NNE and WNW faults). The late Archaean (2.6 Ga) granites are considered the most favourable unit because of their associated long and deep brittle fractures between numerous bornhardts (inselbergs) and kopjes. Several small-scale TM lineaments also form important local sources of groundwater for hand-dug wells. Based on measured rock susceptibilities from the area, we present a model of the typical magnetic responses from the possible groundwater exploration targets. The developed magnetic model could be applicable to similar terrains in other Archaean Cratons.  相似文献   

3.
On the basis of a lineament system inferred from satellite imagery, a number of quite distinct neotectonic units making up the central part of the Carpathian Basin can be singled out. Together with examination of the orientation and frequency distribution per sub-area of the lineaments, the authors have also analyzed the geological characteristics of the units involved. These studies have enabled them to identify an older, pre-Tertiary and a younger neotectonic system of elements. These two generations of lineaments show rather little identity with each other.The major lineaments separate relatively independent, homogeneous neotectonic units (segments) that are basically different from one another and are the results of particular geological processes, as reflected by the present-day geomorphological and Quaternary sedimentatin processes.As well as enabling a better understanding of the Tertiary and mainly the Quaternary geological processes, the determination of the lineament systems and neotectonic units, based on satellite imagery, can enhance efforts aimed at assessing their interconnections with both eartquakes and the geodesic anomalies, as well as with the occurrences of some mineral deposits.  相似文献   

4.
Linear elements of the landscape of the Guadix-Baza basin, southern Spain, were identified from a Landsat TM image. Three important lineament trends have been identified in the Guadix-Baza basin. The first is NE–SW, which is the dominant trend in the basin; the second is NW–SE, and the third is ENE–WSW. These three trends are correlated to the major faults of the Guadix-Baza basin. The study of linear features by the analysis of satellite data has revealed a strong link between the buried tectonic structures and the morphological features appearing at the surface. The distribution and density of lineaments explains much of the morphology of the land surface. It is possible to reconstruct elements of the tectonic and denudational history of the region and show that during Quaternary times lineaments controlled the sedimentation of the basin and the drainage pattern. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Structural, geomorphological, geophysical and volcanological data have been processed for the implementation of a dedicated GIS through which the structural evolution of the Pleistocene trachytic Cimini volcano (central Italy) has been reconstructed. The evolution of the Cimini complex includes three main close-in time phases: (1) intrusion of a shallow laccolith, rising along NW and NE trending faults and stagnating at the contact between the Mesozoic-Cenozoic and the Pliocene-Pleistocene sedimentary units constituting the bedrock of the volcano; (2) emplacement of lava domes along radial and tangential fractures formed by the swelling induced by the laccolith growth; (3) ignimbrite eruptions and final effusion of olivine-latitic lavas. Domes are both of Pelean and low lava dome type and their morphology was controlled by the location on the inclined surface of the swelled area. Some domes show to have uplifted upper Pliocene thermally metamorphosed clay sediments, suggesting a cryptodome-like growth. Comparison of the top of the Mesozoic-Cenozoic units with the top of the upper Pliocene-Pleistocene sedimentary complex, suggests that the laccolith emplaced in a graben of the Mesozoic-Cenozoic sedimentary complex filled by the Pliocene–Pleistocene sediments uplifted by the shallow intrusion. Stress patterns acting on the Cimini area have been deduced analysing the drainage network and the morphotectonic lineaments. Rose diagrams show a large dispersion of the lineaments reflecting the local presence of radial and tangential fractures. The most frequent extensional NW and NE trending lineaments have regional significance and controlled the magma uprise leading to the laccolith emplacement.  相似文献   

6.
Kantaro  Fujioka  Wataru  Tokunaga  Hisayoshi  Yokose  Junzo  Kasahara  Toshinori  Sato  Ryo  Miura  Teruaki  Ishii 《Island Arc》2005,14(4):616-622
Abstract   The Hahajima Seamount, located at the junction between the Izu–Bonin and Mariana forearc slopes, is a notable rectangular shape and consists of various kinds of rocks. An elaborated bathymetric swath mapping with geophysical measurements and dredge hauls showed the Hahajima Seamount is cut by two predominating lineaments, northeast–southwest and northwest–southeast. These lineaments are of faults based on the topographic cross-sections and a 3-D view (whale's eye view). The former lineament is parallel to the transform faults of the Parece Vela Basin, whereas the latter is parallel to the nearby transform fault on the subducting Pacific Plate. The rocks constituting the seamount are ultramafic rocks (mostly harzburgite), boninite, basalt, andesite, gabbro, breccia and sedimentary rocks, which characterize an island arc and an ocean basin. Gravity measurement and seismic reflection survey offer neither a definite gravity anomaly at the seamount nor definite internal structures beneath the seamount. A northwest–southeast-trending fault and small-scale serpentine flows were observed during submersible dives at the Hahajima Seamount. The rectangular shape, size of the seamount, various kinds of rocks and geophysical measurements strongly suggest that the Hahajima Seamount is not a simple serpentine seamount controlled by various tectonic movements, as previously believed, but a tectonic block.  相似文献   

7.
In this paper, a hybrid machine learning ensemble approach namely the Rotation Forest based Radial Basis Function (RFRBF) neural network is proposed for spatial prediction of landslides in part of the Himalayan area (India). The proposed approach is an integration of the Radial Basis Function (RBF) neural network classifier and Rotation Forest ensemble, which are state-of-the art machine learning algorithms for classification problems. For this purpose, a spatial database of the study area was established that consists of 930 landslide locations and fifteen influencing parameters (slope angle, road density, curvature, land use, distance to road, plan curvature, lineament density, distance to lineaments, rainfall, distance to river, profile curvature, elevation, slope aspect, river density, and soil type). Using the database, training and validation datasets were generated for constructing and validating the model. Performance of the model was assessed using the Receiver Operating Characteristic (ROC) curve, area under the ROC curve (AUC), statistical analysis methods, and the Chi square test. In addition, Logistic Regression (LR), Multi-layer Perceptron Neural Networks (MLP Neural Nets), Naïve Bayes (NB), and the hybrid model of Rotation Forest and Decision Trees (RFDT) were selected for comparison. The results show that the proposed RFRBF model has the highest prediction capability in comparison to the other models (LR, MLP Neural Nets, NB, and RFDT); therefore, the proposed RFRBF model is promising and should be used as an alternative technique for landslide susceptibility modeling.  相似文献   

8.
Morphotectonics of the Iberian Peninsula   总被引:1,自引:0,他引:1  
A morphotectonic interpretation of the relief of the Iberian Peninsula (IP) is presented based on an analysis of its gross forms. Several geological–geophysical and geomorphological methods were used in order to build up a morphostructural sketch. Three main categories were established using the approach of Rantsman (1979): Territorial Units (1-megablock, 9-macroblocks, 34-mesoblocks, 1.374-blocks and 2.523-microblocks); Morphostructural Alignments (2-first, 8-second, 20-third and 1-fourth rank; and 43 knots between Morphostructural Alignments (second-fourth rank). The main seismic activity is concentrated on the first- and second-rank lineaments, and some important epicenters are located near the lineament intersections. The origin of the earthquakes in the vicinity of such knots can be explained by the forcing/pushing of macroblocks westwards. The existence of earthquakes along the lineaments may be explained by tension. From the present study it appears that earthquake occurrence in the IP is due principally to stress concentrations around morphotectonic zones. A seismotectonic interpretation of the IP is also presented. On this map three zones are distinguished (A, B, C), each of them with a different active level and dimensions.Received: 25 November 2000  相似文献   

9.
Remote sensing and geoelectrical methods were used to find water-bearing fractures in the Scituate granite under the Central Landfill of Rhode Island. These studies were necessary to evaluate the integrity of the sanitary landfill and for planning safe landfill extensions. The most useful results were obtained with fracture trace analysis using Landsat and SLAR imagery in combination with ground-based resistivity measurements using Schlumberger vertical electrical soundings based on the assumption of horizontally layered strata. Test borings and packer tests confirmed, in the presence of a lineament and low bedrock resistivity, the probable existence of high bedrock fracture density and high average hydraulic conductivity. However, not every lineament was found to be associated with high fracture density and high hydraulic conductivity. Lineaments alone are not a reliable basis for characterising a landfill site as being affected by fractured bedrock. Horizontal fractures were found in borings located away from lineaments. High values of hydraulic conductivity were correlated with low bedrock resistivities. Bedrock resistivities between 60 and 700 Ω m were associated with average hydraulic conductivities between 4 and 60 cm/day. In some cases very low resistivities were confined to the upper part of the bedrock where the hydraulic conductivity was very large. These types of fractures apparently become narrower in aperture with depth. Bedrock zones having resistivities greater than 1000 Ω m showed, without exception, no flow to the test wells. Plots of bedrock resistivity versus the average hydraulic conductivity indicate that the resistivity decreases with increasing hydraulic conductivity. This relationship is inverse to that found in most unconsolidated sediments and is useful for estimating the hydraulic conductivity in groundwater surveys in fractured bedrock. In appropriate settings such as the Central Landfill site in New England, this electric-hydraulic correlation relationship, supplemented by lineament trace analysis, can be used effectively to estimate the hydraulic conductivity in bedrock from only a limited number of resistivity depth soundings and test wells.  相似文献   

10.
A combined analysis of lineament length density from radar imagery and surface resistivity data is used to assess the hydrogeological conditions in the Oban massif, Nigeria. The results show that the data guided the qualitative and quantitative estimation of some aquifer parameters. These include resistivity of the water bearing formations (280–740 ω m), thickness (5–140 m), limited hydraulic conductivity (8.53-13.18 m/day) and transmissivity (410.65–725.88 m2/day) data. In addition, the lineament length density for the area ranged between less than 0.2 to slightly more than 0.4. Site evaluation for the location of productive boreholes/wells using a groundwater potential index (GWPI) indicates that areas with a GWPI of greater than 35 are consistent with relatively high yield.  相似文献   

11.
There are two main ocean-ridge discontinuities in Iceland: the Tjörnes Fracture Zone (TFZ) and the South Iceland Seismic Zone (SISZ). The TFZ is a 120-km-long and as much as 70-km-wide WNW-trending zone of high seismicity. It has three main seismic lineaments: the Husavik-Flatey Fault (HFF), the Dalvik lineament, and the Grimsey lineament. The HFF, a dextral strike-slip fault and active as a transform fault for about 9 Ma, has a cumulative transform-parallel displacement of some 60 km. Offshore, the HFF is marked by a transform (fracture-zone) valley, 5–10 km wide and 3–4 km deep. Onshore the Flateyjarskagi Peninsula the HFF is marked by a 3–5-km-wide zone of intense crustal deformation with numerous strike-slip and normal faults, transform-parallel dykes, dense sets of mineral veins, and subzones of completely crushed rocks, that is, fault cores. Where the HFF comes on land on Tjörnes there is a similar, but much thinner, zone of crushed rocks. The seismic lineaments are located a few tens of kilometres south (Dalvik) and north (Grimsey) of, and run subparallel with, the HFF. Both lineaments are composed of sets of NNW-trending sinistral faults arranged en echelon.The SISZ is a 70-km-long and 10–20-km wide zone of almost continuous seismicity located between the overlapping West and East Volcanic Zones. It produces the largest earthquakes in Iceland, some of which exceed M7, during which the N–S width of the zone may be as great as 50–60 km. The SISZ is partly covered with Holocene lava flows where the seismogenic faults occur as dextral NNE-trending and sinistral ENE-trending conjugate arrays with push-ups between their nearby ends. The same fault-segment trends occur in the Pleistocene pile north of the Holocene lava flows.The HFF is neither perpendicular to the nearby ridge segments nor parallel with the spreading vector. As a consequence, the North Volcanic Zone has propagated to the north and the Kolbeinsey Ridge to the south during the past 1 Ma, resulting in the development of the Grimsey and Dalvik lineaments. Similarly, the tip of the East Volcanic Zone has been propagating rapidly to the southwest during the past 3 Ma. The tip has been at its present location for no more than several hundred thousand years, thus making the SISZ less stable than the HFF. If the propagation of the tip of the East Volcanic Zone continues, it will eventually reach the Reykjanes Ridge, whereby either the West or the East Volcanic Zone becomes extinct. Then the SISZ dies out as a major seismic zone.  相似文献   

12.
Environmental tritium and radiocarbon studies were undertaken in the Vedavati river basin situated partly in Karnataka and partly in Andhra Pradesh, India, aimed at the determination of the general recharge condition of the water-bearing zones in the gneissic complex, granites and the Dharwar Group of metamorphic rocks, where groundwater occurs under semi-unconfined to semi-confined conditions and at places under the water-table condition. The groundwater movement is controlled by fractures, fissures, a weathered zone and surficial mantle. An attempt was also made to find out whether substantial recharge occurs along fractured lineaments; whether the water-bearing zones can be considered as interconnected or isolated, and whether the recharge and discharge areas identified by geohydrological considerations can be confirmed.

Environmental tritium and radiocarbon contents, measured in 45 groundwater samples, show that a large number of samples are very young, containing water from post-thermonuclear-era rain, thus indicating an age less than 25 yr. In some other samples, despite radiocarbon ages found to be older, some component of recent precipitation is found to be present as indicated by bomb tritium.

Groundwater dating in the area shows an excellent correlation between hydro-isochrons of minimum age with the recharge contour of maximum magnitude. This study has clearly resulted in the demarcation of the recharge areas. However, the discharge areas as such cannot be clearly delineated because of lack of a pattern indicating increase of ages in any particular direction. This, however, also reflects somewhat discontinuous groundwater bodies, which may also be expected from the general structure and hydrogeology of the region. Along a major lineament the groundwater is found to be very young thus confirming that substantial recharge occurs along lineaments.  相似文献   


13.
The Archibarca lineament is one of several NW–SE-trending transverse lineaments that cut across the Central Andes of Argentina and Chile. Central Andean, Late Miocene–Quaternary subduction-related volcanism is mainly restricted to a 50-km-wide arc forming the approximately N–S axis of the Cordillera, but extends along the transverse lineaments for up to 200 km to the SE. Lineaments are interpreted to be deep-seated, long-lived basement structures or anisotropies, which can control the localization of magmatism and, in some cases, magmatic–hydrothermal ore deposits (e.g., the Escondida porphyry Cu deposit, Chile). As a first step towards exploring the regional-scale controls on magmatism and related mineralization exerted by such structures, the styles of volcanism and near-surface hydrothermal activity along a segment of the Archibarca lineament in the Puna of northwest Argentina are described here. Volcanic structures have been mapped and sampled along a 50-km transect from Cerro Llullaillaco, a large medium-K dacitic Quaternary stratovolcano, to Corrida de Cori, a range of Pliocene–Pleistocene high-K andesitic vents. Apart from a southeastward increase in K content and the predominance of dacitic lavas at Cerro Llullaillaco, the geochemical affinity of late Cenozoic volcanic rocks varies little in time or space. This uniformity extends further SE to Cerro Galán, where published data closely match the results from the study area. In detail, trace element compositions reveal the localized (in both time and space) effects of crustal contamination (recognized as Th>10 ppm), and depth of fractionation (1/Yb>0.7 ppm−1, reflecting garnet residue). Explosive volcanic rocks such as ignimbrites show the strongest indications of crustal contamination, whereas the Cerro Llullaillaco dacite lavas mostly record significant garnet fractionation. Other lavas from the Llullaillaco area, including one flow from Cerro Llullaillaco, do not show garnet control, suggesting that different batches of magma stalled and fractionated at different levels in a thick (60-km) crust prior to eruption. The youngest volcanism in the Corrida de Cori area is represented by olivine–phyric basaltic andesite cinder cones and flows. The ascent of these relatively primitive magmas appears to have been controlled by late Quaternary normal faults, which directly tapped deeply derived melts. The Corrida de Cori volcanic range has experienced intense fumarolic alteration with deposition of abundant sulfate and native sulfur (previously mined at Mina Julia). Deeper levels of hydrothermal alteration have been sampled by an ignimbrite erupted from Cerro Escorial, which, among other lithic clasts, contains numerous fragments of vein quartz. Fluid inclusions in this quartz record evidence for a boiling, high-salinity fluid, which may represent a link between a high temperature magmatic–hydrothermal system at depth (i.e., a porphyry-type system) and shallow-level fumarolic activity. An ignimbrite erupted from Cerro Escorial preserves textures such as internal wave forms between flow units and surface wave morphologies at its distal limits that indicate flow as a series of dense turbulent pulses, which interdigitated and interfered with one another. Lithic lag breccias occur near the base of the flow proximal to the vent, but no air-fall deposits are preserved, probably due to transport of ash far from the vent by strong, high-altitude winds.  相似文献   

14.
—This paper presents a crustal model derived from an Ocean Bottom Seismograph (OBS) study along the northern Vøring margin off Norway. The profile was acquired to map the crustal structure in the northernmost part of the Vøring Basin, and to link crustal models of the Lofoten and central Vøring Basin obtained by previous OBS studies. The Vøring margin, as well as the Lofoten margin to the north, was created by continental breakup between Norway and Greenland in late Paleocene-early Eocene. The rifting and continental breakup process were accompanied by intense extrusive and intrusive magmatic activities. The OBS data provide the whole crustal structure along the northern Vøring margin, in the area where the deep crustal structure cannot be resolved by conventional multichannel reflection data due to sill intrusions in the sedimentary sequence. The shallow part of the crustal model is characterized by up to 10 km thick sediments, a sequence of flood basalts and sill intrusions. The P-wave velocities in the flood basalts and sill intrusions are estimated to 5.0 km/s and 4.7–5.8 km/s, respectively. The model indicates an abrupt thickening of the upper crystalline crust from approx.3 km in the NE, to about 10 km towards the SE, with velocities of 6.0–6.2 km/s. The lower crustal velocities are not well resolved due to lack of clear refraction arrivals from the lower crust. However, the observed amplitude versus offsets are best explained by a model with a change in lower crustal velocities from 6.8 to 7.2 km/s beneath the Bivrost lineament. The modelling infers the presence of a lower crustal reflector beneath the lineament, which represents the landward continuation of the Bivrost lineament. Reflection arrivals from the Moho reveal a Moho depth of 23 km in the middle of the profile and 18– 20 km in the northeastern part of the profile. A 370 km long crustal section from the central part of the Vøring Basin to the Lofoten margin, obtained by the results of this study and previous OBS studies, shows a simple thinned continental crust on the Lofoten margin, and a high velocity lower crust underlying an upper crust of varying thickness in the Vøring Basin. The transition between these structures is situated beneath the Bivrost lineament in the lower crust, and beneath the basement high about 40 km south of the lineament in the upper crust.  相似文献   

15.
In this study, source parameters of the September 18, 2011 M w 6.9, Sikkim earthquake were determined using acceleration records. These parameters were then used to generate strong motion at a number of sites using the stochastic finite fault modeling technique to constrain the causative fault plane for this earthquake. The average values of corner frequency, seismic moment, stress drop and source radius were 0.12 Hz, 3.07 × 1026 dyne-cm, 115 bars and 9.68 km, respectively. The fault plane solution showed strike-slip movement with two nodal planes oriented along two prominent lineaments in the region, the NE-oriented Kanchendzonga and NW-oriented Tista lineaments. The ground motions were estimated considering both the nodal planes as causative faults and the results in terms of the peak ground accelerations (PGA) and Fourier spectra were then compared with the actual recordings. We found that the NW–SE striking nodal plane along the Tista lineament may have been the causative fault for the Sikkim earthquake, as PGA estimates are comparable with the observed recordings. We also observed that the Fourier spectrum is not a good parameter in deciding the causative fault plane.  相似文献   

16.
The traces of strong earthquakes in the territory of Fennoscandia have been recorded by many scientists already for several decades. The seismogenerating paleostructures, such as postglacial discontinuities in the crystalline basement accompanied by a complex of deformations in the loose deposits are found in the territories of Sweden, Norway, and Finland that border Russia, in which case the spatial correlation of the postglacial faults and modern seismicity is established. Such structures have not yet been discovered in Russia, though the traces of strong earthquakes in the form of rock deformations and postglacial sediments are found by different groups of researchers over the whole territory of Eastern Fennoscandia. The obtained data make it possible to identify the linear zones of concentration of paleoearthquakes (seismic lineaments) that also occur in the modern relief and modern seismicity. However, the problem of postglacial seismicity remains a subject for discussions concerning the localization of the foci, their genesis, and regime. A remaining issue is also distinguishing between seismogenic, cryogenic, and glaciodislocations. The important questions that need to be solved include parametrization of paleoearthquakes and determination of their nature, structures, age, and magnitude. One of the key segments is the area of Vottovaara Mountain in Middle Karelia, which is a part of the Vottovaara–Girvas seismic lineament, where seismic dislocations were found earlier. For studying this probable paleo-focal zone in detail, remote sensing data, field geological and geomorphological observations, and computational methods for estimating the peak values of paleoearthquake mass velocities are used. The typical zones of development of different types of seismic deformations are revealed. A potential seismogenerating fault related to the northwest-striking Vottovaara–Girvas seismic lineament is found; its probable shear kinematics is determined from the ratio of pulse displacements of rock blocks on different wings of the fault. The sequence of a few strong events which occurred here in the interglacial and postglacial periods is identified. The effects of interaction between the seismic activity and the glacial exaration on the formation of the modern image of the focal zone are established. Using alternative approaches to estimating shaking intensity by the macroseismic INQUA scale, the scale by F.F. Aptikayev, and the nomogram by M.V. Rodkin, the intensity of the recent strong Early Holocene seismic event, which occurred here at 8.9 ka according to A.D. Lukashov, is determined. According to the agreed estimates, the intensity reached 9–10 points at a probable magnitude of 7.5–8. This work carried out using a number of new approaches developed by the authors makes it possible to characterize paleoseismicity in more detail.  相似文献   

17.
The goal of the present work is to identify high-seismicity (High) intersections of morphostructural lineaments within the Mediterranean mountain belts (the Alps, Apennines, Balkanides, Dinarides, and the Carpathians). The intersections of lineaments, with the lineaments being boundaries of crustal blocks, were determined by morphostructural zoning. The epicenters of M ≥ 6.0 earthquakes and the intersections were found to be related. We used the KORA-3 recognition algorithm to identify the High intersections, where M >- 6.0 earthquakes can occur, separately for each mountainous country. Most of the High intersections identified here are located on higher-rank lineaments that separate major crustal blocks. The High intersections typically involve contrasting neotectonic movements and an increased crustal fragmentation. The results of this study point to a high seismic potential for the regions studied: we have identified many High intersections where no large earthquakes have yet been recorded.  相似文献   

18.
More than four hundred linear arrangements of nearly all active volcanic loci in the Indonesian island arcs have been subdivided into small (occurring on the same volcano), medium (occupying the same volcanic range), and large (interpreted connections between volcanic loci on separate cones or ranges). Two additional size-classes,i.e. small to medium and medium to large volcanic lineaments contain the transitory cases. Analyzing the orientations of the volcanic lineaments with respect to the regional structural trends and by using the most widely accepted angle of failure of 25° 30°, it was found that more than seventy percent of the lineaments can be classified as first and second order shear, tension, and extension directions. The tension direction occurs predominantly in the large size-class contrarily to the extension direction, which is rarely large. Instead, the latter direction is most frequent as small lineaments. There are no significant differences in the number of lineaments among the six directions of failure. Almost three quarters of the remaining unclassifiable volcanic lineaments belong to the small and small to medium size-classes, which very probably rellect the influence of local structural conditions. These data indicate conclusively that most volcanic lineaments occur along narrow zones of weakness which are genetically related to the regional structure.  相似文献   

19.
In this study, we purposed to investigate the edge of geostructures and position of existing faults of the Shamakhy–Gobustan and Absheron hydrocarbon containing regions in Azerbaijan. For this purpose, the horizontal gradient, analytic signal, tilt angle, and hyperbolic of tilt angle methods were applied to the first vertical derivative of gravity data instead of Bouguer gravity data. We obtained the maps that show the previous lineaments which were designated by considering the maximum contours of horizontal gradient, analytic signal maps, and zero values of tilt angle, hyperbolic of tilt angle maps. The geometry of basement interface was also modeled utilizing the Parker–Oldenburg algorithm to understand the sediment thickness and coherency or incoherency between the gravity values and basement topography. The lineaments were held a candle to most current tectonic structure map of the study area. It was seen that the techniques used in this study are very effective to determine the old and new lineaments in the Shamakhy–Gobustan and Absheron regions. The epicenter distribution of earthquakes within the study area supports the new lineaments which are extracted by our interpretation. We concluded that better comprehension of Azerbaijan geostructures and its effect on the large scale works will be provided by means of this study.  相似文献   

20.
ABSTRACT

Groundwater favorability maps can aid groundwater exploitation in fractured aquifers, such as those of the Bação and Northern Bonfim complexes (Quadrilátero Ferrífero) southeastern Brazil, bringing alternatives for water supply in regions where water availability is at risk. These maps were obtained by means of the analytic hierarchy process (AHP), using six information levels: the height above the nearest drainage (HAND) model, the declivity map, three lineament maps (morphostructural, radiometric and magnetometric), and the lithological map. The E–W strike of the lineaments was emphasized for the integration, because it is the most frequent and subparallel to the present strike of the maximum principal stress σ1. The favorability maps were validated by varying the input parameters and comparing the maps with 82 specific capacity values obtained from well tests. Although more data should be necessary to confirm this method, the results are promising and can be tested in other crystalline basement areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号