首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
姚兰昌 《气象学报》1991,49(3):343-353
本文用月平均资料详细地计算了强厄尔尼诺时期(1982年8月—1983年7月)西太平洋及其邻近地区的大气加热场。结果表明:(1)西太平洋、太平洋中部赤道及其热带全年是一个范围大、强度强的热源区,而上述热源区北、南两侧的副热带则为大范围的冷源区。我国南海也有一个较强的热源区。赤道热源带的南移和加强是厄尔尼诺时期的一个重要特征;(2)各月大气加热场的分布特征可分为冬春和夏秋两类;(3)总加热率的月际变化明显,且有2次显著的增热过程。  相似文献   

2.
西太平洋赤道海域的热量平衡   总被引:1,自引:0,他引:1  
本文利用1986年11月中国科学院实验3号考察船在西太平洋赤道海域(0°~5°N,130°~150°E)考察所获得的29天辐射资料和同期取得的温、压、湿、风和探空等资料,计算了这一海域11月份的热量平衡各量值和整层气柱的加热量。结果表明:该海域是一个强热源区,其上空大气也是一个强热源区。  相似文献   

3.
本文利用高原四周10年平均的高空资料,计算了高原地区平均气柱三维流场、加热场及其年变化。指出夏季高原四周200mb以下,空气向高原辐合上升,到100mb变为向外辐散,冬季相反。春秋是过渡季节,3月在300mb以上出现上升气流,500mb以下还保存冬季的辐散下沉气流,到5月才转为辐合上升气流。9月到10月又由夏季情况向冬季转化,10月气柱底部又开始出现下沉气流,以后它的厚度增加而转变为冬季的三维流场。 整层气柱3—9月是热源,其它各月是冷源,但气柱底部3月还保留冷源,9月冷源又开始出现。水汽的蒸发及凝结对加热场影响明显,冬季(11—12月及1—2月)水汽在高层起冷源作用,夏季(4—10月)起热源作用,300—400mb释放凝结潜热最强。但在近地面的600mb,2—7月有水汽蒸发冷却,其它各月有水汽凝结加热。从2月到5月气柱迅速增暖而变为热源,主要是感热的贡献,而对6—9月热源的维持潜热的贡献却大于感热。  相似文献   

4.
该文采用中国气象局月值站点数据和JRA-55资料分析华南前汛期降水特征及其与大气热源的关系。发现4—6月降水中心从南岭地区转移到珠三角地区,同时伴随副高东退北抬。6月降水范围和强度最大,降水空间分布的典型模态是全区变化一致型。降水偏多年副高异常偏西,西南气流强盛,华南地区大气整层被强热源控制,且伴随显著上升气流。菲律宾以东和孟加拉湾西侧被异常冷源控制,伴随强下沉气流,异常冷热源在400 hPa高度达最强。合成和相关分析表明,前汛期菲律宾以东异常冷源加强下沉气流,使副高西伸加强,利于东南气流沿南海北上。孟加拉湾西侧异常冷源加强低空气流反气旋式辐散,从而使冷源东侧的印缅槽加深东进,利于西南暖湿气流北上。来自热带太平洋和热带印度洋的暖湿气流北上在华南地区汇合,而华南地区异常强热源抽吸低空气流辐合上升,从而造成前汛期降水偏多。降水偏少年也可采用相似机理来解释。  相似文献   

5.
李崇银  黎鑫  杨辉  潘静  李刚 《大气科学》2018,42(3):505-523
本文基于观测资料和LICOM2.0模拟结果的分析研究,简要介绍讨论了太平洋—印度洋海温(异常)联合模(PIOAM)的存在、特征、演变及其影响等问题。热带太平洋—印度洋区域乃至全球范围的海表温度异常(SSTA)资料进行EOF分解,都清楚表明其第一分量在热带太平洋—印度洋的空间形态与太平洋—印度洋海温(异常)联合模(PIOAM)非常相似,说明PIOAM是热带太平洋—印度洋实实在在存在的一种海温异常模态。对应PIOAM的正、负位相,热带印度洋和西太平洋地区的夏季(JJA)850 hPa距平风场有近乎相反的异常流场形势;对流层低层的Walker环流支和亚洲夏季风都出现了不同特征的(近乎相反)异常;在PIOAM正(负)位相将使得100 hPa的南亚高压位置偏东(西)。对热带太平洋和印度洋温跃层曲面上的海温异常(为了方便将其称为SOTA)进行EOF分解,发现其第一模态也是一个三极子模态,即当赤道中西印度洋大部分海域与赤道中东太平洋大部分海域偏暖(偏冷)时,赤道东印度洋和赤道西太平洋大部分海域则偏冷(偏暖);它与太平洋—印度洋表层的PIOAM十分类似,也表明PIOAM在海洋次表层也是存在的。高分辨海洋环流模式LICOM2.0的模拟结果,无论是对太平洋—印度洋表层还是次表层的PIOAM的特征和演变都刻画得很好,这从另一个角度进一步说明PIOAM是热带太平洋—印度洋实际存在的一种海温变化模态。PIOAM正、负位相不仅对亚洲及西太平洋地区的天气气候有非常不一样的影响(不少地方有反向的特征),还会对南北美洲和非洲一些地区产生不同影响;而且其影响与单独的厄尔尼诺(El Ni?o)及印度洋偶极子(IOD)都不尽相同。  相似文献   

6.
分析了1979—2018年两类厄尔尼诺事件期间月平均热带太平洋海面温度(sea surface temperature, SST)异常、对流降水异常、大气环流异常等特征,发现东部型、中部型厄尔尼诺期间海洋及大气加热场并不是赤道对称,赤道以南热源强度大于赤道以北。大气对热源的响应表现在:1)低层在大气热源西侧出现南、北半球热带相对应的气旋环流异常,但是赤道以南气旋的涡度大于赤道以北,且两类厄尔尼诺事件期间涡度中心的位置不同;到高层赤道中东太平洋呈现赤道对称的反气旋环流控制。2)低层热源的西侧出现西风异常,东侧为东风异常,西风异常的强度与范围明显大于东风异常,且东部型西风异常的强度大于中部型;而到高层,纬向风的风向和低层正好相反。3)低层东部型、中部型厄尔尼诺上升运动异常分别位于赤道中东太平洋和赤道中太平洋,下沉运动出现在热源东西两侧及赤道两侧5°N以北、5°S以南的热带地区;东部型到中层上升运动异常强度达到最大,而中部型到高层上升运动异常强度达到最大。4)低层东部型、中部型厄尔尼诺期间位势高度在中东太平洋为负异常,西太平洋为正异常;到高层,整个赤道中东太平洋地区均为位势高度正异常,并且在赤道两侧分别出现位势高度正异常中心,与反气旋环流涡度中心及下沉运动异常中心相对应。5)除西风异常范围大于东风异常,其他特征与赤道非对称热源GILL响应的理论计算模态基本一致。  相似文献   

7.
热带中太平洋海温异常型是近年发现的赤道太平洋海温异常分布的新特征,主要表现在热带太平洋海温异常为纬向"三极型"分布,其与ENSO的"偶极型"分布显著不同。利用1955—2005年HadISST月平均海温资料和中国160站月降水和温度资料,确定了中太平洋海温异常型并研究了这种海温异常型与中国东部同期夏季降水的关系。结果表明,当中太平洋海温为正异常时,我国江淮流域、西南地区的东部整层水汽含量偏少并处于水汽通量辐散区,不利于降水的形成,同时该地区上空垂直温度平流为正异常,利于异常高温的形成;我国华南、西南地区的南部为整层水汽通量辐合区,水汽丰沛,且整层垂直温度平流为负异常,易发生低温多雨的天气气候。  相似文献   

8.
张灵玲  谢倩  杨修群 《气象科学》2015,35(6):663-671
利用1958-2001年ERA-40再分析资料计算大气热源,统计分析了亚洲季风区及其邻近海域大气热源年代际变异的典型模态;利用线性斜压干模式,模拟了夏季大气对大气热源年代际异常的响应,揭示了大气热源年代际异常与1970s末期东亚夏季风年代际减弱的关系。结果表明:近50 a来亚洲及其邻近海域夏季整层大气热源变异主要表现为年代际变化特征,其年代际位相转换发生在1970s中后期,这与东亚夏季风年代际减弱的时间一致;菲律宾附近海域和中国西南地区是与东亚夏季风年代际减弱有直接联系的两个热源异常关键区;东亚夏季风年代际减弱最直接地表现为这两个关键区热源异常的共同作用,而赤道中东太平洋、赤道印度洋大气热源增强则通过大气遥响应机制影响菲律宾附近海域低层大气环流异常对东亚夏季风变异起相反的贡献。  相似文献   

9.
利用西北太平洋编号台风资料、NCEP/NCAR再分析资料和NOAA向外长波辐射(outgoing longwave radiation,OLR)资料等,选取西北太平洋热带气旋频数异常偏少的2010年和1998年,诊断分析ENSO事件及其东亚夏季风环流异常与热带气旋频数异常的关系,给出东亚夏季风系统部分成员影响热带气旋频数的天气学图像:由春入夏,赤道东太平洋海温异常偏暖,赤道哈得来环流偏强,沃克环流偏弱;西太平洋副热带高压异常强大,位置偏西;季风槽位置偏南,东西向不发展;南海、西太平洋越赤道气流偏弱;异常热源和水汽汇偏南,南海和菲律宾以东地区对流活动受到抑制,热带对流活跃区位于赤道以南;热带气旋生成个数明显偏少,位置偏西。  相似文献   

10.
利用1948~2008年共61年NCEP/NCAR再分析资料对全球的大气热源(汇)统计处理,采用经验正交函数分解方法、气候态平均分析方法,分析了东亚地区的大气热源、热汇的基本气候特征,对61年来东亚地区大气热源热汇各月,各季节的气候态分析,并从全球的大气热源、热汇剖面分析中了解了其变化规律。揭示了全球大范围的大气热源区主要分布在南亚—热带印度洋—热带太平洋的中部和西部两侧、南美洲的赤道及其南侧地区一带,并得出其变化的平均趋势;0~60°N,每10个纬度带内热源、热汇的年变化不仅与全球纬向平均的热源、热汇年变化有非常大的差异,而且亚洲,青藏高原、东亚大陆、西太平洋地区6个平均纬度带之间的差异也非常明显。  相似文献   

11.
12.
根据1986年1—2月中美海气考察船所获得的气象资料和其它海洋气象报告,本文计算了热带西太平洋海面的热量平衡,指出该区域海面供给大气的热量大于它从大气接受到的能量。是一个重要的热源区。同时指出,海洋向大气输送热量最显著的地区是出现在西太平洋西部的热带地区,即在 10°N、130—150°E附近。此外,在该海域内,确定海面热量平衡特性的两个最重要的因素应属潜热通量和太阳辐射通量。   相似文献   

13.
李月洪  李维亮 《气象学报》1990,48(2):172-179
本文采用中美海-气合作考察第一次航程(1986.1.9—15,2.1—14)和若干站点的海洋气象资料,计算了热带西太平洋不同区域的大气湿静力能量的水平输送和局地变化、大气非绝热加热诸分量以及各区域海面与大气的热交换项。分析指出,在考察期间热带西太平洋上空,西部区是大气能量水平输送的能汇区,而东、中部区则反之。同时,热带西太平洋上空大气和海洋下垫面是个热源区,尤以西部区最为明显。由此可知,热带西太平洋大气能量收支具有明显的区域性差异,其西部区是较强的大气和海洋下垫面的热源区域,是热量、能量积存最多的地区。  相似文献   

14.
根据TOGA计划,1990年初夏,中美两国科学工作者对18°N—10°S、120—165°E的热带西太平洋海区进行了科学考察,本文用这次考察的资料(包括总辐射、净辐射、海温、气温、气压、湿度、露点、风、云和海浪),计算了睛天和阴雨天、两个剖面(165°E经向剖面和赤道纬向剖面)以及整个考察区域的(昼夜)净辐射强度、感热和潜热通量、净热量通量和动量通量的日平均和日总量,并对热带西太平洋西部和东部进行了比较,发现西部比东部获得更多的太阳辐射能,这是热带西太平洋暖水池形成的直接原因之一。   相似文献   

15.
亚洲热带夏季风的首发地区和机理研究   总被引:28,自引:5,他引:28  
文中分析了多年逐候平均 85 0hPa风场和黑体辐射温度等物理量的时空演变 ,结果表明 ,90°E以东的孟加拉湾、中南半岛和南海是亚洲热带夏季风首先爆发的地区 ,爆发时间在 2 7~ 2 8候 ,具有突发性和同时性。 90°E以西的印度半岛和阿拉伯海是热带夏季风爆发较晚的地区 ,季风首先在该区 10°N以南爆发 ,时间约在 30~ 31候 ,然后向北推进 ,6月末在全区建立 ,爆发过程具有渐进性。机制分析表明 ,由于 110~ 12 0°E的中高纬东亚大陆在春季和初夏地面感热通量、温度和气压的迅速变化 ,使热带低压带首先在该处冲破高压带 ,生成大陆低压 ,并引导西南气流在 90°E以东地区首先建立。在 90°E以西的印度半岛地区 ,地面感热通量在 4~ 5月间几乎没有明显变化 ,因而印度季风比南海季风晚爆发约 1个月。由此得出 ,90°E是东亚夏季风和南亚夏季风的分界线。此外 ,还着重探讨了南亚高压的季节变化与亚洲热带夏季风爆发的时间联系。发现南亚高压中心位置与亚洲热带夏季风爆发时间有较好的对应关系。南亚高压中心跳过 2 0°N时 ,南海夏季风爆发 ,跳过 2 5°N时 ,印度夏季风在其南部爆发。将用上述方法确定的爆发时间与用其他方法确定的爆发时间相比较 ,发现它们在南海地区有较好的一致性 ,在印度地区略有差异。  相似文献   

16.
本文是东亚地区大气辐射能收支”的第三部分,讨论了如下几个问题: 1.云天大气长波辐射和辐射差额分布。结果指出,除7月份西藏高原地区外,云天和晴天长波辐射分布特征基本相同,而其辐射差额分布又和相应月份的大气长波辐射分布特征基本一致。 2.东亚地区对流层大气热源热汇分布:8月份整个东亚地区都是冷源,在新疆地区和中国东部北纬32°—25°之间有两个冷中心。在7月份整个东亚地区都是热源,在西藏高原东南部有一个最强的热源中心。新疆北部有一个小的热源中心。 3.东亚各地区的地气系统各种热量收支。首先就整个东亚地区地气系统而言,7月份得到热量基本上补偿了1月份损失的热量,但就大气而言,1月份热量损失大于7月份热量的获得。其次各地区各种热量收支特征并不一致。  相似文献   

17.
大气凝结水汽汇、凝结潜热作用与积云对流参数化   总被引:2,自引:0,他引:2  
辜旭赞  张兵 《气象学报》2006,64(6):790-795
从引入包含质量(水汽)源、汇的连续方程出发,重新推导出大尺度凝结降水和积云对流凝结降水之水汽汇起作用的热力学方程,从而重新给出气压、气温预报方程及地面气压与高空位势高度预报方程。发现,在此基础上,才能实现凝结3个作用:气块水汽质量流失与气压降低;气块虚温降低;加热气块;和通过大气运动方程,实现大气凝结潜热“热机”作功。这时,对于预报气压、气温场,积云对流参数化方案中的参数在凝结3个作用中保持一致。否则,通过积云对流参数化方案,虽可以近似实现对于预报气压和气温场的凝结3个作用,但不可能调好参数的降水物理特性及其时空分布特征。且对于静力模式预报地面气压和高空位势高度场,不可能实现上述的第一凝结作用。最后表明,当模式分辨率提高到只用降水显式方案、不再用积云对流参数化方案后,则必须引入包含水汽源、汇的连续方程。因在热带海洋面上的水蒸发过程,水汽进入大气将改变地面气压场,且蒸发潜热可分为内潜热(水汽内能)和外潜热(水汽压力能),内潜热立即成为大气热能的一部分,而外潜热直接对大气层作功,使得大气位能增加。文中研究了大气中的大尺度凝结降水和积云对流凝结降水对气压场与位势高度场的影响。一般积云对流参数化方案都已考虑内潜热对大气的加热作用,但还须考虑因凝结与降水造成地面气压场及高空位势高度场的变化,后者应是外潜热作用的结果。在上述研究过程中,必须引入考虑凝结作用的连续方程,且最终可以改变有降水(包括大尺度凝结降水和积云对流凝结降水)发生时的数值预报模式动力框架。  相似文献   

18.
北半球夏季风区大气视热源和视水汽汇的低频振荡   总被引:3,自引:1,他引:3  
利用1986年5-9月ECMWF/WMO资料计算非洲季风区、印度季风区、南海季风区和副热季风区的视热源和视水汽汇。结果表明非洲季风区和印度季风区Q1、Q2的准40天周期显著;南海季风区准双周振荡明显;副热带季风区盛行8天左右的周期;准40天周期振荡也是南海季风区和副热带季风区的重要信号,印度季风区Q1,Q2的准40天周期振荡比其他季风区的更为显著;非洲季风区Q1振荡位相超前于Q2振荡位相,其他季风  相似文献   

19.
近30年青藏高原大气热源气候特征研究   总被引:1,自引:0,他引:1  
利用NCEP CFSR再分析资料,用"倒算法"计算了1981~2010年青藏高原大气热源汇,并分析了其气候特征。结果表明:(1)青藏高原大气热源汇具有明显的季节差异。高原大部分地区在春季和夏季为热源,冬季和秋季为冷源。2~4月热源从高原西北部、东北部及西南边坡开始逐渐向中部扩展,强度不断增强。5~7月高原东南端热源显著增强并向西向北扩展,使7月高原热源达到最强,并在高原南部喜马拉雅山脉沿线及其以南邻近地区形成一个强大的热源带。8月开始,高原热源迅速减弱,高原中部至四周边坡大部分地区大气先后变为冷源。到11月和12月整个高原大气几乎为冷源。(2)高原各区逐年平均大气热源强度有明显不同的变化特征。高原全区有显著的2~3年和6~8年周期,而高原东部仅存在6~8年周期,高原西部仅有2~3年周期。(3)近30年高原全区和东部大气热源具有明显增强趋势,而高原西部却为减弱趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号